| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unialeph | Structured version Visualization version GIF version | ||
| Description: The union of the class of transfinite cardinals (the range of the aleph function) is the class of ordinal numbers. (Contributed by NM, 11-Nov-2003.) |
| Ref | Expression |
|---|---|
| unialeph | ⊢ ∪ ran ℵ = On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephprc 9999 | . . . 4 ⊢ ¬ ran ℵ ∈ V | |
| 2 | uniexb 7705 | . . . 4 ⊢ (ran ℵ ∈ V ↔ ∪ ran ℵ ∈ V) | |
| 3 | 1, 2 | mtbi 322 | . . 3 ⊢ ¬ ∪ ran ℵ ∈ V |
| 4 | elex 3458 | . . 3 ⊢ (∪ ran ℵ ∈ On → ∪ ran ℵ ∈ V) | |
| 5 | 3, 4 | mto 197 | . 2 ⊢ ¬ ∪ ran ℵ ∈ On |
| 6 | alephsson 10000 | . . . 4 ⊢ ran ℵ ⊆ On | |
| 7 | ssorduni 7720 | . . . 4 ⊢ (ran ℵ ⊆ On → Ord ∪ ran ℵ) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ Ord ∪ ran ℵ |
| 9 | ordeleqon 7723 | . . 3 ⊢ (Ord ∪ ran ℵ ↔ (∪ ran ℵ ∈ On ∨ ∪ ran ℵ = On)) | |
| 10 | 8, 9 | mpbi 230 | . 2 ⊢ (∪ ran ℵ ∈ On ∨ ∪ ran ℵ = On) |
| 11 | 5, 10 | mtpor 1771 | 1 ⊢ ∪ ran ℵ = On |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 ∪ cuni 4860 ran crn 5622 Ord word 6312 Oncon0 6313 ℵcale 9838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-oi 9405 df-har 9452 df-card 9841 df-aleph 9842 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |