MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul12i Structured version   Visualization version   GIF version

Theorem mul12i 11319
Description: Commutative/associative law that swaps the first two factors in a triple product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.)
Hypotheses
Ref Expression
mul.1 𝐴 ∈ ℂ
mul.2 𝐵 ∈ ℂ
mul.3 𝐶 ∈ ℂ
Assertion
Ref Expression
mul12i (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))

Proof of Theorem mul12i
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 mul.2 . 2 𝐵 ∈ ℂ
3 mul.3 . 2 𝐶 ∈ ℂ
4 mul12 11289 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)))
51, 2, 3, 4mp3an 1463 1 (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  (class class class)co 7355  cc 11015   · cmul 11022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-mulcom 11081  ax-mulass 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6445  df-fv 6497  df-ov 7358
This theorem is referenced by:  decmul10add  12667  faclbnd4lem1  14207  bpoly3  15972  decsplit  17001  root1eq1  26712  cxpeq  26714  1cubrlem  26798  efiatan2  26874  2efiatan  26875  tanatan  26876  log2ublem2  26904  log2ublem3  26905  bposlem8  27249  ax5seglem7  28934  ip1ilem  30827  ipasslem10  30840  polid2i  31158  3exp4mod41  47778
  Copyright terms: Public domain W3C validator