MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec5dvds2 Structured version   Visualization version   GIF version

Theorem dec5dvds2 16581
Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
dec5dvds.1 𝐴 ∈ ℕ0
dec5dvds.2 𝐵 ∈ ℕ
dec5dvds.3 𝐵 < 5
dec5dvds2.4 (5 + 𝐵) = 𝐶
Assertion
Ref Expression
dec5dvds2 ¬ 5 ∥ 𝐴𝐶

Proof of Theorem dec5dvds2
StepHypRef Expression
1 dec5dvds.1 . . 3 𝐴 ∈ ℕ0
2 dec5dvds.2 . . 3 𝐵 ∈ ℕ
3 dec5dvds.3 . . 3 𝐵 < 5
41, 2, 3dec5dvds 16580 . 2 ¬ 5 ∥ 𝐴𝐵
5 5nn0 12075 . . . . 5 5 ∈ ℕ0
65nn0zi 12167 . . . 4 5 ∈ ℤ
72nnnn0i 12063 . . . . . 6 𝐵 ∈ ℕ0
81, 7deccl 12273 . . . . 5 𝐴𝐵 ∈ ℕ0
98nn0zi 12167 . . . 4 𝐴𝐵 ∈ ℤ
10 dvdsadd 15826 . . . 4 ((5 ∈ ℤ ∧ 𝐴𝐵 ∈ ℤ) → (5 ∥ 𝐴𝐵 ↔ 5 ∥ (5 + 𝐴𝐵)))
116, 9, 10mp2an 692 . . 3 (5 ∥ 𝐴𝐵 ↔ 5 ∥ (5 + 𝐴𝐵))
12 0nn0 12070 . . . . 5 0 ∈ ℕ0
135dec0h 12280 . . . . 5 5 = 05
14 eqid 2736 . . . . 5 𝐴𝐵 = 𝐴𝐵
151nn0cni 12067 . . . . . 6 𝐴 ∈ ℂ
1615addid2i 10985 . . . . 5 (0 + 𝐴) = 𝐴
17 dec5dvds2.4 . . . . 5 (5 + 𝐵) = 𝐶
1812, 5, 1, 7, 13, 14, 16, 17decadd 12312 . . . 4 (5 + 𝐴𝐵) = 𝐴𝐶
1918breq2i 5047 . . 3 (5 ∥ (5 + 𝐴𝐵) ↔ 5 ∥ 𝐴𝐶)
2011, 19bitri 278 . 2 (5 ∥ 𝐴𝐵 ↔ 5 ∥ 𝐴𝐶)
214, 20mtbi 325 1 ¬ 5 ∥ 𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209   = wceq 1543  wcel 2112   class class class wbr 5039  (class class class)co 7191  0cc0 10694   + caddc 10697   < clt 10832  cn 11795  5c5 11853  0cn0 12055  cz 12141  cdc 12258  cdvds 15778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-inf 9037  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-rp 12552  df-fz 13061  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-dvds 15779
This theorem is referenced by:  37prm  16637  139prm  16640  317prm  16642  257prm  44629  139prmALT  44664  127prm  44667
  Copyright terms: Public domain W3C validator