| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaeq1i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| imaeq1i | ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | imaeq1 6029 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: mptpreima 6214 csbpredg 6283 isarep2 6611 suppun 8166 suppco 8188 fsuppun 9345 fsuppcolem 9359 marypha2lem4 9396 dfoi 9471 r1limg 9731 isf34lem3 10335 compss 10336 fpwwe2lem12 10602 infrenegsup 12173 gsumzf1o 19849 ssidcn 23149 cnco 23160 qtopres 23592 idqtop 23600 qtopcn 23608 mbfid 25543 mbfres 25552 cncombf 25566 dvlog 26567 efopnlem2 26573 seqsval 28189 seqsfn 28210 seqsp1 28212 eucrct2eupth 30181 disjpreima 32520 imadifxp 32537 rinvf1o 32561 suppun2 32614 cyc3genpm 33116 elrgspnsubrunlem2 33206 isconstr 33733 mbfmcst 34257 mbfmco 34262 sitmcl 34349 eulerpartlemt 34369 eulerpartlemmf 34373 eulerpart 34380 0rrv 34449 mclsppslem 35577 bj-iminvid 37190 mptsnun 37334 poimirlem3 37624 ftc1anclem3 37696 areacirclem5 37713 cytpval 43198 arearect 43211 brtrclfv2 43723 0cnf 45882 fourierdlem62 46173 smfco 46807 |
| Copyright terms: Public domain | W3C validator |