| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8th4div3 | Structured version Visualization version GIF version | ||
| Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| 8th4div3 | ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11126 | . . . 4 ⊢ 1 ∈ ℂ | |
| 2 | 8re 12282 | . . . . 5 ⊢ 8 ∈ ℝ | |
| 3 | 2 | recni 11188 | . . . 4 ⊢ 8 ∈ ℂ |
| 4 | 4cn 12271 | . . . 4 ⊢ 4 ∈ ℂ | |
| 5 | 3cn 12267 | . . . 4 ⊢ 3 ∈ ℂ | |
| 6 | 8pos 12298 | . . . . 5 ⊢ 0 < 8 | |
| 7 | 2, 6 | gt0ne0ii 11714 | . . . 4 ⊢ 8 ≠ 0 |
| 8 | 3ne0 12292 | . . . 4 ⊢ 3 ≠ 0 | |
| 9 | 1, 3, 4, 5, 7, 8 | divmuldivi 11942 | . . 3 ⊢ ((1 / 8) · (4 / 3)) = ((1 · 4) / (8 · 3)) |
| 10 | 1, 4 | mulcomi 11182 | . . . 4 ⊢ (1 · 4) = (4 · 1) |
| 11 | 2cn 12261 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
| 12 | 4, 11, 5 | mul32i 11370 | . . . . . . 7 ⊢ ((4 · 2) · 3) = ((4 · 3) · 2) |
| 13 | 4t2e8 12349 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
| 14 | 13 | oveq1i 7397 | . . . . . . 7 ⊢ ((4 · 2) · 3) = (8 · 3) |
| 15 | 12, 14 | eqtr3i 2754 | . . . . . 6 ⊢ ((4 · 3) · 2) = (8 · 3) |
| 16 | 4, 5, 11 | mulassi 11185 | . . . . . 6 ⊢ ((4 · 3) · 2) = (4 · (3 · 2)) |
| 17 | 15, 16 | eqtr3i 2754 | . . . . 5 ⊢ (8 · 3) = (4 · (3 · 2)) |
| 18 | 3t2e6 12347 | . . . . . 6 ⊢ (3 · 2) = 6 | |
| 19 | 18 | oveq2i 7398 | . . . . 5 ⊢ (4 · (3 · 2)) = (4 · 6) |
| 20 | 17, 19 | eqtri 2752 | . . . 4 ⊢ (8 · 3) = (4 · 6) |
| 21 | 10, 20 | oveq12i 7399 | . . 3 ⊢ ((1 · 4) / (8 · 3)) = ((4 · 1) / (4 · 6)) |
| 22 | 9, 21 | eqtri 2752 | . 2 ⊢ ((1 / 8) · (4 / 3)) = ((4 · 1) / (4 · 6)) |
| 23 | 6re 12276 | . . . 4 ⊢ 6 ∈ ℝ | |
| 24 | 23 | recni 11188 | . . 3 ⊢ 6 ∈ ℂ |
| 25 | 6pos 12296 | . . . 4 ⊢ 0 < 6 | |
| 26 | 23, 25 | gt0ne0ii 11714 | . . 3 ⊢ 6 ≠ 0 |
| 27 | 4ne0 12294 | . . 3 ⊢ 4 ≠ 0 | |
| 28 | divcan5 11884 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) | |
| 29 | 1, 28 | mp3an1 1450 | . . 3 ⊢ (((6 ∈ ℂ ∧ 6 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) |
| 30 | 24, 26, 4, 27, 29 | mp4an 693 | . 2 ⊢ ((4 · 1) / (4 · 6)) = (1 / 6) |
| 31 | 22, 30 | eqtri 2752 | 1 ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 · cmul 11073 / cdiv 11835 2c2 12241 3c3 12242 4c4 12243 6c6 12245 8c8 12247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |