MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec2nprm Structured version   Visualization version   GIF version

Theorem dec2nprm 16237
Description: Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
dec5nprm.1 𝐴 ∈ ℕ
dec2nprm.2 𝐵 ∈ ℕ0
dec2nprm.3 (𝐵 · 2) = 𝐶
Assertion
Ref Expression
dec2nprm ¬ 𝐴𝐶 ∈ ℙ

Proof of Theorem dec2nprm
StepHypRef Expression
1 5nn 11576 . . . 4 5 ∈ ℕ
2 dec5nprm.1 . . . 4 𝐴 ∈ ℕ
31, 2nnmulcli 11515 . . 3 (5 · 𝐴) ∈ ℕ
4 dec2nprm.2 . . 3 𝐵 ∈ ℕ0
5 nnnn0addcl 11780 . . 3 (((5 · 𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ0) → ((5 · 𝐴) + 𝐵) ∈ ℕ)
63, 4, 5mp2an 688 . 2 ((5 · 𝐴) + 𝐵) ∈ ℕ
7 2nn 11563 . 2 2 ∈ ℕ
8 1nn0 11766 . . 3 1 ∈ ℕ0
9 1lt5 11670 . . 3 1 < 5
101, 2, 4, 8, 9numlti 11989 . 2 1 < ((5 · 𝐴) + 𝐵)
11 1lt2 11661 . 2 1 < 2
121nncni 11501 . . . . . 6 5 ∈ ℂ
132nncni 11501 . . . . . 6 𝐴 ∈ ℂ
14 2cn 11565 . . . . . 6 2 ∈ ℂ
1512, 13, 14mul32i 10688 . . . . 5 ((5 · 𝐴) · 2) = ((5 · 2) · 𝐴)
16 5t2e10 12053 . . . . . 6 (5 · 2) = 10
1716oveq1i 7031 . . . . 5 ((5 · 2) · 𝐴) = (10 · 𝐴)
1815, 17eqtri 2819 . . . 4 ((5 · 𝐴) · 2) = (10 · 𝐴)
19 dec2nprm.3 . . . 4 (𝐵 · 2) = 𝐶
2018, 19oveq12i 7033 . . 3 (((5 · 𝐴) · 2) + (𝐵 · 2)) = ((10 · 𝐴) + 𝐶)
213nncni 11501 . . . 4 (5 · 𝐴) ∈ ℂ
224nn0cni 11762 . . . 4 𝐵 ∈ ℂ
2321, 22, 14adddiri 10505 . . 3 (((5 · 𝐴) + 𝐵) · 2) = (((5 · 𝐴) · 2) + (𝐵 · 2))
24 dfdec10 11955 . . 3 𝐴𝐶 = ((10 · 𝐴) + 𝐶)
2520, 23, 243eqtr4i 2829 . 2 (((5 · 𝐴) + 𝐵) · 2) = 𝐴𝐶
266, 7, 10, 11, 25nprmi 15867 1 ¬ 𝐴𝐶 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1522  wcel 2081  (class class class)co 7021  0cc0 10388  1c1 10389   + caddc 10391   · cmul 10393  cn 11491  2c2 11545  5c5 11548  0cn0 11750  cdc 11952  cprime 15849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465  ax-pre-sup 10466
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-1o 7958  df-2o 7959  df-er 8144  df-en 8363  df-dom 8364  df-sdom 8365  df-fin 8366  df-sup 8757  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-div 11151  df-nn 11492  df-2 11553  df-3 11554  df-4 11555  df-5 11556  df-6 11557  df-7 11558  df-8 11559  df-9 11560  df-n0 11751  df-z 11835  df-dec 11953  df-uz 12099  df-rp 12245  df-seq 13225  df-exp 13285  df-cj 14297  df-re 14298  df-im 14299  df-sqrt 14433  df-abs 14434  df-dvds 15446  df-prm 15850
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator