Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dec2nprm | Structured version Visualization version GIF version |
Description: Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
dec5nprm.1 | ⊢ 𝐴 ∈ ℕ |
dec2nprm.2 | ⊢ 𝐵 ∈ ℕ0 |
dec2nprm.3 | ⊢ (𝐵 · 2) = 𝐶 |
Ref | Expression |
---|---|
dec2nprm | ⊢ ¬ ;𝐴𝐶 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn 11989 | . . . 4 ⊢ 5 ∈ ℕ | |
2 | dec5nprm.1 | . . . 4 ⊢ 𝐴 ∈ ℕ | |
3 | 1, 2 | nnmulcli 11928 | . . 3 ⊢ (5 · 𝐴) ∈ ℕ |
4 | dec2nprm.2 | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
5 | nnnn0addcl 12193 | . . 3 ⊢ (((5 · 𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ0) → ((5 · 𝐴) + 𝐵) ∈ ℕ) | |
6 | 3, 4, 5 | mp2an 688 | . 2 ⊢ ((5 · 𝐴) + 𝐵) ∈ ℕ |
7 | 2nn 11976 | . 2 ⊢ 2 ∈ ℕ | |
8 | 1nn0 12179 | . . 3 ⊢ 1 ∈ ℕ0 | |
9 | 1lt5 12083 | . . 3 ⊢ 1 < 5 | |
10 | 1, 2, 4, 8, 9 | numlti 12403 | . 2 ⊢ 1 < ((5 · 𝐴) + 𝐵) |
11 | 1lt2 12074 | . 2 ⊢ 1 < 2 | |
12 | 1 | nncni 11913 | . . . . . 6 ⊢ 5 ∈ ℂ |
13 | 2 | nncni 11913 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
14 | 2cn 11978 | . . . . . 6 ⊢ 2 ∈ ℂ | |
15 | 12, 13, 14 | mul32i 11101 | . . . . 5 ⊢ ((5 · 𝐴) · 2) = ((5 · 2) · 𝐴) |
16 | 5t2e10 12466 | . . . . . 6 ⊢ (5 · 2) = ;10 | |
17 | 16 | oveq1i 7265 | . . . . 5 ⊢ ((5 · 2) · 𝐴) = (;10 · 𝐴) |
18 | 15, 17 | eqtri 2766 | . . . 4 ⊢ ((5 · 𝐴) · 2) = (;10 · 𝐴) |
19 | dec2nprm.3 | . . . 4 ⊢ (𝐵 · 2) = 𝐶 | |
20 | 18, 19 | oveq12i 7267 | . . 3 ⊢ (((5 · 𝐴) · 2) + (𝐵 · 2)) = ((;10 · 𝐴) + 𝐶) |
21 | 3 | nncni 11913 | . . . 4 ⊢ (5 · 𝐴) ∈ ℂ |
22 | 4 | nn0cni 12175 | . . . 4 ⊢ 𝐵 ∈ ℂ |
23 | 21, 22, 14 | adddiri 10919 | . . 3 ⊢ (((5 · 𝐴) + 𝐵) · 2) = (((5 · 𝐴) · 2) + (𝐵 · 2)) |
24 | dfdec10 12369 | . . 3 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
25 | 20, 23, 24 | 3eqtr4i 2776 | . 2 ⊢ (((5 · 𝐴) + 𝐵) · 2) = ;𝐴𝐶 |
26 | 6, 7, 10, 11, 25 | nprmi 16322 | 1 ⊢ ¬ ;𝐴𝐶 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 ℕcn 11903 2c2 11958 5c5 11961 ℕ0cn0 12163 ;cdc 12366 ℙcprime 16304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-prm 16305 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |