| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dec2dvds | Structured version Visualization version GIF version | ||
| Description: Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| dec2dvds.1 | ⊢ 𝐴 ∈ ℕ0 |
| dec2dvds.2 | ⊢ 𝐵 ∈ ℕ0 |
| dec2dvds.3 | ⊢ (𝐵 · 2) = 𝐶 |
| dec2dvds.4 | ⊢ 𝐷 = (𝐶 + 1) |
| Ref | Expression |
|---|---|
| dec2dvds | ⊢ ¬ 2 ∥ ;𝐴𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn0 12398 | . . . . . . . . 9 ⊢ 5 ∈ ℕ0 | |
| 2 | 1 | nn0zi 12494 | . . . . . . . 8 ⊢ 5 ∈ ℤ |
| 3 | 2z 12501 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
| 4 | dvdsmul2 16186 | . . . . . . . 8 ⊢ ((5 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (5 · 2)) | |
| 5 | 2, 3, 4 | mp2an 692 | . . . . . . 7 ⊢ 2 ∥ (5 · 2) |
| 6 | 5t2e10 12685 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
| 7 | 5, 6 | breqtri 5116 | . . . . . 6 ⊢ 2 ∥ ;10 |
| 8 | 10nn0 12603 | . . . . . . . 8 ⊢ ;10 ∈ ℕ0 | |
| 9 | 8 | nn0zi 12494 | . . . . . . 7 ⊢ ;10 ∈ ℤ |
| 10 | dec2dvds.1 | . . . . . . . 8 ⊢ 𝐴 ∈ ℕ0 | |
| 11 | 10 | nn0zi 12494 | . . . . . . 7 ⊢ 𝐴 ∈ ℤ |
| 12 | dvdsmultr1 16204 | . . . . . . 7 ⊢ ((2 ∈ ℤ ∧ ;10 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 ∥ ;10 → 2 ∥ (;10 · 𝐴))) | |
| 13 | 3, 9, 11, 12 | mp3an 1463 | . . . . . 6 ⊢ (2 ∥ ;10 → 2 ∥ (;10 · 𝐴)) |
| 14 | 7, 13 | ax-mp 5 | . . . . 5 ⊢ 2 ∥ (;10 · 𝐴) |
| 15 | dec2dvds.2 | . . . . . . . 8 ⊢ 𝐵 ∈ ℕ0 | |
| 16 | 15 | nn0zi 12494 | . . . . . . 7 ⊢ 𝐵 ∈ ℤ |
| 17 | dvdsmul2 16186 | . . . . . . 7 ⊢ ((𝐵 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (𝐵 · 2)) | |
| 18 | 16, 3, 17 | mp2an 692 | . . . . . 6 ⊢ 2 ∥ (𝐵 · 2) |
| 19 | dec2dvds.3 | . . . . . 6 ⊢ (𝐵 · 2) = 𝐶 | |
| 20 | 18, 19 | breqtri 5116 | . . . . 5 ⊢ 2 ∥ 𝐶 |
| 21 | 8, 10 | nn0mulcli 12416 | . . . . . . 7 ⊢ (;10 · 𝐴) ∈ ℕ0 |
| 22 | 21 | nn0zi 12494 | . . . . . 6 ⊢ (;10 · 𝐴) ∈ ℤ |
| 23 | 2nn0 12395 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
| 24 | 15, 23 | nn0mulcli 12416 | . . . . . . . 8 ⊢ (𝐵 · 2) ∈ ℕ0 |
| 25 | 19, 24 | eqeltrri 2828 | . . . . . . 7 ⊢ 𝐶 ∈ ℕ0 |
| 26 | 25 | nn0zi 12494 | . . . . . 6 ⊢ 𝐶 ∈ ℤ |
| 27 | dvds2add 16198 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ (;10 · 𝐴) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((2 ∥ (;10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((;10 · 𝐴) + 𝐶))) | |
| 28 | 3, 22, 26, 27 | mp3an 1463 | . . . . 5 ⊢ ((2 ∥ (;10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((;10 · 𝐴) + 𝐶)) |
| 29 | 14, 20, 28 | mp2an 692 | . . . 4 ⊢ 2 ∥ ((;10 · 𝐴) + 𝐶) |
| 30 | dfdec10 12588 | . . . 4 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
| 31 | 29, 30 | breqtrri 5118 | . . 3 ⊢ 2 ∥ ;𝐴𝐶 |
| 32 | 10, 25 | deccl 12600 | . . . . 5 ⊢ ;𝐴𝐶 ∈ ℕ0 |
| 33 | 32 | nn0zi 12494 | . . . 4 ⊢ ;𝐴𝐶 ∈ ℤ |
| 34 | 2nn 12195 | . . . 4 ⊢ 2 ∈ ℕ | |
| 35 | 1lt2 12288 | . . . 4 ⊢ 1 < 2 | |
| 36 | ndvdsp1 16319 | . . . 4 ⊢ ((;𝐴𝐶 ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ ;𝐴𝐶 → ¬ 2 ∥ (;𝐴𝐶 + 1))) | |
| 37 | 33, 34, 35, 36 | mp3an 1463 | . . 3 ⊢ (2 ∥ ;𝐴𝐶 → ¬ 2 ∥ (;𝐴𝐶 + 1)) |
| 38 | 31, 37 | ax-mp 5 | . 2 ⊢ ¬ 2 ∥ (;𝐴𝐶 + 1) |
| 39 | dec2dvds.4 | . . . . 5 ⊢ 𝐷 = (𝐶 + 1) | |
| 40 | 39 | eqcomi 2740 | . . . 4 ⊢ (𝐶 + 1) = 𝐷 |
| 41 | eqid 2731 | . . . 4 ⊢ ;𝐴𝐶 = ;𝐴𝐶 | |
| 42 | 10, 25, 40, 41 | decsuc 12616 | . . 3 ⊢ (;𝐴𝐶 + 1) = ;𝐴𝐷 |
| 43 | 42 | breq2i 5099 | . 2 ⊢ (2 ∥ (;𝐴𝐶 + 1) ↔ 2 ∥ ;𝐴𝐷) |
| 44 | 38, 43 | mtbi 322 | 1 ⊢ ¬ 2 ∥ ;𝐴𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 0cc0 11003 1c1 11004 + caddc 11006 · cmul 11008 < clt 11143 ℕcn 12122 2c2 12177 5c5 12180 ℕ0cn0 12378 ℤcz 12465 ;cdc 12585 ∥ cdvds 16160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-rp 12888 df-fz 13405 df-seq 13906 df-exp 13966 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-dvds 16161 |
| This theorem is referenced by: 11prm 17023 13prm 17024 17prm 17025 19prm 17026 23prm 17027 37prm 17029 43prm 17030 83prm 17031 139prm 17032 163prm 17033 317prm 17034 631prm 17035 257prm 47591 139prmALT 47626 31prm 47627 127prm 47629 |
| Copyright terms: Public domain | W3C validator |