MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeq1i Structured version   Visualization version   GIF version

Theorem imaeq1i 5955
Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.)
Hypothesis
Ref Expression
imaeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
imaeq1i (𝐴𝐶) = (𝐵𝐶)

Proof of Theorem imaeq1i
StepHypRef Expression
1 imaeq1i.1 . 2 𝐴 = 𝐵
2 imaeq1 5953 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
31, 2ax-mp 5 1 (𝐴𝐶) = (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cima 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  mptpreima  6130  csbpredg  6197  isarep2  6507  suppun  7971  suppco  7993  fsuppun  9077  fsuppcolem  9090  marypha2lem4  9127  dfoi  9200  r1limg  9460  isf34lem3  10062  compss  10063  fpwwe2lem12  10329  infrenegsup  11888  gsumzf1o  19428  ssidcn  22314  cnco  22325  qtopres  22757  idqtop  22765  qtopcn  22773  mbfid  24704  mbfres  24713  cncombf  24727  dvlog  25711  efopnlem2  25717  eucrct2eupth  28510  disjpreima  30824  imadifxp  30841  rinvf1o  30866  cyc3genpm  31321  mbfmcst  32126  mbfmco  32131  sitmcl  32218  eulerpartlemt  32238  eulerpartlemmf  32242  eulerpart  32249  0rrv  32318  mclsppslem  33445  bj-iminvid  35293  mptsnun  35437  poimirlem3  35707  ftc1anclem3  35779  areacirclem5  35796  cytpval  40950  arearect  40962  brtrclfv2  41224  0cnf  43308  fourierdlem62  43599  smfco  44223
  Copyright terms: Public domain W3C validator