| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dec2nprm | Structured version Visualization version GIF version | ||
| Description: A decimal number greater than 10 and ending with an even digit is not a prime number. (Contributed by Mario Carneiro, 19-Apr-2015.) |
| Ref | Expression |
|---|---|
| dec5nprm.1 | ⊢ 𝐴 ∈ ℕ |
| dec2nprm.2 | ⊢ 𝐵 ∈ ℕ0 |
| dec2nprm.3 | ⊢ (𝐵 · 2) = 𝐶 |
| Ref | Expression |
|---|---|
| dec2nprm | ⊢ ¬ ;𝐴𝐶 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5nn 12232 | . . . 4 ⊢ 5 ∈ ℕ | |
| 2 | dec5nprm.1 | . . . 4 ⊢ 𝐴 ∈ ℕ | |
| 3 | 1, 2 | nnmulcli 12171 | . . 3 ⊢ (5 · 𝐴) ∈ ℕ |
| 4 | dec2nprm.2 | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
| 5 | nnnn0addcl 12432 | . . 3 ⊢ (((5 · 𝐴) ∈ ℕ ∧ 𝐵 ∈ ℕ0) → ((5 · 𝐴) + 𝐵) ∈ ℕ) | |
| 6 | 3, 4, 5 | mp2an 692 | . 2 ⊢ ((5 · 𝐴) + 𝐵) ∈ ℕ |
| 7 | 2nn 12219 | . 2 ⊢ 2 ∈ ℕ | |
| 8 | 1nn0 12418 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 9 | 1lt5 12321 | . . 3 ⊢ 1 < 5 | |
| 10 | 1, 2, 4, 8, 9 | numlti 12646 | . 2 ⊢ 1 < ((5 · 𝐴) + 𝐵) |
| 11 | 1lt2 12312 | . 2 ⊢ 1 < 2 | |
| 12 | 1 | nncni 12156 | . . . . . 6 ⊢ 5 ∈ ℂ |
| 13 | 2 | nncni 12156 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
| 14 | 2cn 12221 | . . . . . 6 ⊢ 2 ∈ ℂ | |
| 15 | 12, 13, 14 | mul32i 11330 | . . . . 5 ⊢ ((5 · 𝐴) · 2) = ((5 · 2) · 𝐴) |
| 16 | 5t2e10 12709 | . . . . . 6 ⊢ (5 · 2) = ;10 | |
| 17 | 16 | oveq1i 7363 | . . . . 5 ⊢ ((5 · 2) · 𝐴) = (;10 · 𝐴) |
| 18 | 15, 17 | eqtri 2752 | . . . 4 ⊢ ((5 · 𝐴) · 2) = (;10 · 𝐴) |
| 19 | dec2nprm.3 | . . . 4 ⊢ (𝐵 · 2) = 𝐶 | |
| 20 | 18, 19 | oveq12i 7365 | . . 3 ⊢ (((5 · 𝐴) · 2) + (𝐵 · 2)) = ((;10 · 𝐴) + 𝐶) |
| 21 | 3 | nncni 12156 | . . . 4 ⊢ (5 · 𝐴) ∈ ℂ |
| 22 | 4 | nn0cni 12414 | . . . 4 ⊢ 𝐵 ∈ ℂ |
| 23 | 21, 22, 14 | adddiri 11147 | . . 3 ⊢ (((5 · 𝐴) + 𝐵) · 2) = (((5 · 𝐴) · 2) + (𝐵 · 2)) |
| 24 | dfdec10 12612 | . . 3 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
| 25 | 20, 23, 24 | 3eqtr4i 2762 | . 2 ⊢ (((5 · 𝐴) + 𝐵) · 2) = ;𝐴𝐶 |
| 26 | 6, 7, 10, 11, 25 | nprmi 16618 | 1 ⊢ ¬ ;𝐴𝐶 ∈ ℙ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 ℕcn 12146 2c2 12201 5c5 12204 ℕ0cn0 12402 ;cdc 12609 ℙcprime 16600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-rp 12912 df-seq 13927 df-exp 13987 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-dvds 16182 df-prm 16601 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |