Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dec5nprm | Structured version Visualization version GIF version |
Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
dec5nprm.1 | ⊢ 𝐴 ∈ ℕ |
Ref | Expression |
---|---|
dec5nprm | ⊢ ¬ ;𝐴5 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 12160 | . . . 4 ⊢ 2 ∈ ℕ | |
2 | dec5nprm.1 | . . . 4 ⊢ 𝐴 ∈ ℕ | |
3 | 1, 2 | nnmulcli 12112 | . . 3 ⊢ (2 · 𝐴) ∈ ℕ |
4 | peano2nn 12099 | . . 3 ⊢ ((2 · 𝐴) ∈ ℕ → ((2 · 𝐴) + 1) ∈ ℕ) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((2 · 𝐴) + 1) ∈ ℕ |
6 | 5nn 12173 | . 2 ⊢ 5 ∈ ℕ | |
7 | 1nn0 12363 | . . 3 ⊢ 1 ∈ ℕ0 | |
8 | 1lt2 12258 | . . 3 ⊢ 1 < 2 | |
9 | 1, 2, 7, 7, 8 | numlti 12588 | . 2 ⊢ 1 < ((2 · 𝐴) + 1) |
10 | 1lt5 12267 | . 2 ⊢ 1 < 5 | |
11 | 1 | nncni 12097 | . . . . . 6 ⊢ 2 ∈ ℂ |
12 | 2 | nncni 12097 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
13 | 5cn 12175 | . . . . . 6 ⊢ 5 ∈ ℂ | |
14 | 11, 12, 13 | mul32i 11285 | . . . . 5 ⊢ ((2 · 𝐴) · 5) = ((2 · 5) · 𝐴) |
15 | 5t2e10 12651 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
16 | 13, 11, 15 | mulcomli 11098 | . . . . . 6 ⊢ (2 · 5) = ;10 |
17 | 16 | oveq1i 7360 | . . . . 5 ⊢ ((2 · 5) · 𝐴) = (;10 · 𝐴) |
18 | 14, 17 | eqtri 2766 | . . . 4 ⊢ ((2 · 𝐴) · 5) = (;10 · 𝐴) |
19 | 13 | mulid2i 11094 | . . . 4 ⊢ (1 · 5) = 5 |
20 | 18, 19 | oveq12i 7362 | . . 3 ⊢ (((2 · 𝐴) · 5) + (1 · 5)) = ((;10 · 𝐴) + 5) |
21 | 3 | nncni 12097 | . . . 4 ⊢ (2 · 𝐴) ∈ ℂ |
22 | ax-1cn 11043 | . . . 4 ⊢ 1 ∈ ℂ | |
23 | 21, 22, 13 | adddiri 11102 | . . 3 ⊢ (((2 · 𝐴) + 1) · 5) = (((2 · 𝐴) · 5) + (1 · 5)) |
24 | dfdec10 12554 | . . 3 ⊢ ;𝐴5 = ((;10 · 𝐴) + 5) | |
25 | 20, 23, 24 | 3eqtr4i 2776 | . 2 ⊢ (((2 · 𝐴) + 1) · 5) = ;𝐴5 |
26 | 5, 6, 9, 10, 25 | nprmi 16500 | 1 ⊢ ¬ ;𝐴5 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2107 (class class class)co 7350 0cc0 10985 1c1 10986 + caddc 10988 · cmul 10990 ℕcn 12087 2c2 12142 5c5 12145 ;cdc 12551 ℙcprime 16482 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7663 ax-cnex 11041 ax-resscn 11042 ax-1cn 11043 ax-icn 11044 ax-addcl 11045 ax-addrcl 11046 ax-mulcl 11047 ax-mulrcl 11048 ax-mulcom 11049 ax-addass 11050 ax-mulass 11051 ax-distr 11052 ax-i2m1 11053 ax-1ne0 11054 ax-1rid 11055 ax-rnegex 11056 ax-rrecex 11057 ax-cnre 11058 ax-pre-lttri 11059 ax-pre-lttrn 11060 ax-pre-ltadd 11061 ax-pre-mulgt0 11062 ax-pre-sup 11063 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6250 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6444 df-fun 6494 df-fn 6495 df-f 6496 df-f1 6497 df-fo 6498 df-f1o 6499 df-fv 6500 df-riota 7306 df-ov 7353 df-oprab 7354 df-mpo 7355 df-om 7794 df-2nd 7913 df-frecs 8180 df-wrecs 8211 df-recs 8285 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8582 df-en 8818 df-dom 8819 df-sdom 8820 df-fin 8821 df-sup 9312 df-pnf 11125 df-mnf 11126 df-xr 11127 df-ltxr 11128 df-le 11129 df-sub 11321 df-neg 11322 df-div 11747 df-nn 12088 df-2 12150 df-3 12151 df-4 12152 df-5 12153 df-6 12154 df-7 12155 df-8 12156 df-9 12157 df-n0 12348 df-z 12434 df-dec 12552 df-uz 12697 df-rp 12845 df-seq 13836 df-exp 13897 df-cj 14918 df-re 14919 df-im 14920 df-sqrt 15054 df-abs 15055 df-dvds 16072 df-prm 16483 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |