![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imaeq1i | Structured version Visualization version GIF version |
Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
imaeq1i | ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | imaeq1 6084 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: mptpreima 6269 csbpredg 6338 isarep2 6669 suppun 8225 suppco 8247 fsuppun 9456 fsuppcolem 9470 marypha2lem4 9507 dfoi 9580 r1limg 9840 isf34lem3 10444 compss 10445 fpwwe2lem12 10711 infrenegsup 12278 gsumzf1o 19954 ssidcn 23284 cnco 23295 qtopres 23727 idqtop 23735 qtopcn 23743 mbfid 25689 mbfres 25698 cncombf 25712 dvlog 26711 efopnlem2 26717 seqsval 28312 seqsfn 28333 seqsp1 28335 eucrct2eupth 30277 disjpreima 32606 imadifxp 32623 rinvf1o 32649 cyc3genpm 33145 mbfmcst 34224 mbfmco 34229 sitmcl 34316 eulerpartlemt 34336 eulerpartlemmf 34340 eulerpart 34347 0rrv 34416 mclsppslem 35551 bj-iminvid 37161 mptsnun 37305 poimirlem3 37583 ftc1anclem3 37655 areacirclem5 37672 cytpval 43163 arearect 43176 brtrclfv2 43689 0cnf 45798 fourierdlem62 46089 smfco 46723 |
Copyright terms: Public domain | W3C validator |