MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unialeph Structured version   Visualization version   GIF version

Theorem unialeph 10092
Description: The union of the class of transfinite cardinals (the range of the aleph function) is the class of ordinal numbers. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
unialeph ran ℵ = On

Proof of Theorem unialeph
StepHypRef Expression
1 alephprc 10090 . . . 4 ¬ ran ℵ ∈ V
2 uniexb 7747 . . . 4 (ran ℵ ∈ V ↔ ran ℵ ∈ V)
31, 2mtbi 321 . . 3 ¬ ran ℵ ∈ V
4 elex 3492 . . 3 ( ran ℵ ∈ On → ran ℵ ∈ V)
53, 4mto 196 . 2 ¬ ran ℵ ∈ On
6 alephsson 10091 . . . 4 ran ℵ ⊆ On
7 ssorduni 7762 . . . 4 (ran ℵ ⊆ On → Ord ran ℵ)
86, 7ax-mp 5 . . 3 Ord ran ℵ
9 ordeleqon 7765 . . 3 (Ord ran ℵ ↔ ( ran ℵ ∈ On ∨ ran ℵ = On))
108, 9mpbi 229 . 2 ( ran ℵ ∈ On ∨ ran ℵ = On)
115, 10mtpor 1772 1 ran ℵ = On
Colors of variables: wff setvar class
Syntax hints:  wo 845   = wceq 1541  wcel 2106  Vcvv 3474  wss 3947   cuni 4907  ran crn 5676  Ord word 6360  Oncon0 6361  cale 9927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-oi 9501  df-har 9548  df-card 9930  df-aleph 9931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator