| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 8th4div3 | Structured version Visualization version GIF version | ||
| Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.) |
| Ref | Expression |
|---|---|
| 8th4div3 | ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn 11133 | . . . 4 ⊢ 1 ∈ ℂ | |
| 2 | 8re 12289 | . . . . 5 ⊢ 8 ∈ ℝ | |
| 3 | 2 | recni 11195 | . . . 4 ⊢ 8 ∈ ℂ |
| 4 | 4cn 12278 | . . . 4 ⊢ 4 ∈ ℂ | |
| 5 | 3cn 12274 | . . . 4 ⊢ 3 ∈ ℂ | |
| 6 | 8pos 12305 | . . . . 5 ⊢ 0 < 8 | |
| 7 | 2, 6 | gt0ne0ii 11721 | . . . 4 ⊢ 8 ≠ 0 |
| 8 | 3ne0 12299 | . . . 4 ⊢ 3 ≠ 0 | |
| 9 | 1, 3, 4, 5, 7, 8 | divmuldivi 11949 | . . 3 ⊢ ((1 / 8) · (4 / 3)) = ((1 · 4) / (8 · 3)) |
| 10 | 1, 4 | mulcomi 11189 | . . . 4 ⊢ (1 · 4) = (4 · 1) |
| 11 | 2cn 12268 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
| 12 | 4, 11, 5 | mul32i 11377 | . . . . . . 7 ⊢ ((4 · 2) · 3) = ((4 · 3) · 2) |
| 13 | 4t2e8 12356 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
| 14 | 13 | oveq1i 7400 | . . . . . . 7 ⊢ ((4 · 2) · 3) = (8 · 3) |
| 15 | 12, 14 | eqtr3i 2755 | . . . . . 6 ⊢ ((4 · 3) · 2) = (8 · 3) |
| 16 | 4, 5, 11 | mulassi 11192 | . . . . . 6 ⊢ ((4 · 3) · 2) = (4 · (3 · 2)) |
| 17 | 15, 16 | eqtr3i 2755 | . . . . 5 ⊢ (8 · 3) = (4 · (3 · 2)) |
| 18 | 3t2e6 12354 | . . . . . 6 ⊢ (3 · 2) = 6 | |
| 19 | 18 | oveq2i 7401 | . . . . 5 ⊢ (4 · (3 · 2)) = (4 · 6) |
| 20 | 17, 19 | eqtri 2753 | . . . 4 ⊢ (8 · 3) = (4 · 6) |
| 21 | 10, 20 | oveq12i 7402 | . . 3 ⊢ ((1 · 4) / (8 · 3)) = ((4 · 1) / (4 · 6)) |
| 22 | 9, 21 | eqtri 2753 | . 2 ⊢ ((1 / 8) · (4 / 3)) = ((4 · 1) / (4 · 6)) |
| 23 | 6re 12283 | . . . 4 ⊢ 6 ∈ ℝ | |
| 24 | 23 | recni 11195 | . . 3 ⊢ 6 ∈ ℂ |
| 25 | 6pos 12303 | . . . 4 ⊢ 0 < 6 | |
| 26 | 23, 25 | gt0ne0ii 11721 | . . 3 ⊢ 6 ≠ 0 |
| 27 | 4ne0 12301 | . . 3 ⊢ 4 ≠ 0 | |
| 28 | divcan5 11891 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) | |
| 29 | 1, 28 | mp3an1 1450 | . . 3 ⊢ (((6 ∈ ℂ ∧ 6 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) |
| 30 | 24, 26, 4, 27, 29 | mp4an 693 | . 2 ⊢ ((4 · 1) / (4 · 6)) = (1 / 6) |
| 31 | 22, 30 | eqtri 2753 | 1 ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 · cmul 11080 / cdiv 11842 2c2 12248 3c3 12249 4c4 12250 6c6 12252 8c8 12254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |