| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq1i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| imaeq1i | ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | imaeq1 6015 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 “ cima 5634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 |
| This theorem is referenced by: mptpreima 6199 csbpredg 6268 isarep2 6590 suppun 8140 suppco 8162 fsuppun 9314 fsuppcolem 9328 marypha2lem4 9365 dfoi 9440 r1limg 9700 isf34lem3 10304 compss 10305 fpwwe2lem12 10571 infrenegsup 12142 gsumzf1o 19818 ssidcn 23118 cnco 23129 qtopres 23561 idqtop 23569 qtopcn 23577 mbfid 25512 mbfres 25521 cncombf 25535 dvlog 26536 efopnlem2 26542 seqsval 28158 seqsfn 28179 seqsp1 28181 eucrct2eupth 30147 disjpreima 32486 imadifxp 32503 rinvf1o 32527 suppun2 32580 cyc3genpm 33082 elrgspnsubrunlem2 33172 isconstr 33699 mbfmcst 34223 mbfmco 34228 sitmcl 34315 eulerpartlemt 34335 eulerpartlemmf 34339 eulerpart 34346 0rrv 34415 mclsppslem 35543 bj-iminvid 37156 mptsnun 37300 poimirlem3 37590 ftc1anclem3 37662 areacirclem5 37679 cytpval 43164 arearect 43177 brtrclfv2 43689 0cnf 45848 fourierdlem62 46139 smfco 46773 |
| Copyright terms: Public domain | W3C validator |