Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imaeq1i | Structured version Visualization version GIF version |
Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
imaeq1i | ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | imaeq1 5892 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 “ cima 5522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-rab 3062 df-v 3399 df-un 3846 df-in 3848 df-ss 3858 df-sn 4514 df-pr 4516 df-op 4520 df-br 5028 df-opab 5090 df-cnv 5527 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 |
This theorem is referenced by: mptpreima 6064 isarep2 6422 suppun 7872 suppco 7894 fsuppun 8918 fsuppcolem 8931 marypha2lem4 8968 dfoi 9041 r1limg 9266 isf34lem3 9868 compss 9869 fpwwe2lem12 10135 infrenegsup 11694 gsumzf1o 19144 ssidcn 21999 cnco 22010 qtopres 22442 idqtop 22450 qtopcn 22458 mbfid 24380 mbfres 24389 cncombf 24403 dvlog 25386 efopnlem2 25392 eucrct2eupth 28174 disjpreima 30489 imadifxp 30506 rinvf1o 30531 cyc3genpm 30988 mbfmcst 31788 mbfmco 31793 sitmcl 31880 eulerpartlemt 31900 eulerpartlemmf 31904 eulerpart 31911 0rrv 31980 mclsppslem 33108 bj-iminvid 34976 csbpredg 35109 mptsnun 35122 poimirlem3 35392 ftc1anclem3 35464 areacirclem5 35481 cytpval 40590 arearect 40602 brtrclfv2 40865 0cnf 42944 fourierdlem62 43235 smfco 43859 |
Copyright terms: Public domain | W3C validator |