![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dec2nprm | Structured version Visualization version GIF version |
Description: Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.) |
Ref | Expression |
---|---|
dec5nprm.1 | ⊢ 𝐴 ∈ ℕ |
dec2nprm.2 | ⊢ 𝐵 ∈ ℕ0 |
dec2nprm.3 | ⊢ (𝐵 · 2) = 𝐶 |
Ref | Expression |
---|---|
dec2nprm | ⊢ ¬ ;𝐴𝐶 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5nn 12302 | . . . 4 ⊢ 5 ∈ ℕ | |
2 | dec5nprm.1 | . . . 4 ⊢ 𝐴 ∈ ℕ | |
3 | 1, 2 | nnmulcli 12241 | . . 3 ⊢ (5 · 𝐴) ∈ ℕ |
4 | dec2nprm.2 | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
5 | nnnn0addcl 12506 | . . 3 ⊢ (((5 · 𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ0) → ((5 · 𝐴) + 𝐵) ∈ ℕ) | |
6 | 3, 4, 5 | mp2an 689 | . 2 ⊢ ((5 · 𝐴) + 𝐵) ∈ ℕ |
7 | 2nn 12289 | . 2 ⊢ 2 ∈ ℕ | |
8 | 1nn0 12492 | . . 3 ⊢ 1 ∈ ℕ0 | |
9 | 1lt5 12396 | . . 3 ⊢ 1 < 5 | |
10 | 1, 2, 4, 8, 9 | numlti 12718 | . 2 ⊢ 1 < ((5 · 𝐴) + 𝐵) |
11 | 1lt2 12387 | . 2 ⊢ 1 < 2 | |
12 | 1 | nncni 12226 | . . . . . 6 ⊢ 5 ∈ ℂ |
13 | 2 | nncni 12226 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
14 | 2cn 12291 | . . . . . 6 ⊢ 2 ∈ ℂ | |
15 | 12, 13, 14 | mul32i 11414 | . . . . 5 ⊢ ((5 · 𝐴) · 2) = ((5 · 2) · 𝐴) |
16 | 5t2e10 12781 | . . . . . 6 ⊢ (5 · 2) = ;10 | |
17 | 16 | oveq1i 7415 | . . . . 5 ⊢ ((5 · 2) · 𝐴) = (;10 · 𝐴) |
18 | 15, 17 | eqtri 2754 | . . . 4 ⊢ ((5 · 𝐴) · 2) = (;10 · 𝐴) |
19 | dec2nprm.3 | . . . 4 ⊢ (𝐵 · 2) = 𝐶 | |
20 | 18, 19 | oveq12i 7417 | . . 3 ⊢ (((5 · 𝐴) · 2) + (𝐵 · 2)) = ((;10 · 𝐴) + 𝐶) |
21 | 3 | nncni 12226 | . . . 4 ⊢ (5 · 𝐴) ∈ ℂ |
22 | 4 | nn0cni 12488 | . . . 4 ⊢ 𝐵 ∈ ℂ |
23 | 21, 22, 14 | adddiri 11231 | . . 3 ⊢ (((5 · 𝐴) + 𝐵) · 2) = (((5 · 𝐴) · 2) + (𝐵 · 2)) |
24 | dfdec10 12684 | . . 3 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
25 | 20, 23, 24 | 3eqtr4i 2764 | . 2 ⊢ (((5 · 𝐴) + 𝐵) · 2) = ;𝐴𝐶 |
26 | 6, 7, 10, 11, 25 | nprmi 16633 | 1 ⊢ ¬ ;𝐴𝐶 ∈ ℙ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1533 ∈ wcel 2098 (class class class)co 7405 0cc0 11112 1c1 11113 + caddc 11115 · cmul 11117 ℕcn 12216 2c2 12271 5c5 12274 ℕ0cn0 12476 ;cdc 12681 ℙcprime 16615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-rp 12981 df-seq 13973 df-exp 14033 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-dvds 16205 df-prm 16616 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |