MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dec2nprm Structured version   Visualization version   GIF version

Theorem dec2nprm 16405
Description: Divisibility by two is obvious in base 10. (Contributed by Mario Carneiro, 19-Apr-2015.)
Hypotheses
Ref Expression
dec5nprm.1 𝐴 ∈ ℕ
dec2nprm.2 𝐵 ∈ ℕ0
dec2nprm.3 (𝐵 · 2) = 𝐶
Assertion
Ref Expression
dec2nprm ¬ 𝐴𝐶 ∈ ℙ

Proof of Theorem dec2nprm
StepHypRef Expression
1 5nn 11726 . . . 4 5 ∈ ℕ
2 dec5nprm.1 . . . 4 𝐴 ∈ ℕ
31, 2nnmulcli 11665 . . 3 (5 · 𝐴) ∈ ℕ
4 dec2nprm.2 . . 3 𝐵 ∈ ℕ0
5 nnnn0addcl 11930 . . 3 (((5 · 𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ0) → ((5 · 𝐴) + 𝐵) ∈ ℕ)
63, 4, 5mp2an 690 . 2 ((5 · 𝐴) + 𝐵) ∈ ℕ
7 2nn 11713 . 2 2 ∈ ℕ
8 1nn0 11916 . . 3 1 ∈ ℕ0
9 1lt5 11820 . . 3 1 < 5
101, 2, 4, 8, 9numlti 12138 . 2 1 < ((5 · 𝐴) + 𝐵)
11 1lt2 11811 . 2 1 < 2
121nncni 11650 . . . . . 6 5 ∈ ℂ
132nncni 11650 . . . . . 6 𝐴 ∈ ℂ
14 2cn 11715 . . . . . 6 2 ∈ ℂ
1512, 13, 14mul32i 10838 . . . . 5 ((5 · 𝐴) · 2) = ((5 · 2) · 𝐴)
16 5t2e10 12201 . . . . . 6 (5 · 2) = 10
1716oveq1i 7168 . . . . 5 ((5 · 2) · 𝐴) = (10 · 𝐴)
1815, 17eqtri 2846 . . . 4 ((5 · 𝐴) · 2) = (10 · 𝐴)
19 dec2nprm.3 . . . 4 (𝐵 · 2) = 𝐶
2018, 19oveq12i 7170 . . 3 (((5 · 𝐴) · 2) + (𝐵 · 2)) = ((10 · 𝐴) + 𝐶)
213nncni 11650 . . . 4 (5 · 𝐴) ∈ ℂ
224nn0cni 11912 . . . 4 𝐵 ∈ ℂ
2321, 22, 14adddiri 10656 . . 3 (((5 · 𝐴) + 𝐵) · 2) = (((5 · 𝐴) · 2) + (𝐵 · 2))
24 dfdec10 12104 . . 3 𝐴𝐶 = ((10 · 𝐴) + 𝐶)
2520, 23, 243eqtr4i 2856 . 2 (((5 · 𝐴) + 𝐵) · 2) = 𝐴𝐶
266, 7, 10, 11, 25nprmi 16035 1 ¬ 𝐴𝐶 ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2114  (class class class)co 7158  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  cn 11640  2c2 11695  5c5 11698  0cn0 11900  cdc 12101  cprime 16017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-dvds 15610  df-prm 16018
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator