MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec5nprm Structured version   Visualization version   GIF version

Theorem dec5nprm 16982
Description: A decimal number greater than 10 and ending with five is not a prime number. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypothesis
Ref Expression
dec5nprm.1 𝐴 ∈ ℕ
Assertion
Ref Expression
dec5nprm ¬ 𝐴5 ∈ ℙ

Proof of Theorem dec5nprm
StepHypRef Expression
1 2nn 12207 . . . 4 2 ∈ ℕ
2 dec5nprm.1 . . . 4 𝐴 ∈ ℕ
31, 2nnmulcli 12159 . . 3 (2 · 𝐴) ∈ ℕ
4 peano2nn 12146 . . 3 ((2 · 𝐴) ∈ ℕ → ((2 · 𝐴) + 1) ∈ ℕ)
53, 4ax-mp 5 . 2 ((2 · 𝐴) + 1) ∈ ℕ
6 5nn 12220 . 2 5 ∈ ℕ
7 1nn0 12406 . . 3 1 ∈ ℕ0
8 1lt2 12300 . . 3 1 < 2
91, 2, 7, 7, 8numlti 12633 . 2 1 < ((2 · 𝐴) + 1)
10 1lt5 12309 . 2 1 < 5
111nncni 12144 . . . . . 6 2 ∈ ℂ
122nncni 12144 . . . . . 6 𝐴 ∈ ℂ
13 5cn 12222 . . . . . 6 5 ∈ ℂ
1411, 12, 13mul32i 11318 . . . . 5 ((2 · 𝐴) · 5) = ((2 · 5) · 𝐴)
15 5t2e10 12696 . . . . . . 7 (5 · 2) = 10
1613, 11, 15mulcomli 11130 . . . . . 6 (2 · 5) = 10
1716oveq1i 7364 . . . . 5 ((2 · 5) · 𝐴) = (10 · 𝐴)
1814, 17eqtri 2756 . . . 4 ((2 · 𝐴) · 5) = (10 · 𝐴)
1913mullidi 11126 . . . 4 (1 · 5) = 5
2018, 19oveq12i 7366 . . 3 (((2 · 𝐴) · 5) + (1 · 5)) = ((10 · 𝐴) + 5)
213nncni 12144 . . . 4 (2 · 𝐴) ∈ ℂ
22 ax-1cn 11073 . . . 4 1 ∈ ℂ
2321, 22, 13adddiri 11134 . . 3 (((2 · 𝐴) + 1) · 5) = (((2 · 𝐴) · 5) + (1 · 5))
24 dfdec10 12599 . . 3 𝐴5 = ((10 · 𝐴) + 5)
2520, 23, 243eqtr4i 2766 . 2 (((2 · 𝐴) + 1) · 5) = 𝐴5
265, 6, 9, 10, 25nprmi 16604 1 ¬ 𝐴5 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2113  (class class class)co 7354  0cc0 11015  1c1 11016   + caddc 11018   · cmul 11020  cn 12134  2c2 12189  5c5 12192  cdc 12596  cprime 16586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-rp 12895  df-seq 13913  df-exp 13973  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-dvds 16168  df-prm 16587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator