| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dec5dvds2 | Structured version Visualization version GIF version | ||
| Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| dec5dvds.1 | ⊢ 𝐴 ∈ ℕ0 |
| dec5dvds.2 | ⊢ 𝐵 ∈ ℕ |
| dec5dvds.3 | ⊢ 𝐵 < 5 |
| dec5dvds2.4 | ⊢ (5 + 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| dec5dvds2 | ⊢ ¬ 5 ∥ ;𝐴𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dec5dvds.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | dec5dvds.2 | . . 3 ⊢ 𝐵 ∈ ℕ | |
| 3 | dec5dvds.3 | . . 3 ⊢ 𝐵 < 5 | |
| 4 | 1, 2, 3 | dec5dvds 16973 | . 2 ⊢ ¬ 5 ∥ ;𝐴𝐵 |
| 5 | 5nn0 12398 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
| 6 | 5 | nn0zi 12494 | . . . 4 ⊢ 5 ∈ ℤ |
| 7 | 2 | nnnn0i 12386 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 |
| 8 | 1, 7 | deccl 12600 | . . . . 5 ⊢ ;𝐴𝐵 ∈ ℕ0 |
| 9 | 8 | nn0zi 12494 | . . . 4 ⊢ ;𝐴𝐵 ∈ ℤ |
| 10 | dvdsadd 16210 | . . . 4 ⊢ ((5 ∈ ℤ ∧ ;𝐴𝐵 ∈ ℤ) → (5 ∥ ;𝐴𝐵 ↔ 5 ∥ (5 + ;𝐴𝐵))) | |
| 11 | 6, 9, 10 | mp2an 692 | . . 3 ⊢ (5 ∥ ;𝐴𝐵 ↔ 5 ∥ (5 + ;𝐴𝐵)) |
| 12 | 0nn0 12393 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
| 13 | 5 | dec0h 12607 | . . . . 5 ⊢ 5 = ;05 |
| 14 | eqid 2731 | . . . . 5 ⊢ ;𝐴𝐵 = ;𝐴𝐵 | |
| 15 | 1 | nn0cni 12390 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
| 16 | 15 | addlidi 11298 | . . . . 5 ⊢ (0 + 𝐴) = 𝐴 |
| 17 | dec5dvds2.4 | . . . . 5 ⊢ (5 + 𝐵) = 𝐶 | |
| 18 | 12, 5, 1, 7, 13, 14, 16, 17 | decadd 12639 | . . . 4 ⊢ (5 + ;𝐴𝐵) = ;𝐴𝐶 |
| 19 | 18 | breq2i 5099 | . . 3 ⊢ (5 ∥ (5 + ;𝐴𝐵) ↔ 5 ∥ ;𝐴𝐶) |
| 20 | 11, 19 | bitri 275 | . 2 ⊢ (5 ∥ ;𝐴𝐵 ↔ 5 ∥ ;𝐴𝐶) |
| 21 | 4, 20 | mtbi 322 | 1 ⊢ ¬ 5 ∥ ;𝐴𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 0cc0 11003 + caddc 11006 < clt 11143 ℕcn 12122 5c5 12180 ℕ0cn0 12378 ℤcz 12465 ;cdc 12585 ∥ cdvds 16160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-rp 12888 df-fz 13405 df-seq 13906 df-exp 13966 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-dvds 16161 |
| This theorem is referenced by: 37prm 17029 139prm 17032 317prm 17034 257prm 47591 139prmALT 47626 127prm 47629 |
| Copyright terms: Public domain | W3C validator |