| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq1i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| imaeq1i | ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | imaeq1 6011 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 “ cima 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 |
| This theorem is referenced by: mptpreima 6193 csbpredg 6262 isarep2 6579 suppun 8123 suppco 8145 fsuppun 9282 fsuppcolem 9296 marypha2lem4 9333 dfoi 9408 r1limg 9675 isf34lem3 10277 compss 10278 fpwwe2lem12 10544 infrenegsup 12116 gsumzf1o 19832 ssidcn 23190 cnco 23201 qtopres 23633 idqtop 23641 qtopcn 23649 mbfid 25583 mbfres 25592 cncombf 25606 dvlog 26607 efopnlem2 26613 seqsval 28238 seqsfn 28259 seqsp1 28261 eucrct2eupth 30246 disjpreima 32585 imadifxp 32602 rinvf1o 32634 suppun2 32689 cyc3genpm 33162 elrgspnsubrunlem2 33258 esplysply 33657 vieta 33664 isconstr 33821 mbfmcst 34344 mbfmco 34349 sitmcl 34436 eulerpartlemt 34456 eulerpartlemmf 34460 eulerpart 34467 0rrv 34536 mclsppslem 35699 bj-iminvid 37312 mptsnun 37456 poimirlem3 37736 ftc1anclem3 37808 areacirclem5 37825 cytpval 43359 arearect 43372 brtrclfv2 43884 0cnf 46037 fourierdlem62 46328 smfco 46962 |
| Copyright terms: Public domain | W3C validator |