Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imaeq1i | Structured version Visualization version GIF version |
Description: Equality theorem for image. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
imaeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
imaeq1i | ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imaeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | imaeq1 5953 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 “ 𝐶) = (𝐵 “ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 “ 𝐶) = (𝐵 “ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: mptpreima 6130 csbpredg 6197 isarep2 6507 suppun 7971 suppco 7993 fsuppun 9077 fsuppcolem 9090 marypha2lem4 9127 dfoi 9200 r1limg 9460 isf34lem3 10062 compss 10063 fpwwe2lem12 10329 infrenegsup 11888 gsumzf1o 19428 ssidcn 22314 cnco 22325 qtopres 22757 idqtop 22765 qtopcn 22773 mbfid 24704 mbfres 24713 cncombf 24727 dvlog 25711 efopnlem2 25717 eucrct2eupth 28510 disjpreima 30824 imadifxp 30841 rinvf1o 30866 cyc3genpm 31321 mbfmcst 32126 mbfmco 32131 sitmcl 32218 eulerpartlemt 32238 eulerpartlemmf 32242 eulerpart 32249 0rrv 32318 mclsppslem 33445 bj-iminvid 35293 mptsnun 35437 poimirlem3 35707 ftc1anclem3 35779 areacirclem5 35796 cytpval 40950 arearect 40962 brtrclfv2 41224 0cnf 43308 fourierdlem62 43599 smfco 44223 |
Copyright terms: Public domain | W3C validator |