![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dec2nprm | Structured version Visualization version GIF version |
Description: Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
dec5nprm.1 | ⊢ 𝐴 ∈ ℕ |
dec2nprm.2 | ⊢ 𝐵 ∈ ℕ0 |
dec2nprm.3 | ⊢ (𝐵 · 2) = 𝐶 |
Ref | Expression |
---|---|
dec2nprm | ⊢ ¬ ;𝐴𝐶 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn 12298 | . . . 4 ⊢ 5 ∈ ℕ | |
2 | dec5nprm.1 | . . . 4 ⊢ 𝐴 ∈ ℕ | |
3 | 1, 2 | nnmulcli 12237 | . . 3 ⊢ (5 · 𝐴) ∈ ℕ |
4 | dec2nprm.2 | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
5 | nnnn0addcl 12502 | . . 3 ⊢ (((5 · 𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ0) → ((5 · 𝐴) + 𝐵) ∈ ℕ) | |
6 | 3, 4, 5 | mp2an 691 | . 2 ⊢ ((5 · 𝐴) + 𝐵) ∈ ℕ |
7 | 2nn 12285 | . 2 ⊢ 2 ∈ ℕ | |
8 | 1nn0 12488 | . . 3 ⊢ 1 ∈ ℕ0 | |
9 | 1lt5 12392 | . . 3 ⊢ 1 < 5 | |
10 | 1, 2, 4, 8, 9 | numlti 12714 | . 2 ⊢ 1 < ((5 · 𝐴) + 𝐵) |
11 | 1lt2 12383 | . 2 ⊢ 1 < 2 | |
12 | 1 | nncni 12222 | . . . . . 6 ⊢ 5 ∈ ℂ |
13 | 2 | nncni 12222 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
14 | 2cn 12287 | . . . . . 6 ⊢ 2 ∈ ℂ | |
15 | 12, 13, 14 | mul32i 11410 | . . . . 5 ⊢ ((5 · 𝐴) · 2) = ((5 · 2) · 𝐴) |
16 | 5t2e10 12777 | . . . . . 6 ⊢ (5 · 2) = ;10 | |
17 | 16 | oveq1i 7419 | . . . . 5 ⊢ ((5 · 2) · 𝐴) = (;10 · 𝐴) |
18 | 15, 17 | eqtri 2761 | . . . 4 ⊢ ((5 · 𝐴) · 2) = (;10 · 𝐴) |
19 | dec2nprm.3 | . . . 4 ⊢ (𝐵 · 2) = 𝐶 | |
20 | 18, 19 | oveq12i 7421 | . . 3 ⊢ (((5 · 𝐴) · 2) + (𝐵 · 2)) = ((;10 · 𝐴) + 𝐶) |
21 | 3 | nncni 12222 | . . . 4 ⊢ (5 · 𝐴) ∈ ℂ |
22 | 4 | nn0cni 12484 | . . . 4 ⊢ 𝐵 ∈ ℂ |
23 | 21, 22, 14 | adddiri 11227 | . . 3 ⊢ (((5 · 𝐴) + 𝐵) · 2) = (((5 · 𝐴) · 2) + (𝐵 · 2)) |
24 | dfdec10 12680 | . . 3 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
25 | 20, 23, 24 | 3eqtr4i 2771 | . 2 ⊢ (((5 · 𝐴) + 𝐵) · 2) = ;𝐴𝐶 |
26 | 6, 7, 10, 11, 25 | nprmi 16626 | 1 ⊢ ¬ ;𝐴𝐶 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2107 (class class class)co 7409 0cc0 11110 1c1 11111 + caddc 11113 · cmul 11115 ℕcn 12212 2c2 12267 5c5 12270 ℕ0cn0 12472 ;cdc 12677 ℙcprime 16608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-rp 12975 df-seq 13967 df-exp 14028 df-cj 15046 df-re 15047 df-im 15048 df-sqrt 15182 df-abs 15183 df-dvds 16198 df-prm 16609 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |