Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imaeq1i | Structured version Visualization version GIF version |
Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
imaeq1i | ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | imaeq1 5967 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 “ cima 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5076 df-opab 5138 df-cnv 5598 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 |
This theorem is referenced by: mptpreima 6146 csbpredg 6212 isarep2 6532 suppun 8009 suppco 8031 fsuppun 9156 fsuppcolem 9169 marypha2lem4 9206 dfoi 9279 r1limg 9538 isf34lem3 10140 compss 10141 fpwwe2lem12 10407 infrenegsup 11967 gsumzf1o 19522 ssidcn 22415 cnco 22426 qtopres 22858 idqtop 22866 qtopcn 22874 mbfid 24808 mbfres 24817 cncombf 24831 dvlog 25815 efopnlem2 25821 eucrct2eupth 28618 disjpreima 30932 imadifxp 30949 rinvf1o 30974 cyc3genpm 31428 mbfmcst 32235 mbfmco 32240 sitmcl 32327 eulerpartlemt 32347 eulerpartlemmf 32351 eulerpart 32358 0rrv 32427 mclsppslem 33554 bj-iminvid 35375 mptsnun 35519 poimirlem3 35789 ftc1anclem3 35861 areacirclem5 35878 cytpval 41041 arearect 41053 brtrclfv2 41342 0cnf 43425 fourierdlem62 43716 smfco 44347 |
Copyright terms: Public domain | W3C validator |