![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8th4div3 | Structured version Visualization version GIF version |
Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.) |
Ref | Expression |
---|---|
8th4div3 | ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11170 | . . . 4 ⊢ 1 ∈ ℂ | |
2 | 8re 12312 | . . . . 5 ⊢ 8 ∈ ℝ | |
3 | 2 | recni 11232 | . . . 4 ⊢ 8 ∈ ℂ |
4 | 4cn 12301 | . . . 4 ⊢ 4 ∈ ℂ | |
5 | 3cn 12297 | . . . 4 ⊢ 3 ∈ ℂ | |
6 | 8pos 12328 | . . . . 5 ⊢ 0 < 8 | |
7 | 2, 6 | gt0ne0ii 11754 | . . . 4 ⊢ 8 ≠ 0 |
8 | 3ne0 12322 | . . . 4 ⊢ 3 ≠ 0 | |
9 | 1, 3, 4, 5, 7, 8 | divmuldivi 11978 | . . 3 ⊢ ((1 / 8) · (4 / 3)) = ((1 · 4) / (8 · 3)) |
10 | 1, 4 | mulcomi 11226 | . . . 4 ⊢ (1 · 4) = (4 · 1) |
11 | 2cn 12291 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
12 | 4, 11, 5 | mul32i 11414 | . . . . . . 7 ⊢ ((4 · 2) · 3) = ((4 · 3) · 2) |
13 | 4t2e8 12384 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
14 | 13 | oveq1i 7415 | . . . . . . 7 ⊢ ((4 · 2) · 3) = (8 · 3) |
15 | 12, 14 | eqtr3i 2756 | . . . . . 6 ⊢ ((4 · 3) · 2) = (8 · 3) |
16 | 4, 5, 11 | mulassi 11229 | . . . . . 6 ⊢ ((4 · 3) · 2) = (4 · (3 · 2)) |
17 | 15, 16 | eqtr3i 2756 | . . . . 5 ⊢ (8 · 3) = (4 · (3 · 2)) |
18 | 3t2e6 12382 | . . . . . 6 ⊢ (3 · 2) = 6 | |
19 | 18 | oveq2i 7416 | . . . . 5 ⊢ (4 · (3 · 2)) = (4 · 6) |
20 | 17, 19 | eqtri 2754 | . . . 4 ⊢ (8 · 3) = (4 · 6) |
21 | 10, 20 | oveq12i 7417 | . . 3 ⊢ ((1 · 4) / (8 · 3)) = ((4 · 1) / (4 · 6)) |
22 | 9, 21 | eqtri 2754 | . 2 ⊢ ((1 / 8) · (4 / 3)) = ((4 · 1) / (4 · 6)) |
23 | 6re 12306 | . . . 4 ⊢ 6 ∈ ℝ | |
24 | 23 | recni 11232 | . . 3 ⊢ 6 ∈ ℂ |
25 | 6pos 12326 | . . . 4 ⊢ 0 < 6 | |
26 | 23, 25 | gt0ne0ii 11754 | . . 3 ⊢ 6 ≠ 0 |
27 | 4ne0 12324 | . . 3 ⊢ 4 ≠ 0 | |
28 | divcan5 11920 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) | |
29 | 1, 28 | mp3an1 1444 | . . 3 ⊢ (((6 ∈ ℂ ∧ 6 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) |
30 | 24, 26, 4, 27, 29 | mp4an 690 | . 2 ⊢ ((4 · 1) / (4 · 6)) = (1 / 6) |
31 | 22, 30 | eqtri 2754 | 1 ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 (class class class)co 7405 ℂcc 11110 0cc0 11112 1c1 11113 · cmul 11117 / cdiv 11875 2c2 12271 3c3 12272 4c4 12273 6c6 12275 8c8 12277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |