Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 8th4div3 | Structured version Visualization version GIF version |
Description: An eighth of four thirds is a sixth. (Contributed by Paul Chapman, 24-Nov-2007.) |
Ref | Expression |
---|---|
8th4div3 | ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10930 | . . . 4 ⊢ 1 ∈ ℂ | |
2 | 8re 12069 | . . . . 5 ⊢ 8 ∈ ℝ | |
3 | 2 | recni 10990 | . . . 4 ⊢ 8 ∈ ℂ |
4 | 4cn 12058 | . . . 4 ⊢ 4 ∈ ℂ | |
5 | 3cn 12054 | . . . 4 ⊢ 3 ∈ ℂ | |
6 | 8pos 12085 | . . . . 5 ⊢ 0 < 8 | |
7 | 2, 6 | gt0ne0ii 11511 | . . . 4 ⊢ 8 ≠ 0 |
8 | 3ne0 12079 | . . . 4 ⊢ 3 ≠ 0 | |
9 | 1, 3, 4, 5, 7, 8 | divmuldivi 11735 | . . 3 ⊢ ((1 / 8) · (4 / 3)) = ((1 · 4) / (8 · 3)) |
10 | 1, 4 | mulcomi 10984 | . . . 4 ⊢ (1 · 4) = (4 · 1) |
11 | 2cn 12048 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
12 | 4, 11, 5 | mul32i 11171 | . . . . . . 7 ⊢ ((4 · 2) · 3) = ((4 · 3) · 2) |
13 | 4t2e8 12141 | . . . . . . . 8 ⊢ (4 · 2) = 8 | |
14 | 13 | oveq1i 7281 | . . . . . . 7 ⊢ ((4 · 2) · 3) = (8 · 3) |
15 | 12, 14 | eqtr3i 2770 | . . . . . 6 ⊢ ((4 · 3) · 2) = (8 · 3) |
16 | 4, 5, 11 | mulassi 10987 | . . . . . 6 ⊢ ((4 · 3) · 2) = (4 · (3 · 2)) |
17 | 15, 16 | eqtr3i 2770 | . . . . 5 ⊢ (8 · 3) = (4 · (3 · 2)) |
18 | 3t2e6 12139 | . . . . . 6 ⊢ (3 · 2) = 6 | |
19 | 18 | oveq2i 7282 | . . . . 5 ⊢ (4 · (3 · 2)) = (4 · 6) |
20 | 17, 19 | eqtri 2768 | . . . 4 ⊢ (8 · 3) = (4 · 6) |
21 | 10, 20 | oveq12i 7283 | . . 3 ⊢ ((1 · 4) / (8 · 3)) = ((4 · 1) / (4 · 6)) |
22 | 9, 21 | eqtri 2768 | . 2 ⊢ ((1 / 8) · (4 / 3)) = ((4 · 1) / (4 · 6)) |
23 | 6re 12063 | . . . 4 ⊢ 6 ∈ ℝ | |
24 | 23 | recni 10990 | . . 3 ⊢ 6 ∈ ℂ |
25 | 6pos 12083 | . . . 4 ⊢ 0 < 6 | |
26 | 23, 25 | gt0ne0ii 11511 | . . 3 ⊢ 6 ≠ 0 |
27 | 4ne0 12081 | . . 3 ⊢ 4 ≠ 0 | |
28 | divcan5 11677 | . . . 4 ⊢ ((1 ∈ ℂ ∧ (6 ∈ ℂ ∧ 6 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) | |
29 | 1, 28 | mp3an1 1447 | . . 3 ⊢ (((6 ∈ ℂ ∧ 6 ≠ 0) ∧ (4 ∈ ℂ ∧ 4 ≠ 0)) → ((4 · 1) / (4 · 6)) = (1 / 6)) |
30 | 24, 26, 4, 27, 29 | mp4an 690 | . 2 ⊢ ((4 · 1) / (4 · 6)) = (1 / 6) |
31 | 22, 30 | eqtri 2768 | 1 ⊢ ((1 / 8) · (4 / 3)) = (1 / 6) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1542 ∈ wcel 2110 ≠ wne 2945 (class class class)co 7271 ℂcc 10870 0cc0 10872 1c1 10873 · cmul 10877 / cdiv 11632 2c2 12028 3c3 12029 4c4 12030 6c6 12032 8c8 12034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |