MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec2dvds Structured version   Visualization version   GIF version

Theorem dec2dvds 17110
Description: Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
dec2dvds.1 𝐴 ∈ ℕ0
dec2dvds.2 𝐵 ∈ ℕ0
dec2dvds.3 (𝐵 · 2) = 𝐶
dec2dvds.4 𝐷 = (𝐶 + 1)
Assertion
Ref Expression
dec2dvds ¬ 2 ∥ 𝐴𝐷

Proof of Theorem dec2dvds
StepHypRef Expression
1 5nn0 12573 . . . . . . . . 9 5 ∈ ℕ0
21nn0zi 12668 . . . . . . . 8 5 ∈ ℤ
3 2z 12675 . . . . . . . 8 2 ∈ ℤ
4 dvdsmul2 16327 . . . . . . . 8 ((5 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (5 · 2))
52, 3, 4mp2an 691 . . . . . . 7 2 ∥ (5 · 2)
6 5t2e10 12858 . . . . . . 7 (5 · 2) = 10
75, 6breqtri 5191 . . . . . 6 2 ∥ 10
8 10nn0 12776 . . . . . . . 8 10 ∈ ℕ0
98nn0zi 12668 . . . . . . 7 10 ∈ ℤ
10 dec2dvds.1 . . . . . . . 8 𝐴 ∈ ℕ0
1110nn0zi 12668 . . . . . . 7 𝐴 ∈ ℤ
12 dvdsmultr1 16344 . . . . . . 7 ((2 ∈ ℤ ∧ 10 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 ∥ 10 → 2 ∥ (10 · 𝐴)))
133, 9, 11, 12mp3an 1461 . . . . . 6 (2 ∥ 10 → 2 ∥ (10 · 𝐴))
147, 13ax-mp 5 . . . . 5 2 ∥ (10 · 𝐴)
15 dec2dvds.2 . . . . . . . 8 𝐵 ∈ ℕ0
1615nn0zi 12668 . . . . . . 7 𝐵 ∈ ℤ
17 dvdsmul2 16327 . . . . . . 7 ((𝐵 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (𝐵 · 2))
1816, 3, 17mp2an 691 . . . . . 6 2 ∥ (𝐵 · 2)
19 dec2dvds.3 . . . . . 6 (𝐵 · 2) = 𝐶
2018, 19breqtri 5191 . . . . 5 2 ∥ 𝐶
218, 10nn0mulcli 12591 . . . . . . 7 (10 · 𝐴) ∈ ℕ0
2221nn0zi 12668 . . . . . 6 (10 · 𝐴) ∈ ℤ
23 2nn0 12570 . . . . . . . . 9 2 ∈ ℕ0
2415, 23nn0mulcli 12591 . . . . . . . 8 (𝐵 · 2) ∈ ℕ0
2519, 24eqeltrri 2841 . . . . . . 7 𝐶 ∈ ℕ0
2625nn0zi 12668 . . . . . 6 𝐶 ∈ ℤ
27 dvds2add 16338 . . . . . 6 ((2 ∈ ℤ ∧ (10 · 𝐴) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((2 ∥ (10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((10 · 𝐴) + 𝐶)))
283, 22, 26, 27mp3an 1461 . . . . 5 ((2 ∥ (10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((10 · 𝐴) + 𝐶))
2914, 20, 28mp2an 691 . . . 4 2 ∥ ((10 · 𝐴) + 𝐶)
30 dfdec10 12761 . . . 4 𝐴𝐶 = ((10 · 𝐴) + 𝐶)
3129, 30breqtrri 5193 . . 3 2 ∥ 𝐴𝐶
3210, 25deccl 12773 . . . . 5 𝐴𝐶 ∈ ℕ0
3332nn0zi 12668 . . . 4 𝐴𝐶 ∈ ℤ
34 2nn 12366 . . . 4 2 ∈ ℕ
35 1lt2 12464 . . . 4 1 < 2
36 ndvdsp1 16459 . . . 4 ((𝐴𝐶 ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ 𝐴𝐶 → ¬ 2 ∥ (𝐴𝐶 + 1)))
3733, 34, 35, 36mp3an 1461 . . 3 (2 ∥ 𝐴𝐶 → ¬ 2 ∥ (𝐴𝐶 + 1))
3831, 37ax-mp 5 . 2 ¬ 2 ∥ (𝐴𝐶 + 1)
39 dec2dvds.4 . . . . 5 𝐷 = (𝐶 + 1)
4039eqcomi 2749 . . . 4 (𝐶 + 1) = 𝐷
41 eqid 2740 . . . 4 𝐴𝐶 = 𝐴𝐶
4210, 25, 40, 41decsuc 12789 . . 3 (𝐴𝐶 + 1) = 𝐴𝐷
4342breq2i 5174 . 2 (2 ∥ (𝐴𝐶 + 1) ↔ 2 ∥ 𝐴𝐷)
4438, 43mtbi 322 1 ¬ 2 ∥ 𝐴𝐷
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cn 12293  2c2 12348  5c5 12351  0cn0 12553  cz 12639  cdc 12758  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303
This theorem is referenced by:  11prm  17162  13prm  17163  17prm  17164  19prm  17165  23prm  17166  37prm  17168  43prm  17169  83prm  17170  139prm  17171  163prm  17172  317prm  17173  631prm  17174  257prm  47435  139prmALT  47470  31prm  47471  127prm  47473
  Copyright terms: Public domain W3C validator