MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec2dvds Structured version   Visualization version   GIF version

Theorem dec2dvds 16977
Description: Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
dec2dvds.1 𝐴 ∈ ℕ0
dec2dvds.2 𝐵 ∈ ℕ0
dec2dvds.3 (𝐵 · 2) = 𝐶
dec2dvds.4 𝐷 = (𝐶 + 1)
Assertion
Ref Expression
dec2dvds ¬ 2 ∥ 𝐴𝐷

Proof of Theorem dec2dvds
StepHypRef Expression
1 5nn0 12408 . . . . . . . . 9 5 ∈ ℕ0
21nn0zi 12503 . . . . . . . 8 5 ∈ ℤ
3 2z 12510 . . . . . . . 8 2 ∈ ℤ
4 dvdsmul2 16191 . . . . . . . 8 ((5 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (5 · 2))
52, 3, 4mp2an 692 . . . . . . 7 2 ∥ (5 · 2)
6 5t2e10 12694 . . . . . . 7 (5 · 2) = 10
75, 6breqtri 5118 . . . . . 6 2 ∥ 10
8 10nn0 12612 . . . . . . . 8 10 ∈ ℕ0
98nn0zi 12503 . . . . . . 7 10 ∈ ℤ
10 dec2dvds.1 . . . . . . . 8 𝐴 ∈ ℕ0
1110nn0zi 12503 . . . . . . 7 𝐴 ∈ ℤ
12 dvdsmultr1 16209 . . . . . . 7 ((2 ∈ ℤ ∧ 10 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 ∥ 10 → 2 ∥ (10 · 𝐴)))
133, 9, 11, 12mp3an 1463 . . . . . 6 (2 ∥ 10 → 2 ∥ (10 · 𝐴))
147, 13ax-mp 5 . . . . 5 2 ∥ (10 · 𝐴)
15 dec2dvds.2 . . . . . . . 8 𝐵 ∈ ℕ0
1615nn0zi 12503 . . . . . . 7 𝐵 ∈ ℤ
17 dvdsmul2 16191 . . . . . . 7 ((𝐵 ∈ ℤ ∧ 2 ∈ ℤ) → 2 ∥ (𝐵 · 2))
1816, 3, 17mp2an 692 . . . . . 6 2 ∥ (𝐵 · 2)
19 dec2dvds.3 . . . . . 6 (𝐵 · 2) = 𝐶
2018, 19breqtri 5118 . . . . 5 2 ∥ 𝐶
218, 10nn0mulcli 12426 . . . . . . 7 (10 · 𝐴) ∈ ℕ0
2221nn0zi 12503 . . . . . 6 (10 · 𝐴) ∈ ℤ
23 2nn0 12405 . . . . . . . . 9 2 ∈ ℕ0
2415, 23nn0mulcli 12426 . . . . . . . 8 (𝐵 · 2) ∈ ℕ0
2519, 24eqeltrri 2830 . . . . . . 7 𝐶 ∈ ℕ0
2625nn0zi 12503 . . . . . 6 𝐶 ∈ ℤ
27 dvds2add 16203 . . . . . 6 ((2 ∈ ℤ ∧ (10 · 𝐴) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((2 ∥ (10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((10 · 𝐴) + 𝐶)))
283, 22, 26, 27mp3an 1463 . . . . 5 ((2 ∥ (10 · 𝐴) ∧ 2 ∥ 𝐶) → 2 ∥ ((10 · 𝐴) + 𝐶))
2914, 20, 28mp2an 692 . . . 4 2 ∥ ((10 · 𝐴) + 𝐶)
30 dfdec10 12597 . . . 4 𝐴𝐶 = ((10 · 𝐴) + 𝐶)
3129, 30breqtrri 5120 . . 3 2 ∥ 𝐴𝐶
3210, 25deccl 12609 . . . . 5 𝐴𝐶 ∈ ℕ0
3332nn0zi 12503 . . . 4 𝐴𝐶 ∈ ℤ
34 2nn 12205 . . . 4 2 ∈ ℕ
35 1lt2 12298 . . . 4 1 < 2
36 ndvdsp1 16324 . . . 4 ((𝐴𝐶 ∈ ℤ ∧ 2 ∈ ℕ ∧ 1 < 2) → (2 ∥ 𝐴𝐶 → ¬ 2 ∥ (𝐴𝐶 + 1)))
3733, 34, 35, 36mp3an 1463 . . 3 (2 ∥ 𝐴𝐶 → ¬ 2 ∥ (𝐴𝐶 + 1))
3831, 37ax-mp 5 . 2 ¬ 2 ∥ (𝐴𝐶 + 1)
39 dec2dvds.4 . . . . 5 𝐷 = (𝐶 + 1)
4039eqcomi 2742 . . . 4 (𝐶 + 1) = 𝐷
41 eqid 2733 . . . 4 𝐴𝐶 = 𝐴𝐶
4210, 25, 40, 41decsuc 12625 . . 3 (𝐴𝐶 + 1) = 𝐴𝐷
4342breq2i 5101 . 2 (2 ∥ (𝐴𝐶 + 1) ↔ 2 ∥ 𝐴𝐷)
4438, 43mtbi 322 1 ¬ 2 ∥ 𝐴𝐷
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113   class class class wbr 5093  (class class class)co 7352  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018   < clt 11153  cn 12132  2c2 12187  5c5 12190  0cn0 12388  cz 12475  cdc 12594  cdvds 16165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-rp 12893  df-fz 13410  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-dvds 16166
This theorem is referenced by:  11prm  17028  13prm  17029  17prm  17030  19prm  17031  23prm  17032  37prm  17034  43prm  17035  83prm  17036  139prm  17037  163prm  17038  317prm  17039  631prm  17040  257prm  47685  139prmALT  47720  31prm  47721  127prm  47723
  Copyright terms: Public domain W3C validator