| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dec5nprm | Structured version Visualization version GIF version | ||
| Description: A decimal number greater than 10 and ending with five is not a prime number. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| dec5nprm.1 | ⊢ 𝐴 ∈ ℕ |
| Ref | Expression |
|---|---|
| dec5nprm | ⊢ ¬ ;𝐴5 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2nn 12318 | . . . 4 ⊢ 2 ∈ ℕ | |
| 2 | dec5nprm.1 | . . . 4 ⊢ 𝐴 ∈ ℕ | |
| 3 | 1, 2 | nnmulcli 12270 | . . 3 ⊢ (2 · 𝐴) ∈ ℕ |
| 4 | peano2nn 12257 | . . 3 ⊢ ((2 · 𝐴) ∈ ℕ → ((2 · 𝐴) + 1) ∈ ℕ) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ ((2 · 𝐴) + 1) ∈ ℕ |
| 6 | 5nn 12331 | . 2 ⊢ 5 ∈ ℕ | |
| 7 | 1nn0 12522 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 8 | 1lt2 12416 | . . 3 ⊢ 1 < 2 | |
| 9 | 1, 2, 7, 7, 8 | numlti 12750 | . 2 ⊢ 1 < ((2 · 𝐴) + 1) |
| 10 | 1lt5 12425 | . 2 ⊢ 1 < 5 | |
| 11 | 1 | nncni 12255 | . . . . . 6 ⊢ 2 ∈ ℂ |
| 12 | 2 | nncni 12255 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
| 13 | 5cn 12333 | . . . . . 6 ⊢ 5 ∈ ℂ | |
| 14 | 11, 12, 13 | mul32i 11436 | . . . . 5 ⊢ ((2 · 𝐴) · 5) = ((2 · 5) · 𝐴) |
| 15 | 5t2e10 12813 | . . . . . . 7 ⊢ (5 · 2) = ;10 | |
| 16 | 13, 11, 15 | mulcomli 11249 | . . . . . 6 ⊢ (2 · 5) = ;10 |
| 17 | 16 | oveq1i 7420 | . . . . 5 ⊢ ((2 · 5) · 𝐴) = (;10 · 𝐴) |
| 18 | 14, 17 | eqtri 2759 | . . . 4 ⊢ ((2 · 𝐴) · 5) = (;10 · 𝐴) |
| 19 | 13 | mullidi 11245 | . . . 4 ⊢ (1 · 5) = 5 |
| 20 | 18, 19 | oveq12i 7422 | . . 3 ⊢ (((2 · 𝐴) · 5) + (1 · 5)) = ((;10 · 𝐴) + 5) |
| 21 | 3 | nncni 12255 | . . . 4 ⊢ (2 · 𝐴) ∈ ℂ |
| 22 | ax-1cn 11192 | . . . 4 ⊢ 1 ∈ ℂ | |
| 23 | 21, 22, 13 | adddiri 11253 | . . 3 ⊢ (((2 · 𝐴) + 1) · 5) = (((2 · 𝐴) · 5) + (1 · 5)) |
| 24 | dfdec10 12716 | . . 3 ⊢ ;𝐴5 = ((;10 · 𝐴) + 5) | |
| 25 | 20, 23, 24 | 3eqtr4i 2769 | . 2 ⊢ (((2 · 𝐴) + 1) · 5) = ;𝐴5 |
| 26 | 5, 6, 9, 10, 25 | nprmi 16713 | 1 ⊢ ¬ ;𝐴5 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 (class class class)co 7410 0cc0 11134 1c1 11135 + caddc 11137 · cmul 11139 ℕcn 12245 2c2 12300 5c5 12303 ;cdc 12713 ℙcprime 16695 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-rp 13014 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-dvds 16278 df-prm 16696 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |