| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dec2dvds | Structured version Visualization version GIF version | ||
| Description: Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| dec2dvds.1 | ⊢ 𝐴 ∈ ℕ0 |
| dec2dvds.2 | ⊢ 𝐵 ∈ ℕ0 |
| dec2dvds.3 | ⊢ (𝐵 · 2) = 𝐶 |
| dec2dvds.4 | ⊢ 𝐷 = (𝐶 + 1) |
| Ref | Expression |
|---|---|
| dec2dvds | ⊢ ¬ 2 ∥ ;𝐴𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn0 12519 | . . . . . . . . 9 ⊢ 5 ∈ ℕ0 | |
| 2 | 1 | nn0zi 12615 | . . . . . . . 8 ⊢ 5 ∈ ℤ |
| 3 | 2z 12622 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
| 4 | dvdsmul2 16296 | . . . . . . . 8 ⊢ ((5 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (5 · 2)) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . . . . 7 ⊢ 2 ∥ (5 · 2) |
| 6 | 5t2e10 12806 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
| 7 | 5, 6 | breqtri 5144 | . . . . . 6 ⊢ 2 ∥ ;10 |
| 8 | 10nn0 12724 | . . . . . . . 8 ⊢ ;10 ∈ ℕ0 | |
| 9 | 8 | nn0zi 12615 | . . . . . . 7 ⊢ ;10 ∈ ℤ |
| 10 | dec2dvds.1 | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
| 11 | 10 | nn0zi 12615 | . . . . . . 7 ⊢ 𝐴 ∈ ℤ |
| 12 | dvdsmultr1 16313 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ ;10 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 ∥ ;10 → 2 ∥ (;10 · 𝐴))) | |
| 13 | 3, 9, 11, 12 | mp3an 1463 | . . . . . 6 ⊢ (2 ∥ ;10 → 2 ∥ (;10 · 𝐴)) |
| 14 | 7, 13 | ax-mp 5 | . . . . 5 ⊢ 2 ∥ (;10 · 𝐴) |
| 15 | dec2dvds.2 | . . . . . . . 8 ⊢ 𝐵 ∈ ℕ0 | |
| 16 | 15 | nn0zi 12615 | . . . . . . 7 ⊢ 𝐵 ∈ ℤ |
| 17 | dvdsmul2 16296 | . . . . . . 7 ⊢ ((𝐵 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (𝐵 · 2)) | |
| 18 | 16, 3, 17 | mp2an 692 | . . . . . 6 ⊢ 2 ∥ (𝐵 · 2) |
| 19 | dec2dvds.3 | . . . . . 6 ⊢ (𝐵 · 2) = 𝐶 | |
| 20 | 18, 19 | breqtri 5144 | . . . . 5 ⊢ 2 ∥ 𝐶 |
| 21 | 8, 10 | nn0mulcli 12537 | . . . . . . 7 ⊢ (;10 · 𝐴) ∈ ℕ0 |
| 22 | 21 | nn0zi 12615 | . . . . . 6 ⊢ (;10 · 𝐴) ∈ ℤ |
| 23 | 2nn0 12516 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
| 24 | 15, 23 | nn0mulcli 12537 | . . . . . . . 8 ⊢ (𝐵 · 2) ∈ ℕ0 |
| 25 | 19, 24 | eqeltrri 2831 | . . . . . . 7 ⊢ 𝐶 ∈ ℕ0 |
| 26 | 25 | nn0zi 12615 | . . . . . 6 ⊢ 𝐶 ∈ ℤ |
| 27 | dvds2add 16307 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ (;10 · 𝐴) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((2 ∥ (;10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((;10 · 𝐴) + 𝐶))) | |
| 28 | 3, 22, 26, 27 | mp3an 1463 | . . . . 5 ⊢ ((2 ∥ (;10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((;10 · 𝐴) + 𝐶)) |
| 29 | 14, 20, 28 | mp2an 692 | . . . 4 ⊢ 2 ∥ ((;10 · 𝐴) + 𝐶) |
| 30 | dfdec10 12709 | . . . 4 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
| 31 | 29, 30 | breqtrri 5146 | . . 3 ⊢ 2 ∥ ;𝐴𝐶 |
| 32 | 10, 25 | deccl 12721 | . . . . 5 ⊢ ;𝐴𝐶 ∈ ℕ0 |
| 33 | 32 | nn0zi 12615 | . . . 4 ⊢ ;𝐴𝐶 ∈ ℤ |
| 34 | 2nn 12311 | . . . 4 ⊢ 2 ∈ ℕ | |
| 35 | 1lt2 12409 | . . . 4 ⊢ 1 < 2 | |
| 36 | ndvdsp1 16428 | . . . 4 ⊢ ((;𝐴𝐶 ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ ;𝐴𝐶 → ¬ 2 ∥ (;𝐴𝐶 + 1))) | |
| 37 | 33, 34, 35, 36 | mp3an 1463 | . . 3 ⊢ (2 ∥ ;𝐴𝐶 → ¬ 2 ∥ (;𝐴𝐶 + 1)) |
| 38 | 31, 37 | ax-mp 5 | . 2 ⊢ ¬ 2 ∥ (;𝐴𝐶 + 1) |
| 39 | dec2dvds.4 | . . . . 5 ⊢ 𝐷 = (𝐶 + 1) | |
| 40 | 39 | eqcomi 2744 | . . . 4 ⊢ (𝐶 + 1) = 𝐷 |
| 41 | eqid 2735 | . . . 4 ⊢ ;𝐴𝐶 = ;𝐴𝐶 | |
| 42 | 10, 25, 40, 41 | decsuc 12737 | . . 3 ⊢ (;𝐴𝐶 + 1) = ;𝐴𝐷 |
| 43 | 42 | breq2i 5127 | . 2 ⊢ (2 ∥ (;𝐴𝐶 + 1) ↔ 2 ∥ ;𝐴𝐷) |
| 44 | 38, 43 | mtbi 322 | 1 ⊢ ¬ 2 ∥ ;𝐴𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7403 0cc0 11127 1c1 11128 + caddc 11130 · cmul 11132 < clt 11267 ℕcn 12238 2c2 12293 5c5 12296 ℕ0cn0 12499 ℤcz 12586 ;cdc 12706 ∥ cdvds 16270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-rp 13007 df-fz 13523 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-dvds 16271 |
| This theorem is referenced by: 11prm 17132 13prm 17133 17prm 17134 19prm 17135 23prm 17136 37prm 17138 43prm 17139 83prm 17140 139prm 17141 163prm 17142 317prm 17143 631prm 17144 257prm 47523 139prmALT 47558 31prm 47559 127prm 47561 |
| Copyright terms: Public domain | W3C validator |