MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec5dvds2 Structured version   Visualization version   GIF version

Theorem dec5dvds2 16995
Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
dec5dvds.1 𝐴 ∈ ℕ0
dec5dvds.2 𝐵 ∈ ℕ
dec5dvds.3 𝐵 < 5
dec5dvds2.4 (5 + 𝐵) = 𝐶
Assertion
Ref Expression
dec5dvds2 ¬ 5 ∥ 𝐴𝐶

Proof of Theorem dec5dvds2
StepHypRef Expression
1 dec5dvds.1 . . 3 𝐴 ∈ ℕ0
2 dec5dvds.2 . . 3 𝐵 ∈ ℕ
3 dec5dvds.3 . . 3 𝐵 < 5
41, 2, 3dec5dvds 16994 . 2 ¬ 5 ∥ 𝐴𝐵
5 5nn0 12422 . . . . 5 5 ∈ ℕ0
65nn0zi 12518 . . . 4 5 ∈ ℤ
72nnnn0i 12410 . . . . . 6 𝐵 ∈ ℕ0
81, 7deccl 12624 . . . . 5 𝐴𝐵 ∈ ℕ0
98nn0zi 12518 . . . 4 𝐴𝐵 ∈ ℤ
10 dvdsadd 16231 . . . 4 ((5 ∈ ℤ ∧ 𝐴𝐵 ∈ ℤ) → (5 ∥ 𝐴𝐵 ↔ 5 ∥ (5 + 𝐴𝐵)))
116, 9, 10mp2an 692 . . 3 (5 ∥ 𝐴𝐵 ↔ 5 ∥ (5 + 𝐴𝐵))
12 0nn0 12417 . . . . 5 0 ∈ ℕ0
135dec0h 12631 . . . . 5 5 = 05
14 eqid 2729 . . . . 5 𝐴𝐵 = 𝐴𝐵
151nn0cni 12414 . . . . . 6 𝐴 ∈ ℂ
1615addlidi 11322 . . . . 5 (0 + 𝐴) = 𝐴
17 dec5dvds2.4 . . . . 5 (5 + 𝐵) = 𝐶
1812, 5, 1, 7, 13, 14, 16, 17decadd 12663 . . . 4 (5 + 𝐴𝐵) = 𝐴𝐶
1918breq2i 5103 . . 3 (5 ∥ (5 + 𝐴𝐵) ↔ 5 ∥ 𝐴𝐶)
2011, 19bitri 275 . 2 (5 ∥ 𝐴𝐵 ↔ 5 ∥ 𝐴𝐶)
214, 20mtbi 322 1 ¬ 5 ∥ 𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109   class class class wbr 5095  (class class class)co 7353  0cc0 11028   + caddc 11031   < clt 11168  cn 12146  5c5 12204  0cn0 12402  cz 12489  cdc 12609  cdvds 16181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-rp 12912  df-fz 13429  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182
This theorem is referenced by:  37prm  17050  139prm  17053  317prm  17055  257prm  47546  139prmALT  47581  127prm  47584
  Copyright terms: Public domain W3C validator