MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul12i Structured version   Visualization version   GIF version

Theorem mul12i 11329
Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Hypotheses
Ref Expression
mul.1 𝐴 ∈ ℂ
mul.2 𝐵 ∈ ℂ
mul.3 𝐶 ∈ ℂ
Assertion
Ref Expression
mul12i (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))

Proof of Theorem mul12i
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 mul.2 . 2 𝐵 ∈ ℂ
3 mul.3 . 2 𝐶 ∈ ℂ
4 mul12 11299 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)))
51, 2, 3, 4mp3an 1463 1 (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7353  cc 11026   · cmul 11033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-mulcom 11092  ax-mulass 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-iota 6442  df-fv 6494  df-ov 7356
This theorem is referenced by:  decmul10add  12678  faclbnd4lem1  14218  bpoly3  15983  decsplit  17012  root1eq1  26681  cxpeq  26683  1cubrlem  26767  efiatan2  26843  2efiatan  26844  tanatan  26845  log2ublem2  26873  log2ublem3  26874  bposlem8  27218  ax5seglem7  28898  ip1ilem  30788  ipasslem10  30801  polid2i  31119  3exp4mod41  47604
  Copyright terms: Public domain W3C validator