HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem3 Structured version   Visualization version   GIF version

Theorem normlem3 31098
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 21-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem2.4 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
normlem3.5 𝐴 = (𝐺 ·ih 𝐺)
normlem3.6 𝐶 = (𝐹 ·ih 𝐹)
normlem3.7 𝑅 ∈ ℝ
Assertion
Ref Expression
normlem3 (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))

Proof of Theorem normlem3
StepHypRef Expression
1 normlem3.6 . . 3 𝐶 = (𝐹 ·ih 𝐹)
2 normlem3.5 . . . . . . 7 𝐴 = (𝐺 ·ih 𝐺)
3 normlem1.3 . . . . . . . 8 𝐺 ∈ ℋ
43, 3hicli 31067 . . . . . . 7 (𝐺 ·ih 𝐺) ∈ ℂ
52, 4eqeltri 2831 . . . . . 6 𝐴 ∈ ℂ
6 normlem3.7 . . . . . . . 8 𝑅 ∈ ℝ
76recni 11254 . . . . . . 7 𝑅 ∈ ℂ
87sqcli 14204 . . . . . 6 (𝑅↑2) ∈ ℂ
95, 8mulcli 11247 . . . . 5 (𝐴 · (𝑅↑2)) ∈ ℂ
10 normlem1.1 . . . . . . . 8 𝑆 ∈ ℂ
11 normlem1.2 . . . . . . . 8 𝐹 ∈ ℋ
12 normlem2.4 . . . . . . . 8 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
1310, 11, 3, 12normlem2 31097 . . . . . . 7 𝐵 ∈ ℝ
1413recni 11254 . . . . . 6 𝐵 ∈ ℂ
1514, 7mulcli 11247 . . . . 5 (𝐵 · 𝑅) ∈ ℂ
169, 15addcomi 11431 . . . 4 ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) = ((𝐵 · 𝑅) + (𝐴 · (𝑅↑2)))
1710cjcli 15193 . . . . . . . . . 10 (∗‘𝑆) ∈ ℂ
1811, 3hicli 31067 . . . . . . . . . 10 (𝐹 ·ih 𝐺) ∈ ℂ
1917, 18mulcli 11247 . . . . . . . . 9 ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ
203, 11hicli 31067 . . . . . . . . . 10 (𝐺 ·ih 𝐹) ∈ ℂ
2110, 20mulcli 11247 . . . . . . . . 9 (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ
2219, 21addcli 11246 . . . . . . . 8 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ
2322, 7mulneg1i 11688 . . . . . . 7 (-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅) = -((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅)
2412oveq1i 7420 . . . . . . 7 (𝐵 · 𝑅) = (-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅)
2522, 7mulneg2i 11689 . . . . . . 7 ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · -𝑅) = -((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅)
2623, 24, 253eqtr4i 2769 . . . . . 6 (𝐵 · 𝑅) = ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · -𝑅)
277negcli 11556 . . . . . . 7 -𝑅 ∈ ℂ
2819, 21, 27adddiri 11253 . . . . . 6 ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · -𝑅) = ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) · -𝑅) + ((𝑆 · (𝐺 ·ih 𝐹)) · -𝑅))
2917, 18, 27mul32i 11436 . . . . . . 7 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) · -𝑅) = (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))
3010, 20, 27mul32i 11436 . . . . . . 7 ((𝑆 · (𝐺 ·ih 𝐹)) · -𝑅) = ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))
3129, 30oveq12i 7422 . . . . . 6 ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) · -𝑅) + ((𝑆 · (𝐺 ·ih 𝐹)) · -𝑅)) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)))
3226, 28, 313eqtri 2763 . . . . 5 (𝐵 · 𝑅) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)))
332oveq2i 7421 . . . . . 6 ((𝑅↑2) · 𝐴) = ((𝑅↑2) · (𝐺 ·ih 𝐺))
348, 5, 33mulcomli 11249 . . . . 5 (𝐴 · (𝑅↑2)) = ((𝑅↑2) · (𝐺 ·ih 𝐺))
3532, 34oveq12i 7422 . . . 4 ((𝐵 · 𝑅) + (𝐴 · (𝑅↑2))) = (((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))
3617, 27mulcli 11247 . . . . . 6 ((∗‘𝑆) · -𝑅) ∈ ℂ
3736, 18mulcli 11247 . . . . 5 (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) ∈ ℂ
3810, 27mulcli 11247 . . . . . 6 (𝑆 · -𝑅) ∈ ℂ
3938, 20mulcli 11247 . . . . 5 ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) ∈ ℂ
408, 4mulcli 11247 . . . . 5 ((𝑅↑2) · (𝐺 ·ih 𝐺)) ∈ ℂ
4137, 39, 40addassi 11250 . . . 4 (((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))) + ((𝑅↑2) · (𝐺 ·ih 𝐺))) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
4216, 35, 413eqtri 2763 . . 3 ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
431, 42oveq12i 7422 . 2 (𝐶 + ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅))) = ((𝐹 ·ih 𝐹) + ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))))
449, 15addcli 11246 . . 3 ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) ∈ ℂ
4511, 11hicli 31067 . . . 4 (𝐹 ·ih 𝐹) ∈ ℂ
461, 45eqeltri 2831 . . 3 𝐶 ∈ ℂ
4744, 46addcomi 11431 . 2 (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) = (𝐶 + ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)))
4839, 40addcli 11246 . . 3 (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))) ∈ ℂ
4945, 37, 48addassi 11250 . 2 (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) = ((𝐹 ·ih 𝐹) + ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))))
5043, 47, 493eqtr4i 2769 1 (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  cfv 6536  (class class class)co 7410  cc 11132  cr 11133   + caddc 11137   · cmul 11139  -cneg 11472  2c2 12300  cexp 14084  ccj 15120  chba 30905   ·ih csp 30908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-hfi 31065  ax-his1 31068
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125
This theorem is referenced by:  normlem4  31099
  Copyright terms: Public domain W3C validator