| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq1i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| imaeq1i | ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | imaeq1 6042 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 “ cima 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: mptpreima 6227 csbpredg 6296 isarep2 6628 suppun 8183 suppco 8205 fsuppun 9399 fsuppcolem 9413 marypha2lem4 9450 dfoi 9525 r1limg 9785 isf34lem3 10389 compss 10390 fpwwe2lem12 10656 infrenegsup 12225 gsumzf1o 19893 ssidcn 23193 cnco 23204 qtopres 23636 idqtop 23644 qtopcn 23652 mbfid 25588 mbfres 25597 cncombf 25611 dvlog 26612 efopnlem2 26618 seqsval 28234 seqsfn 28255 seqsp1 28257 eucrct2eupth 30226 disjpreima 32565 imadifxp 32582 rinvf1o 32608 suppun2 32661 cyc3genpm 33163 elrgspnsubrunlem2 33243 isconstr 33770 mbfmcst 34291 mbfmco 34296 sitmcl 34383 eulerpartlemt 34403 eulerpartlemmf 34407 eulerpart 34414 0rrv 34483 mclsppslem 35605 bj-iminvid 37213 mptsnun 37357 poimirlem3 37647 ftc1anclem3 37719 areacirclem5 37736 cytpval 43226 arearect 43239 brtrclfv2 43751 0cnf 45906 fourierdlem62 46197 smfco 46831 |
| Copyright terms: Public domain | W3C validator |