| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dec2dvds | Structured version Visualization version GIF version | ||
| Description: Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| dec2dvds.1 | ⊢ 𝐴 ∈ ℕ0 |
| dec2dvds.2 | ⊢ 𝐵 ∈ ℕ0 |
| dec2dvds.3 | ⊢ (𝐵 · 2) = 𝐶 |
| dec2dvds.4 | ⊢ 𝐷 = (𝐶 + 1) |
| Ref | Expression |
|---|---|
| dec2dvds | ⊢ ¬ 2 ∥ ;𝐴𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn0 12468 | . . . . . . . . 9 ⊢ 5 ∈ ℕ0 | |
| 2 | 1 | nn0zi 12564 | . . . . . . . 8 ⊢ 5 ∈ ℤ |
| 3 | 2z 12571 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
| 4 | dvdsmul2 16254 | . . . . . . . 8 ⊢ ((5 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (5 · 2)) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . . . . 7 ⊢ 2 ∥ (5 · 2) |
| 6 | 5t2e10 12755 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
| 7 | 5, 6 | breqtri 5134 | . . . . . 6 ⊢ 2 ∥ ;10 |
| 8 | 10nn0 12673 | . . . . . . . 8 ⊢ ;10 ∈ ℕ0 | |
| 9 | 8 | nn0zi 12564 | . . . . . . 7 ⊢ ;10 ∈ ℤ |
| 10 | dec2dvds.1 | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
| 11 | 10 | nn0zi 12564 | . . . . . . 7 ⊢ 𝐴 ∈ ℤ |
| 12 | dvdsmultr1 16272 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ ;10 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 ∥ ;10 → 2 ∥ (;10 · 𝐴))) | |
| 13 | 3, 9, 11, 12 | mp3an 1463 | . . . . . 6 ⊢ (2 ∥ ;10 → 2 ∥ (;10 · 𝐴)) |
| 14 | 7, 13 | ax-mp 5 | . . . . 5 ⊢ 2 ∥ (;10 · 𝐴) |
| 15 | dec2dvds.2 | . . . . . . . 8 ⊢ 𝐵 ∈ ℕ0 | |
| 16 | 15 | nn0zi 12564 | . . . . . . 7 ⊢ 𝐵 ∈ ℤ |
| 17 | dvdsmul2 16254 | . . . . . . 7 ⊢ ((𝐵 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (𝐵 · 2)) | |
| 18 | 16, 3, 17 | mp2an 692 | . . . . . 6 ⊢ 2 ∥ (𝐵 · 2) |
| 19 | dec2dvds.3 | . . . . . 6 ⊢ (𝐵 · 2) = 𝐶 | |
| 20 | 18, 19 | breqtri 5134 | . . . . 5 ⊢ 2 ∥ 𝐶 |
| 21 | 8, 10 | nn0mulcli 12486 | . . . . . . 7 ⊢ (;10 · 𝐴) ∈ ℕ0 |
| 22 | 21 | nn0zi 12564 | . . . . . 6 ⊢ (;10 · 𝐴) ∈ ℤ |
| 23 | 2nn0 12465 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
| 24 | 15, 23 | nn0mulcli 12486 | . . . . . . . 8 ⊢ (𝐵 · 2) ∈ ℕ0 |
| 25 | 19, 24 | eqeltrri 2826 | . . . . . . 7 ⊢ 𝐶 ∈ ℕ0 |
| 26 | 25 | nn0zi 12564 | . . . . . 6 ⊢ 𝐶 ∈ ℤ |
| 27 | dvds2add 16266 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ (;10 · 𝐴) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((2 ∥ (;10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((;10 · 𝐴) + 𝐶))) | |
| 28 | 3, 22, 26, 27 | mp3an 1463 | . . . . 5 ⊢ ((2 ∥ (;10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((;10 · 𝐴) + 𝐶)) |
| 29 | 14, 20, 28 | mp2an 692 | . . . 4 ⊢ 2 ∥ ((;10 · 𝐴) + 𝐶) |
| 30 | dfdec10 12658 | . . . 4 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
| 31 | 29, 30 | breqtrri 5136 | . . 3 ⊢ 2 ∥ ;𝐴𝐶 |
| 32 | 10, 25 | deccl 12670 | . . . . 5 ⊢ ;𝐴𝐶 ∈ ℕ0 |
| 33 | 32 | nn0zi 12564 | . . . 4 ⊢ ;𝐴𝐶 ∈ ℤ |
| 34 | 2nn 12260 | . . . 4 ⊢ 2 ∈ ℕ | |
| 35 | 1lt2 12358 | . . . 4 ⊢ 1 < 2 | |
| 36 | ndvdsp1 16387 | . . . 4 ⊢ ((;𝐴𝐶 ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ ;𝐴𝐶 → ¬ 2 ∥ (;𝐴𝐶 + 1))) | |
| 37 | 33, 34, 35, 36 | mp3an 1463 | . . 3 ⊢ (2 ∥ ;𝐴𝐶 → ¬ 2 ∥ (;𝐴𝐶 + 1)) |
| 38 | 31, 37 | ax-mp 5 | . 2 ⊢ ¬ 2 ∥ (;𝐴𝐶 + 1) |
| 39 | dec2dvds.4 | . . . . 5 ⊢ 𝐷 = (𝐶 + 1) | |
| 40 | 39 | eqcomi 2739 | . . . 4 ⊢ (𝐶 + 1) = 𝐷 |
| 41 | eqid 2730 | . . . 4 ⊢ ;𝐴𝐶 = ;𝐴𝐶 | |
| 42 | 10, 25, 40, 41 | decsuc 12686 | . . 3 ⊢ (;𝐴𝐶 + 1) = ;𝐴𝐷 |
| 43 | 42 | breq2i 5117 | . 2 ⊢ (2 ∥ (;𝐴𝐶 + 1) ↔ 2 ∥ ;𝐴𝐷) |
| 44 | 38, 43 | mtbi 322 | 1 ⊢ ¬ 2 ∥ ;𝐴𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5109 (class class class)co 7389 0cc0 11074 1c1 11075 + caddc 11077 · cmul 11079 < clt 11214 ℕcn 12187 2c2 12242 5c5 12245 ℕ0cn0 12448 ℤcz 12535 ;cdc 12655 ∥ cdvds 16228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-rp 12958 df-fz 13475 df-seq 13973 df-exp 14033 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-dvds 16229 |
| This theorem is referenced by: 11prm 17091 13prm 17092 17prm 17093 19prm 17094 23prm 17095 37prm 17097 43prm 17098 83prm 17099 139prm 17100 163prm 17101 317prm 17102 631prm 17103 257prm 47552 139prmALT 47587 31prm 47588 127prm 47590 |
| Copyright terms: Public domain | W3C validator |