MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec2dvds Structured version   Visualization version   GIF version

Theorem dec2dvds 17101
Description: Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
dec2dvds.1 𝐴 ∈ ℕ0
dec2dvds.2 𝐵 ∈ ℕ0
dec2dvds.3 (𝐵 · 2) = 𝐶
dec2dvds.4 𝐷 = (𝐶 + 1)
Assertion
Ref Expression
dec2dvds ¬ 2 ∥ 𝐴𝐷

Proof of Theorem dec2dvds
StepHypRef Expression
1 5nn0 12546 . . . . . . . . 9 5 ∈ ℕ0
21nn0zi 12642 . . . . . . . 8 5 ∈ ℤ
3 2z 12649 . . . . . . . 8 2 ∈ ℤ
4 dvdsmul2 16316 . . . . . . . 8 ((5 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (5 · 2))
52, 3, 4mp2an 692 . . . . . . 7 2 ∥ (5 · 2)
6 5t2e10 12833 . . . . . . 7 (5 · 2) = 10
75, 6breqtri 5168 . . . . . 6 2 ∥ 10
8 10nn0 12751 . . . . . . . 8 10 ∈ ℕ0
98nn0zi 12642 . . . . . . 7 10 ∈ ℤ
10 dec2dvds.1 . . . . . . . 8 𝐴 ∈ ℕ0
1110nn0zi 12642 . . . . . . 7 𝐴 ∈ ℤ
12 dvdsmultr1 16333 . . . . . . 7 ((2 ∈ ℤ ∧ 10 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 ∥ 10 → 2 ∥ (10 · 𝐴)))
133, 9, 11, 12mp3an 1463 . . . . . 6 (2 ∥ 10 → 2 ∥ (10 · 𝐴))
147, 13ax-mp 5 . . . . 5 2 ∥ (10 · 𝐴)
15 dec2dvds.2 . . . . . . . 8 𝐵 ∈ ℕ0
1615nn0zi 12642 . . . . . . 7 𝐵 ∈ ℤ
17 dvdsmul2 16316 . . . . . . 7 ((𝐵 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (𝐵 · 2))
1816, 3, 17mp2an 692 . . . . . 6 2 ∥ (𝐵 · 2)
19 dec2dvds.3 . . . . . 6 (𝐵 · 2) = 𝐶
2018, 19breqtri 5168 . . . . 5 2 ∥ 𝐶
218, 10nn0mulcli 12564 . . . . . . 7 (10 · 𝐴) ∈ ℕ0
2221nn0zi 12642 . . . . . 6 (10 · 𝐴) ∈ ℤ
23 2nn0 12543 . . . . . . . . 9 2 ∈ ℕ0
2415, 23nn0mulcli 12564 . . . . . . . 8 (𝐵 · 2) ∈ ℕ0
2519, 24eqeltrri 2838 . . . . . . 7 𝐶 ∈ ℕ0
2625nn0zi 12642 . . . . . 6 𝐶 ∈ ℤ
27 dvds2add 16327 . . . . . 6 ((2 ∈ ℤ ∧ (10 · 𝐴) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((2 ∥ (10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((10 · 𝐴) + 𝐶)))
283, 22, 26, 27mp3an 1463 . . . . 5 ((2 ∥ (10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((10 · 𝐴) + 𝐶))
2914, 20, 28mp2an 692 . . . 4 2 ∥ ((10 · 𝐴) + 𝐶)
30 dfdec10 12736 . . . 4 𝐴𝐶 = ((10 · 𝐴) + 𝐶)
3129, 30breqtrri 5170 . . 3 2 ∥ 𝐴𝐶
3210, 25deccl 12748 . . . . 5 𝐴𝐶 ∈ ℕ0
3332nn0zi 12642 . . . 4 𝐴𝐶 ∈ ℤ
34 2nn 12339 . . . 4 2 ∈ ℕ
35 1lt2 12437 . . . 4 1 < 2
36 ndvdsp1 16448 . . . 4 ((𝐴𝐶 ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ 𝐴𝐶 → ¬ 2 ∥ (𝐴𝐶 + 1)))
3733, 34, 35, 36mp3an 1463 . . 3 (2 ∥ 𝐴𝐶 → ¬ 2 ∥ (𝐴𝐶 + 1))
3831, 37ax-mp 5 . 2 ¬ 2 ∥ (𝐴𝐶 + 1)
39 dec2dvds.4 . . . . 5 𝐷 = (𝐶 + 1)
4039eqcomi 2746 . . . 4 (𝐶 + 1) = 𝐷
41 eqid 2737 . . . 4 𝐴𝐶 = 𝐴𝐶
4210, 25, 40, 41decsuc 12764 . . 3 (𝐴𝐶 + 1) = 𝐴𝐷
4342breq2i 5151 . 2 (2 ∥ (𝐴𝐶 + 1) ↔ 2 ∥ 𝐴𝐷)
4438, 43mtbi 322 1 ¬ 2 ∥ 𝐴𝐷
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108   class class class wbr 5143  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cn 12266  2c2 12321  5c5 12324  0cn0 12526  cz 12613  cdc 12733  cdvds 16290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291
This theorem is referenced by:  11prm  17152  13prm  17153  17prm  17154  19prm  17155  23prm  17156  37prm  17158  43prm  17159  83prm  17160  139prm  17161  163prm  17162  317prm  17163  631prm  17164  257prm  47548  139prmALT  47583  31prm  47584  127prm  47586
  Copyright terms: Public domain W3C validator