| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq1i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| imaeq1i | ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | imaeq1 6010 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 “ cima 5626 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-cnv 5631 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 |
| This theorem is referenced by: mptpreima 6191 csbpredg 6259 isarep2 6576 suppun 8124 suppco 8146 fsuppun 9296 fsuppcolem 9310 marypha2lem4 9347 dfoi 9422 r1limg 9686 isf34lem3 10288 compss 10289 fpwwe2lem12 10555 infrenegsup 12126 gsumzf1o 19809 ssidcn 23158 cnco 23169 qtopres 23601 idqtop 23609 qtopcn 23617 mbfid 25552 mbfres 25561 cncombf 25575 dvlog 26576 efopnlem2 26582 seqsval 28205 seqsfn 28226 seqsp1 28228 eucrct2eupth 30207 disjpreima 32546 imadifxp 32563 rinvf1o 32587 suppun2 32640 cyc3genpm 33107 elrgspnsubrunlem2 33201 isconstr 33705 mbfmcst 34229 mbfmco 34234 sitmcl 34321 eulerpartlemt 34341 eulerpartlemmf 34345 eulerpart 34352 0rrv 34421 mclsppslem 35558 bj-iminvid 37171 mptsnun 37315 poimirlem3 37605 ftc1anclem3 37677 areacirclem5 37694 cytpval 43178 arearect 43191 brtrclfv2 43703 0cnf 45862 fourierdlem62 46153 smfco 46787 |
| Copyright terms: Public domain | W3C validator |