![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mul12i | Structured version Visualization version GIF version |
Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
mul.1 | โข ๐ด โ โ |
mul.2 | โข ๐ต โ โ |
mul.3 | โข ๐ถ โ โ |
Ref | Expression |
---|---|
mul12i | โข (๐ด ยท (๐ต ยท ๐ถ)) = (๐ต ยท (๐ด ยท ๐ถ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mul.1 | . 2 โข ๐ด โ โ | |
2 | mul.2 | . 2 โข ๐ต โ โ | |
3 | mul.3 | . 2 โข ๐ถ โ โ | |
4 | mul12 11379 | . 2 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ (๐ด ยท (๐ต ยท ๐ถ)) = (๐ต ยท (๐ด ยท ๐ถ))) | |
5 | 1, 2, 3, 4 | mp3an 1462 | 1 โข (๐ด ยท (๐ต ยท ๐ถ)) = (๐ต ยท (๐ด ยท ๐ถ)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 โ wcel 2107 (class class class)co 7409 โcc 11108 ยท cmul 11115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-mulcom 11174 ax-mulass 11176 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 |
This theorem is referenced by: decmul10add 12746 faclbnd4lem1 14253 bpoly3 16002 decsplit 17016 root1eq1 26263 cxpeq 26265 1cubrlem 26346 efiatan2 26422 2efiatan 26423 tanatan 26424 log2ublem2 26452 log2ublem3 26453 bposlem8 26794 ax5seglem7 28193 ip1ilem 30079 ipasslem10 30092 polid2i 30410 3exp4mod41 46284 |
Copyright terms: Public domain | W3C validator |