MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec2nprm Structured version   Visualization version   GIF version

Theorem dec2nprm 16981
Description: A decimal number greater than 10 and ending with an even digit is not a prime number. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
dec5nprm.1 𝐴 ∈ ℕ
dec2nprm.2 𝐵 ∈ ℕ0
dec2nprm.3 (𝐵 · 2) = 𝐶
Assertion
Ref Expression
dec2nprm ¬ 𝐴𝐶 ∈ ℙ

Proof of Theorem dec2nprm
StepHypRef Expression
1 5nn 12218 . . . 4 5 ∈ ℕ
2 dec5nprm.1 . . . 4 𝐴 ∈ ℕ
31, 2nnmulcli 12157 . . 3 (5 · 𝐴) ∈ ℕ
4 dec2nprm.2 . . 3 𝐵 ∈ ℕ0
5 nnnn0addcl 12418 . . 3 (((5 · 𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ0) → ((5 · 𝐴) + 𝐵) ∈ ℕ)
63, 4, 5mp2an 692 . 2 ((5 · 𝐴) + 𝐵) ∈ ℕ
7 2nn 12205 . 2 2 ∈ ℕ
8 1nn0 12404 . . 3 1 ∈ ℕ0
9 1lt5 12307 . . 3 1 < 5
101, 2, 4, 8, 9numlti 12631 . 2 1 < ((5 · 𝐴) + 𝐵)
11 1lt2 12298 . 2 1 < 2
121nncni 12142 . . . . . 6 5 ∈ ℂ
132nncni 12142 . . . . . 6 𝐴 ∈ ℂ
14 2cn 12207 . . . . . 6 2 ∈ ℂ
1512, 13, 14mul32i 11316 . . . . 5 ((5 · 𝐴) · 2) = ((5 · 2) · 𝐴)
16 5t2e10 12694 . . . . . 6 (5 · 2) = 10
1716oveq1i 7362 . . . . 5 ((5 · 2) · 𝐴) = (10 · 𝐴)
1815, 17eqtri 2756 . . . 4 ((5 · 𝐴) · 2) = (10 · 𝐴)
19 dec2nprm.3 . . . 4 (𝐵 · 2) = 𝐶
2018, 19oveq12i 7364 . . 3 (((5 · 𝐴) · 2) + (𝐵 · 2)) = ((10 · 𝐴) + 𝐶)
213nncni 12142 . . . 4 (5 · 𝐴) ∈ ℂ
224nn0cni 12400 . . . 4 𝐵 ∈ ℂ
2321, 22, 14adddiri 11132 . . 3 (((5 · 𝐴) + 𝐵) · 2) = (((5 · 𝐴) · 2) + (𝐵 · 2))
24 dfdec10 12597 . . 3 𝐴𝐶 = ((10 · 𝐴) + 𝐶)
2520, 23, 243eqtr4i 2766 . 2 (((5 · 𝐴) + 𝐵) · 2) = 𝐴𝐶
266, 7, 10, 11, 25nprmi 16602 1 ¬ 𝐴𝐶 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2113  (class class class)co 7352  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  cn 12132  2c2 12187  5c5 12190  0cn0 12388  cdc 12594  cprime 16584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-rp 12893  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-dvds 16166  df-prm 16585
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator