| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq1i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| imaeq1i | ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | imaeq1 6026 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: mptpreima 6211 csbpredg 6280 isarep2 6608 suppun 8163 suppco 8185 fsuppun 9338 fsuppcolem 9352 marypha2lem4 9389 dfoi 9464 r1limg 9724 isf34lem3 10328 compss 10329 fpwwe2lem12 10595 infrenegsup 12166 gsumzf1o 19842 ssidcn 23142 cnco 23153 qtopres 23585 idqtop 23593 qtopcn 23601 mbfid 25536 mbfres 25545 cncombf 25559 dvlog 26560 efopnlem2 26566 seqsval 28182 seqsfn 28203 seqsp1 28205 eucrct2eupth 30174 disjpreima 32513 imadifxp 32530 rinvf1o 32554 suppun2 32607 cyc3genpm 33109 elrgspnsubrunlem2 33199 isconstr 33726 mbfmcst 34250 mbfmco 34255 sitmcl 34342 eulerpartlemt 34362 eulerpartlemmf 34366 eulerpart 34373 0rrv 34442 mclsppslem 35570 bj-iminvid 37183 mptsnun 37327 poimirlem3 37617 ftc1anclem3 37689 areacirclem5 37706 cytpval 43191 arearect 43204 brtrclfv2 43716 0cnf 45875 fourierdlem62 46166 smfco 46800 |
| Copyright terms: Public domain | W3C validator |