MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec5nprm Structured version   Visualization version   GIF version

Theorem dec5nprm 16996
Description: A decimal number greater than 10 and ending with five is not a prime number. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypothesis
Ref Expression
dec5nprm.1 𝐴 ∈ ℕ
Assertion
Ref Expression
dec5nprm ¬ 𝐴5 ∈ ℙ

Proof of Theorem dec5nprm
StepHypRef Expression
1 2nn 12219 . . . 4 2 ∈ ℕ
2 dec5nprm.1 . . . 4 𝐴 ∈ ℕ
31, 2nnmulcli 12171 . . 3 (2 · 𝐴) ∈ ℕ
4 peano2nn 12158 . . 3 ((2 · 𝐴) ∈ ℕ → ((2 · 𝐴) + 1) ∈ ℕ)
53, 4ax-mp 5 . 2 ((2 · 𝐴) + 1) ∈ ℕ
6 5nn 12232 . 2 5 ∈ ℕ
7 1nn0 12418 . . 3 1 ∈ ℕ0
8 1lt2 12312 . . 3 1 < 2
91, 2, 7, 7, 8numlti 12646 . 2 1 < ((2 · 𝐴) + 1)
10 1lt5 12321 . 2 1 < 5
111nncni 12156 . . . . . 6 2 ∈ ℂ
122nncni 12156 . . . . . 6 𝐴 ∈ ℂ
13 5cn 12234 . . . . . 6 5 ∈ ℂ
1411, 12, 13mul32i 11330 . . . . 5 ((2 · 𝐴) · 5) = ((2 · 5) · 𝐴)
15 5t2e10 12709 . . . . . . 7 (5 · 2) = 10
1613, 11, 15mulcomli 11143 . . . . . 6 (2 · 5) = 10
1716oveq1i 7363 . . . . 5 ((2 · 5) · 𝐴) = (10 · 𝐴)
1814, 17eqtri 2752 . . . 4 ((2 · 𝐴) · 5) = (10 · 𝐴)
1913mullidi 11139 . . . 4 (1 · 5) = 5
2018, 19oveq12i 7365 . . 3 (((2 · 𝐴) · 5) + (1 · 5)) = ((10 · 𝐴) + 5)
213nncni 12156 . . . 4 (2 · 𝐴) ∈ ℂ
22 ax-1cn 11086 . . . 4 1 ∈ ℂ
2321, 22, 13adddiri 11147 . . 3 (((2 · 𝐴) + 1) · 5) = (((2 · 𝐴) · 5) + (1 · 5))
24 dfdec10 12612 . . 3 𝐴5 = ((10 · 𝐴) + 5)
2520, 23, 243eqtr4i 2762 . 2 (((2 · 𝐴) + 1) · 5) = 𝐴5
265, 6, 9, 10, 25nprmi 16618 1 ¬ 𝐴5 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109  (class class class)co 7353  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cn 12146  2c2 12201  5c5 12204  cdc 12609  cprime 16600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-dvds 16182  df-prm 16601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator