MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  karatsuba Structured version   Visualization version   GIF version

Theorem karatsuba 16159
Description: The Karatsuba multiplication algorithm. If 𝑋 and 𝑌 are decomposed into two groups of digits of length 𝑀 (only the lower group is known to be this size but the algorithm is most efficient when the partition is chosen near the middle of the digit string), then 𝑋𝑌 can be written in three groups of digits, where each group needs only one multiplication. Thus, we can halve both inputs with only three multiplications on the smaller operands, yielding an asymptotic improvement of n^(log2 3) instead of n^2 for the "naive" algorithm decmul1c 11888. (Contributed by Mario Carneiro, 16-Jul-2015.) (Revised by AV, 9-Sep-2021.)
Hypotheses
Ref Expression
karatsuba.a 𝐴 ∈ ℕ0
karatsuba.b 𝐵 ∈ ℕ0
karatsuba.c 𝐶 ∈ ℕ0
karatsuba.d 𝐷 ∈ ℕ0
karatsuba.s 𝑆 ∈ ℕ0
karatsuba.m 𝑀 ∈ ℕ0
karatsuba.r (𝐴 · 𝐶) = 𝑅
karatsuba.t (𝐵 · 𝐷) = 𝑇
karatsuba.e ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = ((𝑅 + 𝑆) + 𝑇)
karatsuba.x ((𝐴 · (10↑𝑀)) + 𝐵) = 𝑋
karatsuba.y ((𝐶 · (10↑𝑀)) + 𝐷) = 𝑌
karatsuba.w ((𝑅 · (10↑𝑀)) + 𝑆) = 𝑊
karatsuba.z ((𝑊 · (10↑𝑀)) + 𝑇) = 𝑍
Assertion
Ref Expression
karatsuba (𝑋 · 𝑌) = 𝑍

Proof of Theorem karatsuba
StepHypRef Expression
1 karatsuba.a . . . . . 6 𝐴 ∈ ℕ0
21nn0cni 11631 . . . . 5 𝐴 ∈ ℂ
3 10nn0 11839 . . . . . . 7 10 ∈ ℕ0
43nn0cni 11631 . . . . . 6 10 ∈ ℂ
5 karatsuba.m . . . . . 6 𝑀 ∈ ℕ0
6 expcl 13172 . . . . . 6 ((10 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (10↑𝑀) ∈ ℂ)
74, 5, 6mp2an 685 . . . . 5 (10↑𝑀) ∈ ℂ
82, 7mulcli 10364 . . . 4 (𝐴 · (10↑𝑀)) ∈ ℂ
9 karatsuba.b . . . . 5 𝐵 ∈ ℕ0
109nn0cni 11631 . . . 4 𝐵 ∈ ℂ
11 karatsuba.c . . . . . 6 𝐶 ∈ ℕ0
1211nn0cni 11631 . . . . 5 𝐶 ∈ ℂ
1312, 7mulcli 10364 . . . 4 (𝐶 · (10↑𝑀)) ∈ ℂ
14 karatsuba.d . . . . 5 𝐷 ∈ ℕ0
1514nn0cni 11631 . . . 4 𝐷 ∈ ℂ
168, 10, 13, 15muladdi 10805 . . 3 (((𝐴 · (10↑𝑀)) + 𝐵) · ((𝐶 · (10↑𝑀)) + 𝐷)) = ((((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) + (𝐷 · 𝐵)) + (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵)))
178, 13mulcli 10364 . . . 4 ((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) ∈ ℂ
1815, 10mulcli 10364 . . . 4 (𝐷 · 𝐵) ∈ ℂ
198, 15mulcli 10364 . . . . 5 ((𝐴 · (10↑𝑀)) · 𝐷) ∈ ℂ
2013, 10mulcli 10364 . . . . 5 ((𝐶 · (10↑𝑀)) · 𝐵) ∈ ℂ
2119, 20addcli 10363 . . . 4 (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵)) ∈ ℂ
2217, 18, 21add32i 10578 . . 3 ((((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) + (𝐷 · 𝐵)) + (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵))) = ((((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) + (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵))) + (𝐷 · 𝐵))
238, 12mulcli 10364 . . . . . 6 ((𝐴 · (10↑𝑀)) · 𝐶) ∈ ℂ
24 karatsuba.s . . . . . . 7 𝑆 ∈ ℕ0
2524nn0cni 11631 . . . . . 6 𝑆 ∈ ℂ
2623, 25, 7adddiri 10370 . . . . 5 ((((𝐴 · (10↑𝑀)) · 𝐶) + 𝑆) · (10↑𝑀)) = ((((𝐴 · (10↑𝑀)) · 𝐶) · (10↑𝑀)) + (𝑆 · (10↑𝑀)))
272, 7, 12mul32i 10551 . . . . . . . . 9 ((𝐴 · (10↑𝑀)) · 𝐶) = ((𝐴 · 𝐶) · (10↑𝑀))
28 karatsuba.r . . . . . . . . . 10 (𝐴 · 𝐶) = 𝑅
2928oveq1i 6915 . . . . . . . . 9 ((𝐴 · 𝐶) · (10↑𝑀)) = (𝑅 · (10↑𝑀))
3027, 29eqtri 2849 . . . . . . . 8 ((𝐴 · (10↑𝑀)) · 𝐶) = (𝑅 · (10↑𝑀))
3130oveq1i 6915 . . . . . . 7 (((𝐴 · (10↑𝑀)) · 𝐶) + 𝑆) = ((𝑅 · (10↑𝑀)) + 𝑆)
32 karatsuba.w . . . . . . 7 ((𝑅 · (10↑𝑀)) + 𝑆) = 𝑊
3331, 32eqtri 2849 . . . . . 6 (((𝐴 · (10↑𝑀)) · 𝐶) + 𝑆) = 𝑊
3433oveq1i 6915 . . . . 5 ((((𝐴 · (10↑𝑀)) · 𝐶) + 𝑆) · (10↑𝑀)) = (𝑊 · (10↑𝑀))
358, 12, 7mulassi 10368 . . . . . 6 (((𝐴 · (10↑𝑀)) · 𝐶) · (10↑𝑀)) = ((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀)))
362, 12mulcli 10364 . . . . . . . . . . . 12 (𝐴 · 𝐶) ∈ ℂ
3736, 18, 25add32i 10578 . . . . . . . . . . 11 (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + 𝑆) = (((𝐴 · 𝐶) + 𝑆) + (𝐷 · 𝐵))
3828oveq1i 6915 . . . . . . . . . . . 12 ((𝐴 · 𝐶) + 𝑆) = (𝑅 + 𝑆)
39 karatsuba.t . . . . . . . . . . . . 13 (𝐵 · 𝐷) = 𝑇
4010, 15, 39mulcomli 10366 . . . . . . . . . . . 12 (𝐷 · 𝐵) = 𝑇
4138, 40oveq12i 6917 . . . . . . . . . . 11 (((𝐴 · 𝐶) + 𝑆) + (𝐷 · 𝐵)) = ((𝑅 + 𝑆) + 𝑇)
4237, 41eqtri 2849 . . . . . . . . . 10 (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + 𝑆) = ((𝑅 + 𝑆) + 𝑇)
43 karatsuba.e . . . . . . . . . 10 ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = ((𝑅 + 𝑆) + 𝑇)
442, 10, 12, 15muladdi 10805 . . . . . . . . . 10 ((𝐴 + 𝐵) · (𝐶 + 𝐷)) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵)))
4542, 43, 443eqtr2i 2855 . . . . . . . . 9 (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + 𝑆) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵)))
4636, 18addcli 10363 . . . . . . . . . 10 ((𝐴 · 𝐶) + (𝐷 · 𝐵)) ∈ ℂ
472, 15mulcli 10364 . . . . . . . . . . 11 (𝐴 · 𝐷) ∈ ℂ
4812, 10mulcli 10364 . . . . . . . . . . 11 (𝐶 · 𝐵) ∈ ℂ
4947, 48addcli 10363 . . . . . . . . . 10 ((𝐴 · 𝐷) + (𝐶 · 𝐵)) ∈ ℂ
5046, 25, 49addcani 10548 . . . . . . . . 9 ((((𝐴 · 𝐶) + (𝐷 · 𝐵)) + 𝑆) = (((𝐴 · 𝐶) + (𝐷 · 𝐵)) + ((𝐴 · 𝐷) + (𝐶 · 𝐵))) ↔ 𝑆 = ((𝐴 · 𝐷) + (𝐶 · 𝐵)))
5145, 50mpbi 222 . . . . . . . 8 𝑆 = ((𝐴 · 𝐷) + (𝐶 · 𝐵))
5251oveq1i 6915 . . . . . . 7 (𝑆 · (10↑𝑀)) = (((𝐴 · 𝐷) + (𝐶 · 𝐵)) · (10↑𝑀))
5347, 48, 7adddiri 10370 . . . . . . 7 (((𝐴 · 𝐷) + (𝐶 · 𝐵)) · (10↑𝑀)) = (((𝐴 · 𝐷) · (10↑𝑀)) + ((𝐶 · 𝐵) · (10↑𝑀)))
542, 15, 7mul32i 10551 . . . . . . . 8 ((𝐴 · 𝐷) · (10↑𝑀)) = ((𝐴 · (10↑𝑀)) · 𝐷)
5512, 10, 7mul32i 10551 . . . . . . . 8 ((𝐶 · 𝐵) · (10↑𝑀)) = ((𝐶 · (10↑𝑀)) · 𝐵)
5654, 55oveq12i 6917 . . . . . . 7 (((𝐴 · 𝐷) · (10↑𝑀)) + ((𝐶 · 𝐵) · (10↑𝑀))) = (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵))
5752, 53, 563eqtri 2853 . . . . . 6 (𝑆 · (10↑𝑀)) = (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵))
5835, 57oveq12i 6917 . . . . 5 ((((𝐴 · (10↑𝑀)) · 𝐶) · (10↑𝑀)) + (𝑆 · (10↑𝑀))) = (((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) + (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵)))
5926, 34, 583eqtr3ri 2858 . . . 4 (((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) + (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵))) = (𝑊 · (10↑𝑀))
6059, 40oveq12i 6917 . . 3 ((((𝐴 · (10↑𝑀)) · (𝐶 · (10↑𝑀))) + (((𝐴 · (10↑𝑀)) · 𝐷) + ((𝐶 · (10↑𝑀)) · 𝐵))) + (𝐷 · 𝐵)) = ((𝑊 · (10↑𝑀)) + 𝑇)
6116, 22, 603eqtri 2853 . 2 (((𝐴 · (10↑𝑀)) + 𝐵) · ((𝐶 · (10↑𝑀)) + 𝐷)) = ((𝑊 · (10↑𝑀)) + 𝑇)
62 karatsuba.x . . 3 ((𝐴 · (10↑𝑀)) + 𝐵) = 𝑋
63 karatsuba.y . . 3 ((𝐶 · (10↑𝑀)) + 𝐷) = 𝑌
6462, 63oveq12i 6917 . 2 (((𝐴 · (10↑𝑀)) + 𝐵) · ((𝐶 · (10↑𝑀)) + 𝐷)) = (𝑋 · 𝑌)
65 karatsuba.z . 2 ((𝑊 · (10↑𝑀)) + 𝑇) = 𝑍
6661, 64, 653eqtr3i 2857 1 (𝑋 · 𝑌) = 𝑍
Colors of variables: wff setvar class
Syntax hints:   = wceq 1658  wcel 2166  (class class class)co 6905  cc 10250  0cc0 10252  1c1 10253   + caddc 10255   · cmul 10257  0cn0 11618  cdc 11821  cexp 13154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-seq 13096  df-exp 13155
This theorem is referenced by:  dpmul4  30167
  Copyright terms: Public domain W3C validator