MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeq1i Structured version   Visualization version   GIF version

Theorem imaeq1i 6044
Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.)
Hypothesis
Ref Expression
imaeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
imaeq1i (𝐴𝐶) = (𝐵𝐶)

Proof of Theorem imaeq1i
StepHypRef Expression
1 imaeq1i.1 . 2 𝐴 = 𝐵
2 imaeq1 6042 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
31, 2ax-mp 5 1 (𝐴𝐶) = (𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cima 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667
This theorem is referenced by:  mptpreima  6227  csbpredg  6296  isarep2  6628  suppun  8183  suppco  8205  fsuppun  9399  fsuppcolem  9413  marypha2lem4  9450  dfoi  9525  r1limg  9785  isf34lem3  10389  compss  10390  fpwwe2lem12  10656  infrenegsup  12225  gsumzf1o  19893  ssidcn  23193  cnco  23204  qtopres  23636  idqtop  23644  qtopcn  23652  mbfid  25588  mbfres  25597  cncombf  25611  dvlog  26612  efopnlem2  26618  seqsval  28234  seqsfn  28255  seqsp1  28257  eucrct2eupth  30226  disjpreima  32565  imadifxp  32582  rinvf1o  32608  suppun2  32661  cyc3genpm  33163  elrgspnsubrunlem2  33243  isconstr  33770  mbfmcst  34291  mbfmco  34296  sitmcl  34383  eulerpartlemt  34403  eulerpartlemmf  34407  eulerpart  34414  0rrv  34483  mclsppslem  35605  bj-iminvid  37213  mptsnun  37357  poimirlem3  37647  ftc1anclem3  37719  areacirclem5  37736  cytpval  43226  arearect  43239  brtrclfv2  43751  0cnf  45906  fourierdlem62  46197  smfco  46831
  Copyright terms: Public domain W3C validator