![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 8th4div3 | Structured version Visualization version GIF version |
Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.) |
Ref | Expression |
---|---|
8th4div3 | ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11242 | . . . 4 ⊢ 1 ∈ ℂ | |
2 | 8re 12389 | . . . . 5 ⊢ 8 ∈ ℝ | |
3 | 2 | recni 11304 | . . . 4 ⊢ 8 ∈ ℂ |
4 | 4cn 12378 | . . . 4 ⊢ 4 ∈ ℂ | |
5 | 3cn 12374 | . . . 4 ⊢ 3 ∈ ℂ | |
6 | 8pos 12405 | . . . . 5 ⊢ 0 < 8 | |
7 | 2, 6 | gt0ne0ii 11826 | . . . 4 ⊢ 8 ≠ 0 |
8 | 3ne0 12399 | . . . 4 ⊢ 3 ≠ 0 | |
9 | 1, 3, 4, 5, 7, 8 | divmuldivi 12054 | . . 3 ⊢ ((1 / 8) · (4 / 3)) = ((1 · 4) / (8 · 3)) |
10 | 1, 4 | mulcomi 11298 | . . . 4 ⊢ (1 · 4) = (4 · 1) |
11 | 2cn 12368 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
12 | 4, 11, 5 | mul32i 11486 | . . . . . . 7 ⊢ ((4 · 2) · 3) = ((4 · 3) · 2) |
13 | 4t2e8 12461 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
14 | 13 | oveq1i 7458 | . . . . . . 7 ⊢ ((4 · 2) · 3) = (8 · 3) |
15 | 12, 14 | eqtr3i 2770 | . . . . . 6 ⊢ ((4 · 3) · 2) = (8 · 3) |
16 | 4, 5, 11 | mulassi 11301 | . . . . . 6 ⊢ ((4 · 3) · 2) = (4 · (3 · 2)) |
17 | 15, 16 | eqtr3i 2770 | . . . . 5 ⊢ (8 · 3) = (4 · (3 · 2)) |
18 | 3t2e6 12459 | . . . . . 6 ⊢ (3 · 2) = 6 | |
19 | 18 | oveq2i 7459 | . . . . 5 ⊢ (4 · (3 · 2)) = (4 · 6) |
20 | 17, 19 | eqtri 2768 | . . . 4 ⊢ (8 · 3) = (4 · 6) |
21 | 10, 20 | oveq12i 7460 | . . 3 ⊢ ((1 · 4) / (8 · 3)) = ((4 · 1) / (4 · 6)) |
22 | 9, 21 | eqtri 2768 | . 2 ⊢ ((1 / 8) · (4 / 3)) = ((4 · 1) / (4 · 6)) |
23 | 6re 12383 | . . . 4 ⊢ 6 ∈ ℝ | |
24 | 23 | recni 11304 | . . 3 ⊢ 6 ∈ ℂ |
25 | 6pos 12403 | . . . 4 ⊢ 0 < 6 | |
26 | 23, 25 | gt0ne0ii 11826 | . . 3 ⊢ 6 ≠ 0 |
27 | 4ne0 12401 | . . 3 ⊢ 4 ≠ 0 | |
28 | divcan5 11996 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) | |
29 | 1, 28 | mp3an1 1448 | . . 3 ⊢ (((6 ∈ ℂ ∧ 6 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) |
30 | 24, 26, 4, 27, 29 | mp4an 692 | . 2 ⊢ ((4 · 1) / (4 · 6)) = (1 / 6) |
31 | 22, 30 | eqtri 2768 | 1 ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 · cmul 11189 / cdiv 11947 2c2 12348 3c3 12349 4c4 12350 6c6 12352 8c8 12354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |