MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec5nprm Structured version   Visualization version   GIF version

Theorem dec5nprm 16763
Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypothesis
Ref Expression
dec5nprm.1 𝐴 ∈ ℕ
Assertion
Ref Expression
dec5nprm ¬ 𝐴5 ∈ ℙ

Proof of Theorem dec5nprm
StepHypRef Expression
1 2nn 12044 . . . 4 2 ∈ ℕ
2 dec5nprm.1 . . . 4 𝐴 ∈ ℕ
31, 2nnmulcli 11996 . . 3 (2 · 𝐴) ∈ ℕ
4 peano2nn 11983 . . 3 ((2 · 𝐴) ∈ ℕ → ((2 · 𝐴) + 1) ∈ ℕ)
53, 4ax-mp 5 . 2 ((2 · 𝐴) + 1) ∈ ℕ
6 5nn 12057 . 2 5 ∈ ℕ
7 1nn0 12247 . . 3 1 ∈ ℕ0
8 1lt2 12142 . . 3 1 < 2
91, 2, 7, 7, 8numlti 12471 . 2 1 < ((2 · 𝐴) + 1)
10 1lt5 12151 . 2 1 < 5
111nncni 11981 . . . . . 6 2 ∈ ℂ
122nncni 11981 . . . . . 6 𝐴 ∈ ℂ
13 5cn 12059 . . . . . 6 5 ∈ ℂ
1411, 12, 13mul32i 11169 . . . . 5 ((2 · 𝐴) · 5) = ((2 · 5) · 𝐴)
15 5t2e10 12534 . . . . . . 7 (5 · 2) = 10
1613, 11, 15mulcomli 10983 . . . . . 6 (2 · 5) = 10
1716oveq1i 7279 . . . . 5 ((2 · 5) · 𝐴) = (10 · 𝐴)
1814, 17eqtri 2768 . . . 4 ((2 · 𝐴) · 5) = (10 · 𝐴)
1913mulid2i 10979 . . . 4 (1 · 5) = 5
2018, 19oveq12i 7281 . . 3 (((2 · 𝐴) · 5) + (1 · 5)) = ((10 · 𝐴) + 5)
213nncni 11981 . . . 4 (2 · 𝐴) ∈ ℂ
22 ax-1cn 10928 . . . 4 1 ∈ ℂ
2321, 22, 13adddiri 10987 . . 3 (((2 · 𝐴) + 1) · 5) = (((2 · 𝐴) · 5) + (1 · 5))
24 dfdec10 12437 . . 3 𝐴5 = ((10 · 𝐴) + 5)
2520, 23, 243eqtr4i 2778 . 2 (((2 · 𝐴) + 1) · 5) = 𝐴5
265, 6, 9, 10, 25nprmi 16390 1 ¬ 𝐴5 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2110  (class class class)co 7269  0cc0 10870  1c1 10871   + caddc 10873   · cmul 10875  cn 11971  2c2 12026  5c5 12029  cdc 12434  cprime 16372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947  ax-pre-sup 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-2o 8287  df-er 8479  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-sup 9177  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-z 12318  df-dec 12435  df-uz 12580  df-rp 12728  df-seq 13718  df-exp 13779  df-cj 14806  df-re 14807  df-im 14808  df-sqrt 14942  df-abs 14943  df-dvds 15960  df-prm 16373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator