![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dec5nprm | Structured version Visualization version GIF version |
Description: Divisibility by five is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
dec5nprm.1 | ⊢ 𝐴 ∈ ℕ |
Ref | Expression |
---|---|
dec5nprm | ⊢ ¬ ;𝐴5 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 11547 | . . . 4 ⊢ 2 ∈ ℕ | |
2 | dec5nprm.1 | . . . 4 ⊢ 𝐴 ∈ ℕ | |
3 | 1, 2 | nnmulcli 11499 | . . 3 ⊢ (2 · 𝐴) ∈ ℕ |
4 | peano2nn 11487 | . . 3 ⊢ ((2 · 𝐴) ∈ ℕ → ((2 · 𝐴) + 1) ∈ ℕ) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((2 · 𝐴) + 1) ∈ ℕ |
6 | 5nn 11560 | . 2 ⊢ 5 ∈ ℕ | |
7 | 1nn0 11750 | . . 3 ⊢ 1 ∈ ℕ0 | |
8 | 1lt2 11645 | . . 3 ⊢ 1 < 2 | |
9 | 1, 2, 7, 7, 8 | numlti 11973 | . 2 ⊢ 1 < ((2 · 𝐴) + 1) |
10 | 1lt5 11654 | . 2 ⊢ 1 < 5 | |
11 | 1 | nncni 11485 | . . . . . 6 ⊢ 2 ∈ ℂ |
12 | 2 | nncni 11485 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
13 | 5cn 11562 | . . . . . 6 ⊢ 5 ∈ ℂ | |
14 | 11, 12, 13 | mul32i 10672 | . . . . 5 ⊢ ((2 · 𝐴) · 5) = ((2 · 5) · 𝐴) |
15 | 5t2e10 12037 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
16 | 13, 11, 15 | mulcomli 10485 | . . . . . 6 ⊢ (2 · 5) = ;10 |
17 | 16 | oveq1i 7017 | . . . . 5 ⊢ ((2 · 5) · 𝐴) = (;10 · 𝐴) |
18 | 14, 17 | eqtri 2817 | . . . 4 ⊢ ((2 · 𝐴) · 5) = (;10 · 𝐴) |
19 | 13 | mulid2i 10481 | . . . 4 ⊢ (1 · 5) = 5 |
20 | 18, 19 | oveq12i 7019 | . . 3 ⊢ (((2 · 𝐴) · 5) + (1 · 5)) = ((;10 · 𝐴) + 5) |
21 | 3 | nncni 11485 | . . . 4 ⊢ (2 · 𝐴) ∈ ℂ |
22 | ax-1cn 10430 | . . . 4 ⊢ 1 ∈ ℂ | |
23 | 21, 22, 13 | adddiri 10489 | . . 3 ⊢ (((2 · 𝐴) + 1) · 5) = (((2 · 𝐴) · 5) + (1 · 5)) |
24 | dfdec10 11939 | . . 3 ⊢ ;𝐴5 = ((;10 · 𝐴) + 5) | |
25 | 20, 23, 24 | 3eqtr4i 2827 | . 2 ⊢ (((2 · 𝐴) + 1) · 5) = ;𝐴5 |
26 | 5, 6, 9, 10, 25 | nprmi 15850 | 1 ⊢ ¬ ;𝐴5 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2079 (class class class)co 7007 0cc0 10372 1c1 10373 + caddc 10375 · cmul 10377 ℕcn 11475 2c2 11529 5c5 11532 ;cdc 11936 ℙcprime 15832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 ax-pre-sup 10450 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rmo 3111 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-2nd 7537 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-1o 7944 df-2o 7945 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-fin 8351 df-sup 8742 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-div 11135 df-nn 11476 df-2 11537 df-3 11538 df-4 11539 df-5 11540 df-6 11541 df-7 11542 df-8 11543 df-9 11544 df-n0 11735 df-z 11819 df-dec 11937 df-uz 12083 df-rp 12229 df-seq 13208 df-exp 13268 df-cj 14280 df-re 14281 df-im 14282 df-sqrt 14416 df-abs 14417 df-dvds 15429 df-prm 15833 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |