![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dec2nprm | Structured version Visualization version GIF version |
Description: Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
dec5nprm.1 | ⊢ 𝐴 ∈ ℕ |
dec2nprm.2 | ⊢ 𝐵 ∈ ℕ0 |
dec2nprm.3 | ⊢ (𝐵 · 2) = 𝐶 |
Ref | Expression |
---|---|
dec2nprm | ⊢ ¬ ;𝐴𝐶 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn 11576 | . . . 4 ⊢ 5 ∈ ℕ | |
2 | dec5nprm.1 | . . . 4 ⊢ 𝐴 ∈ ℕ | |
3 | 1, 2 | nnmulcli 11515 | . . 3 ⊢ (5 · 𝐴) ∈ ℕ |
4 | dec2nprm.2 | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
5 | nnnn0addcl 11780 | . . 3 ⊢ (((5 · 𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ0) → ((5 · 𝐴) + 𝐵) ∈ ℕ) | |
6 | 3, 4, 5 | mp2an 688 | . 2 ⊢ ((5 · 𝐴) + 𝐵) ∈ ℕ |
7 | 2nn 11563 | . 2 ⊢ 2 ∈ ℕ | |
8 | 1nn0 11766 | . . 3 ⊢ 1 ∈ ℕ0 | |
9 | 1lt5 11670 | . . 3 ⊢ 1 < 5 | |
10 | 1, 2, 4, 8, 9 | numlti 11989 | . 2 ⊢ 1 < ((5 · 𝐴) + 𝐵) |
11 | 1lt2 11661 | . 2 ⊢ 1 < 2 | |
12 | 1 | nncni 11501 | . . . . . 6 ⊢ 5 ∈ ℂ |
13 | 2 | nncni 11501 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
14 | 2cn 11565 | . . . . . 6 ⊢ 2 ∈ ℂ | |
15 | 12, 13, 14 | mul32i 10688 | . . . . 5 ⊢ ((5 · 𝐴) · 2) = ((5 · 2) · 𝐴) |
16 | 5t2e10 12053 | . . . . . 6 ⊢ (5 · 2) = ;10 | |
17 | 16 | oveq1i 7031 | . . . . 5 ⊢ ((5 · 2) · 𝐴) = (;10 · 𝐴) |
18 | 15, 17 | eqtri 2819 | . . . 4 ⊢ ((5 · 𝐴) · 2) = (;10 · 𝐴) |
19 | dec2nprm.3 | . . . 4 ⊢ (𝐵 · 2) = 𝐶 | |
20 | 18, 19 | oveq12i 7033 | . . 3 ⊢ (((5 · 𝐴) · 2) + (𝐵 · 2)) = ((;10 · 𝐴) + 𝐶) |
21 | 3 | nncni 11501 | . . . 4 ⊢ (5 · 𝐴) ∈ ℂ |
22 | 4 | nn0cni 11762 | . . . 4 ⊢ 𝐵 ∈ ℂ |
23 | 21, 22, 14 | adddiri 10505 | . . 3 ⊢ (((5 · 𝐴) + 𝐵) · 2) = (((5 · 𝐴) · 2) + (𝐵 · 2)) |
24 | dfdec10 11955 | . . 3 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
25 | 20, 23, 24 | 3eqtr4i 2829 | . 2 ⊢ (((5 · 𝐴) + 𝐵) · 2) = ;𝐴𝐶 |
26 | 6, 7, 10, 11, 25 | nprmi 15867 | 1 ⊢ ¬ ;𝐴𝐶 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1522 ∈ wcel 2081 (class class class)co 7021 0cc0 10388 1c1 10389 + caddc 10391 · cmul 10393 ℕcn 11491 2c2 11545 5c5 11548 ℕ0cn0 11750 ;cdc 11952 ℙcprime 15849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-cnex 10444 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 ax-pre-mulgt0 10465 ax-pre-sup 10466 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-om 7442 df-2nd 7551 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-1o 7958 df-2o 7959 df-er 8144 df-en 8363 df-dom 8364 df-sdom 8365 df-fin 8366 df-sup 8757 df-pnf 10528 df-mnf 10529 df-xr 10530 df-ltxr 10531 df-le 10532 df-sub 10724 df-neg 10725 df-div 11151 df-nn 11492 df-2 11553 df-3 11554 df-4 11555 df-5 11556 df-6 11557 df-7 11558 df-8 11559 df-9 11560 df-n0 11751 df-z 11835 df-dec 11953 df-uz 12099 df-rp 12245 df-seq 13225 df-exp 13285 df-cj 14297 df-re 14298 df-im 14299 df-sqrt 14433 df-abs 14434 df-dvds 15446 df-prm 15850 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |