Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dec5dvds2 | Structured version Visualization version GIF version |
Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
dec5dvds.1 | ⊢ 𝐴 ∈ ℕ0 |
dec5dvds.2 | ⊢ 𝐵 ∈ ℕ |
dec5dvds.3 | ⊢ 𝐵 < 5 |
dec5dvds2.4 | ⊢ (5 + 𝐵) = 𝐶 |
Ref | Expression |
---|---|
dec5dvds2 | ⊢ ¬ 5 ∥ ;𝐴𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dec5dvds.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
2 | dec5dvds.2 | . . 3 ⊢ 𝐵 ∈ ℕ | |
3 | dec5dvds.3 | . . 3 ⊢ 𝐵 < 5 | |
4 | 1, 2, 3 | dec5dvds 16862 | . 2 ⊢ ¬ 5 ∥ ;𝐴𝐵 |
5 | 5nn0 12358 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
6 | 5 | nn0zi 12450 | . . . 4 ⊢ 5 ∈ ℤ |
7 | 2 | nnnn0i 12346 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 |
8 | 1, 7 | deccl 12557 | . . . . 5 ⊢ ;𝐴𝐵 ∈ ℕ0 |
9 | 8 | nn0zi 12450 | . . . 4 ⊢ ;𝐴𝐵 ∈ ℤ |
10 | dvdsadd 16110 | . . . 4 ⊢ ((5 ∈ ℤ ∧ ;𝐴𝐵 ∈ ℤ) → (5 ∥ ;𝐴𝐵 ↔ 5 ∥ (5 + ;𝐴𝐵))) | |
11 | 6, 9, 10 | mp2an 690 | . . 3 ⊢ (5 ∥ ;𝐴𝐵 ↔ 5 ∥ (5 + ;𝐴𝐵)) |
12 | 0nn0 12353 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
13 | 5 | dec0h 12564 | . . . . 5 ⊢ 5 = ;05 |
14 | eqid 2737 | . . . . 5 ⊢ ;𝐴𝐵 = ;𝐴𝐵 | |
15 | 1 | nn0cni 12350 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
16 | 15 | addid2i 11268 | . . . . 5 ⊢ (0 + 𝐴) = 𝐴 |
17 | dec5dvds2.4 | . . . . 5 ⊢ (5 + 𝐵) = 𝐶 | |
18 | 12, 5, 1, 7, 13, 14, 16, 17 | decadd 12596 | . . . 4 ⊢ (5 + ;𝐴𝐵) = ;𝐴𝐶 |
19 | 18 | breq2i 5104 | . . 3 ⊢ (5 ∥ (5 + ;𝐴𝐵) ↔ 5 ∥ ;𝐴𝐶) |
20 | 11, 19 | bitri 275 | . 2 ⊢ (5 ∥ ;𝐴𝐵 ↔ 5 ∥ ;𝐴𝐶) |
21 | 4, 20 | mtbi 322 | 1 ⊢ ¬ 5 ∥ ;𝐴𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 = wceq 1541 ∈ wcel 2106 class class class wbr 5096 (class class class)co 7341 0cc0 10976 + caddc 10979 < clt 11114 ℕcn 12078 5c5 12136 ℕ0cn0 12338 ℤcz 12424 ;cdc 12542 ∥ cdvds 16062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-er 8573 df-en 8809 df-dom 8810 df-sdom 8811 df-sup 9303 df-inf 9304 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-n0 12339 df-z 12425 df-dec 12543 df-uz 12688 df-rp 12836 df-fz 13345 df-seq 13827 df-exp 13888 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-dvds 16063 |
This theorem is referenced by: 37prm 16919 139prm 16922 317prm 16924 257prm 45431 139prmALT 45466 127prm 45469 |
Copyright terms: Public domain | W3C validator |