MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul12i Structured version   Visualization version   GIF version

Theorem mul12i 11409
Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Hypotheses
Ref Expression
mul.1 ๐ด โˆˆ โ„‚
mul.2 ๐ต โˆˆ โ„‚
mul.3 ๐ถ โˆˆ โ„‚
Assertion
Ref Expression
mul12i (๐ด ยท (๐ต ยท ๐ถ)) = (๐ต ยท (๐ด ยท ๐ถ))

Proof of Theorem mul12i
StepHypRef Expression
1 mul.1 . 2 ๐ด โˆˆ โ„‚
2 mul.2 . 2 ๐ต โˆˆ โ„‚
3 mul.3 . 2 ๐ถ โˆˆ โ„‚
4 mul12 11379 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ด ยท (๐ต ยท ๐ถ)) = (๐ต ยท (๐ด ยท ๐ถ)))
51, 2, 3, 4mp3an 1462 1 (๐ด ยท (๐ต ยท ๐ถ)) = (๐ต ยท (๐ด ยท ๐ถ))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542   โˆˆ wcel 2107  (class class class)co 7409  โ„‚cc 11108   ยท cmul 11115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-mulcom 11174  ax-mulass 11176
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412
This theorem is referenced by:  decmul10add  12746  faclbnd4lem1  14253  bpoly3  16002  decsplit  17016  root1eq1  26263  cxpeq  26265  1cubrlem  26346  efiatan2  26422  2efiatan  26423  tanatan  26424  log2ublem2  26452  log2ublem3  26453  bposlem8  26794  ax5seglem7  28193  ip1ilem  30079  ipasslem10  30092  polid2i  30410  3exp4mod41  46284
  Copyright terms: Public domain W3C validator