| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8th4div3 | Structured version Visualization version GIF version | ||
| Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| 8th4div3 | ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11071 | . . . 4 ⊢ 1 ∈ ℂ | |
| 2 | 8re 12228 | . . . . 5 ⊢ 8 ∈ ℝ | |
| 3 | 2 | recni 11133 | . . . 4 ⊢ 8 ∈ ℂ |
| 4 | 4cn 12217 | . . . 4 ⊢ 4 ∈ ℂ | |
| 5 | 3cn 12213 | . . . 4 ⊢ 3 ∈ ℂ | |
| 6 | 8pos 12244 | . . . . 5 ⊢ 0 < 8 | |
| 7 | 2, 6 | gt0ne0ii 11660 | . . . 4 ⊢ 8 ≠ 0 |
| 8 | 3ne0 12238 | . . . 4 ⊢ 3 ≠ 0 | |
| 9 | 1, 3, 4, 5, 7, 8 | divmuldivi 11888 | . . 3 ⊢ ((1 / 8) · (4 / 3)) = ((1 · 4) / (8 · 3)) |
| 10 | 1, 4 | mulcomi 11127 | . . . 4 ⊢ (1 · 4) = (4 · 1) |
| 11 | 2cn 12207 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
| 12 | 4, 11, 5 | mul32i 11316 | . . . . . . 7 ⊢ ((4 · 2) · 3) = ((4 · 3) · 2) |
| 13 | 4t2e8 12295 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
| 14 | 13 | oveq1i 7362 | . . . . . . 7 ⊢ ((4 · 2) · 3) = (8 · 3) |
| 15 | 12, 14 | eqtr3i 2758 | . . . . . 6 ⊢ ((4 · 3) · 2) = (8 · 3) |
| 16 | 4, 5, 11 | mulassi 11130 | . . . . . 6 ⊢ ((4 · 3) · 2) = (4 · (3 · 2)) |
| 17 | 15, 16 | eqtr3i 2758 | . . . . 5 ⊢ (8 · 3) = (4 · (3 · 2)) |
| 18 | 3t2e6 12293 | . . . . . 6 ⊢ (3 · 2) = 6 | |
| 19 | 18 | oveq2i 7363 | . . . . 5 ⊢ (4 · (3 · 2)) = (4 · 6) |
| 20 | 17, 19 | eqtri 2756 | . . . 4 ⊢ (8 · 3) = (4 · 6) |
| 21 | 10, 20 | oveq12i 7364 | . . 3 ⊢ ((1 · 4) / (8 · 3)) = ((4 · 1) / (4 · 6)) |
| 22 | 9, 21 | eqtri 2756 | . 2 ⊢ ((1 / 8) · (4 / 3)) = ((4 · 1) / (4 · 6)) |
| 23 | 6re 12222 | . . . 4 ⊢ 6 ∈ ℝ | |
| 24 | 23 | recni 11133 | . . 3 ⊢ 6 ∈ ℂ |
| 25 | 6pos 12242 | . . . 4 ⊢ 0 < 6 | |
| 26 | 23, 25 | gt0ne0ii 11660 | . . 3 ⊢ 6 ≠ 0 |
| 27 | 4ne0 12240 | . . 3 ⊢ 4 ≠ 0 | |
| 28 | divcan5 11830 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) | |
| 29 | 1, 28 | mp3an1 1450 | . . 3 ⊢ (((6 ∈ ℂ ∧ 6 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) |
| 30 | 24, 26, 4, 27, 29 | mp4an 693 | . 2 ⊢ ((4 · 1) / (4 · 6)) = (1 / 6) |
| 31 | 22, 30 | eqtri 2756 | 1 ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 (class class class)co 7352 ℂcc 11011 0cc0 11013 1c1 11014 · cmul 11018 / cdiv 11781 2c2 12187 3c3 12188 4c4 12189 6c6 12191 8c8 12193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |