| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul12i | Structured version Visualization version GIF version | ||
| Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| mul.2 | ⊢ 𝐵 ∈ ℂ |
| mul.3 | ⊢ 𝐶 ∈ ℂ |
| Ref | Expression |
|---|---|
| mul12i | ⊢ (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | mul.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | mul.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
| 4 | mul12 11426 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | mp3an 1463 | 1 ⊢ (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7431 ℂcc 11153 · cmul 11160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-mulcom 11219 ax-mulass 11221 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 |
| This theorem is referenced by: decmul10add 12802 faclbnd4lem1 14332 bpoly3 16094 decsplit 17120 root1eq1 26798 cxpeq 26800 1cubrlem 26884 efiatan2 26960 2efiatan 26961 tanatan 26962 log2ublem2 26990 log2ublem3 26991 bposlem8 27335 ax5seglem7 28950 ip1ilem 30845 ipasslem10 30858 polid2i 31176 3exp4mod41 47603 |
| Copyright terms: Public domain | W3C validator |