![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8th4div3 | Structured version Visualization version GIF version |
Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.) |
Ref | Expression |
---|---|
8th4div3 | ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11167 | . . . 4 ⊢ 1 ∈ ℂ | |
2 | 8re 12307 | . . . . 5 ⊢ 8 ∈ ℝ | |
3 | 2 | recni 11227 | . . . 4 ⊢ 8 ∈ ℂ |
4 | 4cn 12296 | . . . 4 ⊢ 4 ∈ ℂ | |
5 | 3cn 12292 | . . . 4 ⊢ 3 ∈ ℂ | |
6 | 8pos 12323 | . . . . 5 ⊢ 0 < 8 | |
7 | 2, 6 | gt0ne0ii 11749 | . . . 4 ⊢ 8 ≠ 0 |
8 | 3ne0 12317 | . . . 4 ⊢ 3 ≠ 0 | |
9 | 1, 3, 4, 5, 7, 8 | divmuldivi 11973 | . . 3 ⊢ ((1 / 8) · (4 / 3)) = ((1 · 4) / (8 · 3)) |
10 | 1, 4 | mulcomi 11221 | . . . 4 ⊢ (1 · 4) = (4 · 1) |
11 | 2cn 12286 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
12 | 4, 11, 5 | mul32i 11409 | . . . . . . 7 ⊢ ((4 · 2) · 3) = ((4 · 3) · 2) |
13 | 4t2e8 12379 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
14 | 13 | oveq1i 7418 | . . . . . . 7 ⊢ ((4 · 2) · 3) = (8 · 3) |
15 | 12, 14 | eqtr3i 2762 | . . . . . 6 ⊢ ((4 · 3) · 2) = (8 · 3) |
16 | 4, 5, 11 | mulassi 11224 | . . . . . 6 ⊢ ((4 · 3) · 2) = (4 · (3 · 2)) |
17 | 15, 16 | eqtr3i 2762 | . . . . 5 ⊢ (8 · 3) = (4 · (3 · 2)) |
18 | 3t2e6 12377 | . . . . . 6 ⊢ (3 · 2) = 6 | |
19 | 18 | oveq2i 7419 | . . . . 5 ⊢ (4 · (3 · 2)) = (4 · 6) |
20 | 17, 19 | eqtri 2760 | . . . 4 ⊢ (8 · 3) = (4 · 6) |
21 | 10, 20 | oveq12i 7420 | . . 3 ⊢ ((1 · 4) / (8 · 3)) = ((4 · 1) / (4 · 6)) |
22 | 9, 21 | eqtri 2760 | . 2 ⊢ ((1 / 8) · (4 / 3)) = ((4 · 1) / (4 · 6)) |
23 | 6re 12301 | . . . 4 ⊢ 6 ∈ ℝ | |
24 | 23 | recni 11227 | . . 3 ⊢ 6 ∈ ℂ |
25 | 6pos 12321 | . . . 4 ⊢ 0 < 6 | |
26 | 23, 25 | gt0ne0ii 11749 | . . 3 ⊢ 6 ≠ 0 |
27 | 4ne0 12319 | . . 3 ⊢ 4 ≠ 0 | |
28 | divcan5 11915 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) | |
29 | 1, 28 | mp3an1 1448 | . . 3 ⊢ (((6 ∈ ℂ ∧ 6 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) |
30 | 24, 26, 4, 27, 29 | mp4an 691 | . 2 ⊢ ((4 · 1) / (4 · 6)) = (1 / 6) |
31 | 22, 30 | eqtri 2760 | 1 ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 (class class class)co 7408 ℂcc 11107 0cc0 11109 1c1 11110 · cmul 11114 / cdiv 11870 2c2 12266 3c3 12267 4c4 12268 6c6 12270 8c8 12272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |