| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq1i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| imaeq1i | ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | imaeq1 5999 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 “ cima 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 |
| This theorem is referenced by: mptpreima 6180 csbpredg 6249 isarep2 6566 suppun 8109 suppco 8131 fsuppun 9266 fsuppcolem 9280 marypha2lem4 9317 dfoi 9392 r1limg 9659 isf34lem3 10261 compss 10262 fpwwe2lem12 10528 infrenegsup 12100 gsumzf1o 19819 ssidcn 23165 cnco 23176 qtopres 23608 idqtop 23616 qtopcn 23624 mbfid 25558 mbfres 25567 cncombf 25581 dvlog 26582 efopnlem2 26588 seqsval 28213 seqsfn 28234 seqsp1 28236 eucrct2eupth 30217 disjpreima 32556 imadifxp 32573 rinvf1o 32604 suppun2 32657 cyc3genpm 33113 elrgspnsubrunlem2 33207 esplysply 33584 isconstr 33741 mbfmcst 34264 mbfmco 34269 sitmcl 34356 eulerpartlemt 34376 eulerpartlemmf 34380 eulerpart 34387 0rrv 34456 mclsppslem 35619 bj-iminvid 37229 mptsnun 37373 poimirlem3 37663 ftc1anclem3 37735 areacirclem5 37752 cytpval 43235 arearect 43248 brtrclfv2 43760 0cnf 45915 fourierdlem62 46206 smfco 46840 |
| Copyright terms: Public domain | W3C validator |