![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8th4div3 | Structured version Visualization version GIF version |
Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.) |
Ref | Expression |
---|---|
8th4div3 | ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11211 | . . . 4 ⊢ 1 ∈ ℂ | |
2 | 8re 12360 | . . . . 5 ⊢ 8 ∈ ℝ | |
3 | 2 | recni 11273 | . . . 4 ⊢ 8 ∈ ℂ |
4 | 4cn 12349 | . . . 4 ⊢ 4 ∈ ℂ | |
5 | 3cn 12345 | . . . 4 ⊢ 3 ∈ ℂ | |
6 | 8pos 12376 | . . . . 5 ⊢ 0 < 8 | |
7 | 2, 6 | gt0ne0ii 11797 | . . . 4 ⊢ 8 ≠ 0 |
8 | 3ne0 12370 | . . . 4 ⊢ 3 ≠ 0 | |
9 | 1, 3, 4, 5, 7, 8 | divmuldivi 12025 | . . 3 ⊢ ((1 / 8) · (4 / 3)) = ((1 · 4) / (8 · 3)) |
10 | 1, 4 | mulcomi 11267 | . . . 4 ⊢ (1 · 4) = (4 · 1) |
11 | 2cn 12339 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
12 | 4, 11, 5 | mul32i 11455 | . . . . . . 7 ⊢ ((4 · 2) · 3) = ((4 · 3) · 2) |
13 | 4t2e8 12432 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
14 | 13 | oveq1i 7441 | . . . . . . 7 ⊢ ((4 · 2) · 3) = (8 · 3) |
15 | 12, 14 | eqtr3i 2765 | . . . . . 6 ⊢ ((4 · 3) · 2) = (8 · 3) |
16 | 4, 5, 11 | mulassi 11270 | . . . . . 6 ⊢ ((4 · 3) · 2) = (4 · (3 · 2)) |
17 | 15, 16 | eqtr3i 2765 | . . . . 5 ⊢ (8 · 3) = (4 · (3 · 2)) |
18 | 3t2e6 12430 | . . . . . 6 ⊢ (3 · 2) = 6 | |
19 | 18 | oveq2i 7442 | . . . . 5 ⊢ (4 · (3 · 2)) = (4 · 6) |
20 | 17, 19 | eqtri 2763 | . . . 4 ⊢ (8 · 3) = (4 · 6) |
21 | 10, 20 | oveq12i 7443 | . . 3 ⊢ ((1 · 4) / (8 · 3)) = ((4 · 1) / (4 · 6)) |
22 | 9, 21 | eqtri 2763 | . 2 ⊢ ((1 / 8) · (4 / 3)) = ((4 · 1) / (4 · 6)) |
23 | 6re 12354 | . . . 4 ⊢ 6 ∈ ℝ | |
24 | 23 | recni 11273 | . . 3 ⊢ 6 ∈ ℂ |
25 | 6pos 12374 | . . . 4 ⊢ 0 < 6 | |
26 | 23, 25 | gt0ne0ii 11797 | . . 3 ⊢ 6 ≠ 0 |
27 | 4ne0 12372 | . . 3 ⊢ 4 ≠ 0 | |
28 | divcan5 11967 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) | |
29 | 1, 28 | mp3an1 1447 | . . 3 ⊢ (((6 ∈ ℂ ∧ 6 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) |
30 | 24, 26, 4, 27, 29 | mp4an 693 | . 2 ⊢ ((4 · 1) / (4 · 6)) = (1 / 6) |
31 | 22, 30 | eqtri 2763 | 1 ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 (class class class)co 7431 ℂcc 11151 0cc0 11153 1c1 11154 · cmul 11158 / cdiv 11918 2c2 12319 3c3 12320 4c4 12321 6c6 12323 8c8 12325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |