![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dec5dvds2 | Structured version Visualization version GIF version |
Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
dec5dvds.1 | ⊢ 𝐴 ∈ ℕ0 |
dec5dvds.2 | ⊢ 𝐵 ∈ ℕ |
dec5dvds.3 | ⊢ 𝐵 < 5 |
dec5dvds2.4 | ⊢ (5 + 𝐵) = 𝐶 |
Ref | Expression |
---|---|
dec5dvds2 | ⊢ ¬ 5 ∥ ;𝐴𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dec5dvds.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
2 | dec5dvds.2 | . . 3 ⊢ 𝐵 ∈ ℕ | |
3 | dec5dvds.3 | . . 3 ⊢ 𝐵 < 5 | |
4 | 1, 2, 3 | dec5dvds 16172 | . 2 ⊢ ¬ 5 ∥ ;𝐴𝐵 |
5 | 5nn0 11664 | . . . . 5 ⊢ 5 ∈ ℕ0 | |
6 | 5 | nn0zi 11754 | . . . 4 ⊢ 5 ∈ ℤ |
7 | 2 | nnnn0i 11651 | . . . . . 6 ⊢ 𝐵 ∈ ℕ0 |
8 | 1, 7 | deccl 11860 | . . . . 5 ⊢ ;𝐴𝐵 ∈ ℕ0 |
9 | 8 | nn0zi 11754 | . . . 4 ⊢ ;𝐴𝐵 ∈ ℤ |
10 | dvdsadd 15431 | . . . 4 ⊢ ((5 ∈ ℤ ∧ ;𝐴𝐵 ∈ ℤ) → (5 ∥ ;𝐴𝐵 ↔ 5 ∥ (5 + ;𝐴𝐵))) | |
11 | 6, 9, 10 | mp2an 682 | . . 3 ⊢ (5 ∥ ;𝐴𝐵 ↔ 5 ∥ (5 + ;𝐴𝐵)) |
12 | 0nn0 11659 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
13 | 5 | dec0h 11868 | . . . . 5 ⊢ 5 = ;05 |
14 | eqid 2778 | . . . . 5 ⊢ ;𝐴𝐵 = ;𝐴𝐵 | |
15 | 1 | nn0cni 11655 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
16 | 15 | addid2i 10564 | . . . . 5 ⊢ (0 + 𝐴) = 𝐴 |
17 | dec5dvds2.4 | . . . . 5 ⊢ (5 + 𝐵) = 𝐶 | |
18 | 12, 5, 1, 7, 13, 14, 16, 17 | decadd 11900 | . . . 4 ⊢ (5 + ;𝐴𝐵) = ;𝐴𝐶 |
19 | 18 | breq2i 4894 | . . 3 ⊢ (5 ∥ (5 + ;𝐴𝐵) ↔ 5 ∥ ;𝐴𝐶) |
20 | 11, 19 | bitri 267 | . 2 ⊢ (5 ∥ ;𝐴𝐵 ↔ 5 ∥ ;𝐴𝐶) |
21 | 4, 20 | mtbi 314 | 1 ⊢ ¬ 5 ∥ ;𝐴𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 = wceq 1601 ∈ wcel 2107 class class class wbr 4886 (class class class)co 6922 0cc0 10272 + caddc 10275 < clt 10411 ℕcn 11374 5c5 11433 ℕ0cn0 11642 ℤcz 11728 ;cdc 11845 ∥ cdvds 15387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-sup 8636 df-inf 8637 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-rp 12138 df-fz 12644 df-seq 13120 df-exp 13179 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-dvds 15388 |
This theorem is referenced by: 37prm 16226 139prm 16229 317prm 16231 257prm 42494 139prmALT 42532 127prm 42536 |
Copyright terms: Public domain | W3C validator |