MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  karatsuba Structured version   Visualization version   GIF version

Theorem karatsuba 16785
Description: The Karatsuba multiplication algorithm. If 𝑋 and 𝑌 are decomposed into two groups of digits of length 𝑀 (only the lower group is known to be this size but the algorithm is most efficient when the partition is chosen near the middle of the digit string), then 𝑋𝑌 can be written in three groups of digits, where each group needs only one multiplication. Thus, we can halve both inputs with only three multiplications on the smaller operands, yielding an asymptotic improvement of n^(log2 3) instead of n^2 for the "naive" algorithm decmul1c 12502. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 9-Sep-2021.)
Hypotheses
Ref Expression
karatsuba.a 𝐴 ∈ ℕ0
karatsuba.b 𝐵 ∈ ℕ0
karatsuba.c 𝐶 ∈ ℕ0
karatsuba.d 𝐷 ∈ ℕ0
karatsuba.s 𝑆 ∈ ℕ0
karatsuba.m 𝑀 ∈ ℕ0
karatsuba.r (𝐴 · 𝐶) = 𝑅
karatsuba.t (𝐵 · 𝐷) = 𝑇
karatsuba.e ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = ((𝑅 + 𝑆) + 𝑇)
karatsuba.x ((𝐴 · (10↑𝑀)) + 𝐵) = 𝑋
karatsuba.y ((𝐶 · (10↑𝑀)) + 𝐷) = 𝑌
karatsuba.w ((𝑅 · (10↑𝑀)) + 𝑆) = 𝑊
karatsuba.z ((𝑊 · (10↑𝑀)) + 𝑇) = 𝑍
Assertion
Ref Expression
karatsuba (𝑋 · 𝑌) = 𝑍

Proof of Theorem karatsuba
StepHypRef Expression
1 karatsuba.a . . . . . 6 𝐴 ∈ ℕ0
21nn0cni 12245 . . . . 5 𝐴 ∈ ℂ
3 10nn0 12455 . . . . . . 7 10 ∈ ℕ0
43nn0cni 12245 . . . . . 6 10 ∈ ℂ
5 karatsuba.m . . . . . 6 𝑀 ∈ ℕ0
6 expcl 13800 . . . . . 6 ((10 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (10↑𝑀) ∈ ℂ)
74, 5, 6mp2an 689 . . . . 5 (10↑𝑀) ∈ ℂ
82, 7mulcli 10982 . . . 4 (𝐴 · (10↑𝑀)) ∈ ℂ
9 karatsuba.b . . . . 5 𝐵 ∈ ℕ0
109nn0cni 12245 . . . 4 𝐵 ∈ ℂ
11 karatsuba.c . . . . . 6 𝐶 ∈ ℕ0
1211nn0cni 12245 . . . . 5 𝐶 ∈ ℂ
1312, 7mulcli 10982 . . . 4 (𝐶 · (10↑𝑀)) ∈ ℂ
14 karatsuba.d . . . . 5 𝐷 ∈ ℕ0
1514nn0cni 12245 . . . 4 𝐷 ∈ ℂ
168, 10, 13, 15muladdi 11426 . . 3 (((𝐴 · (10↑𝑀)) + 𝐵) · ((𝐶 · (10↑𝑀)) + 𝐷)) = ((((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) + (𝐷 · 𝐵)) + (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵)))
178, 13mulcli 10982 . . . 4 ((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) ∈ ℂ
1815, 10mulcli 10982 . . . 4 (𝐷 · 𝐵) ∈ ℂ
198, 15mulcli 10982 . . . . 5 ((𝐴 · (10↑𝑀)) · 𝐷) ∈ ℂ
2013, 10mulcli 10982 . . . . 5 ((𝐶 · (10↑𝑀)) · 𝐵) ∈ ℂ
2119, 20addcli 10981 . . . 4 (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵)) ∈ ℂ
2217, 18, 21add32i 11198 . . 3 ((((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) + (𝐷 · 𝐵)) + (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵))) = ((((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) + (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵))) + (𝐷 · 𝐵))
238, 12mulcli 10982 . . . . . 6 ((𝐴 · (10↑𝑀)) · 𝐶) ∈ ℂ
24 karatsuba.s . . . . . . 7 𝑆 ∈ ℕ0
2524nn0cni 12245 . . . . . 6 𝑆 ∈ ℂ
2623, 25, 7adddiri 10988 . . . . 5 ((((𝐴 · (10↑𝑀)) · 𝐶) + 𝑆) · (10↑𝑀)) = ((((𝐴 · (10↑𝑀)) · 𝐶) · (10↑𝑀)) + (𝑆 · (10↑𝑀)))
272, 7, 12mul32i 11171 . . . . . . . . 9 ((𝐴 · (10↑𝑀)) · 𝐶) = ((𝐴 · 𝐶) · (10↑𝑀))
28 karatsuba.r . . . . . . . . . 10 (𝐴 · 𝐶) = 𝑅
2928oveq1i 7285 . . . . . . . . 9 ((𝐴 · 𝐶) · (10↑𝑀)) = (𝑅 · (10↑𝑀))
3027, 29eqtri 2766 . . . . . . . 8 ((𝐴 · (10↑𝑀)) · 𝐶) = (𝑅 · (10↑𝑀))
3130oveq1i 7285 . . . . . . 7 (((𝐴 · (10↑𝑀)) · 𝐶) + 𝑆) = ((𝑅 · (10↑𝑀)) + 𝑆)
32 karatsuba.w . . . . . . 7 ((𝑅 · (10↑𝑀)) + 𝑆) = 𝑊
3331, 32eqtri 2766 . . . . . 6 (((𝐴 · (10↑𝑀)) · 𝐶) + 𝑆) = 𝑊
3433oveq1i 7285 . . . . 5 ((((𝐴 · (10↑𝑀)) · 𝐶) + 𝑆) · (10↑𝑀)) = (𝑊 · (10↑𝑀))
358, 12, 7mulassi 10986 . . . . . 6 (((𝐴 · (10↑𝑀)) · 𝐶) · (10↑𝑀)) = ((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀)))
362, 12mulcli 10982 . . . . . . . . . . . 12 (𝐴 · 𝐶) ∈ ℂ
3736, 18, 25add32i 11198 . . . . . . . . . . 11 (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + 𝑆) = (((𝐴 · 𝐶) + 𝑆) + (𝐷 · 𝐵))
3828oveq1i 7285 . . . . . . . . . . . 12 ((𝐴 · 𝐶) + 𝑆) = (𝑅 + 𝑆)
39 karatsuba.t . . . . . . . . . . . . 13 (𝐵 · 𝐷) = 𝑇
4010, 15, 39mulcomli 10984 . . . . . . . . . . . 12 (𝐷 · 𝐵) = 𝑇
4138, 40oveq12i 7287 . . . . . . . . . . 11 (((𝐴 · 𝐶) + 𝑆) + (𝐷 · 𝐵)) = ((𝑅 + 𝑆) + 𝑇)
4237, 41eqtri 2766 . . . . . . . . . 10 (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + 𝑆) = ((𝑅 + 𝑆) + 𝑇)
43 karatsuba.e . . . . . . . . . 10 ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = ((𝑅 + 𝑆) + 𝑇)
442, 10, 12, 15muladdi 11426 . . . . . . . . . 10 ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵)))
4542, 43, 443eqtr2i 2772 . . . . . . . . 9 (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + 𝑆) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵)))
4636, 18addcli 10981 . . . . . . . . . 10 ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ
472, 15mulcli 10982 . . . . . . . . . . 11 (𝐴 · 𝐷) ∈ ℂ
4812, 10mulcli 10982 . . . . . . . . . . 11 (𝐶 · 𝐵) ∈ ℂ
4947, 48addcli 10981 . . . . . . . . . 10 ((𝐴 · 𝐷) + (𝐶 · 𝐵)) ∈ ℂ
5046, 25, 49addcani 11168 . . . . . . . . 9 ((((𝐴 · 𝐶) + (𝐷 · 𝐵)) + 𝑆) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))) ↔ 𝑆 = ((𝐴 · 𝐷) + (𝐶 · 𝐵)))
5145, 50mpbi 229 . . . . . . . 8 𝑆 = ((𝐴 · 𝐷) + (𝐶 · 𝐵))
5251oveq1i 7285 . . . . . . 7 (𝑆 · (10↑𝑀)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) · (10↑𝑀))
5347, 48, 7adddiri 10988 . . . . . . 7 (((𝐴 · 𝐷) + (𝐶 · 𝐵)) · (10↑𝑀)) = (((𝐴 · 𝐷) · (10↑𝑀)) + ((𝐶 · 𝐵) · (10↑𝑀)))
542, 15, 7mul32i 11171 . . . . . . . 8 ((𝐴 · 𝐷) · (10↑𝑀)) = ((𝐴 · (10↑𝑀)) · 𝐷)
5512, 10, 7mul32i 11171 . . . . . . . 8 ((𝐶 · 𝐵) · (10↑𝑀)) = ((𝐶 · (10↑𝑀)) · 𝐵)
5654, 55oveq12i 7287 . . . . . . 7 (((𝐴 · 𝐷) · (10↑𝑀)) + ((𝐶 · 𝐵) · (10↑𝑀))) = (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵))
5752, 53, 563eqtri 2770 . . . . . 6 (𝑆 · (10↑𝑀)) = (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵))
5835, 57oveq12i 7287 . . . . 5 ((((𝐴 · (10↑𝑀)) · 𝐶) · (10↑𝑀)) + (𝑆 · (10↑𝑀))) = (((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) + (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵)))
5926, 34, 583eqtr3ri 2775 . . . 4 (((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) + (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵))) = (𝑊 · (10↑𝑀))
6059, 40oveq12i 7287 . . 3 ((((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) + (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵))) + (𝐷 · 𝐵)) = ((𝑊 · (10↑𝑀)) + 𝑇)
6116, 22, 603eqtri 2770 . 2 (((𝐴 · (10↑𝑀)) + 𝐵) · ((𝐶 · (10↑𝑀)) + 𝐷)) = ((𝑊 · (10↑𝑀)) + 𝑇)
62 karatsuba.x . . 3 ((𝐴 · (10↑𝑀)) + 𝐵) = 𝑋
63 karatsuba.y . . 3 ((𝐶 · (10↑𝑀)) + 𝐷) = 𝑌
6462, 63oveq12i 7287 . 2 (((𝐴 · (10↑𝑀)) + 𝐵) · ((𝐶 · (10↑𝑀)) + 𝐷)) = (𝑋 · 𝑌)
65 karatsuba.z . 2 ((𝑊 · (10↑𝑀)) + 𝑇) = 𝑍
6661, 64, 653eqtr3i 2774 1 (𝑋 · 𝑌) = 𝑍
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  0cn0 12233  cdc 12437  cexp 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-seq 13722  df-exp 13783
This theorem is referenced by:  dpmul4  31188
  Copyright terms: Public domain W3C validator