HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem3 Structured version   Visualization version   GIF version

Theorem normlem3 31141
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 21-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem2.4 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
normlem3.5 𝐴 = (𝐺 ·ih 𝐺)
normlem3.6 𝐶 = (𝐹 ·ih 𝐹)
normlem3.7 𝑅 ∈ ℝ
Assertion
Ref Expression
normlem3 (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))

Proof of Theorem normlem3
StepHypRef Expression
1 normlem3.6 . . 3 𝐶 = (𝐹 ·ih 𝐹)
2 normlem3.5 . . . . . . 7 𝐴 = (𝐺 ·ih 𝐺)
3 normlem1.3 . . . . . . . 8 𝐺 ∈ ℋ
43, 3hicli 31110 . . . . . . 7 (𝐺 ·ih 𝐺) ∈ ℂ
52, 4eqeltri 2835 . . . . . 6 𝐴 ∈ ℂ
6 normlem3.7 . . . . . . . 8 𝑅 ∈ ℝ
76recni 11273 . . . . . . 7 𝑅 ∈ ℂ
87sqcli 14217 . . . . . 6 (𝑅↑2) ∈ ℂ
95, 8mulcli 11266 . . . . 5 (𝐴 · (𝑅↑2)) ∈ ℂ
10 normlem1.1 . . . . . . . 8 𝑆 ∈ ℂ
11 normlem1.2 . . . . . . . 8 𝐹 ∈ ℋ
12 normlem2.4 . . . . . . . 8 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
1310, 11, 3, 12normlem2 31140 . . . . . . 7 𝐵 ∈ ℝ
1413recni 11273 . . . . . 6 𝐵 ∈ ℂ
1514, 7mulcli 11266 . . . . 5 (𝐵 · 𝑅) ∈ ℂ
169, 15addcomi 11450 . . . 4 ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) = ((𝐵 · 𝑅) + (𝐴 · (𝑅↑2)))
1710cjcli 15205 . . . . . . . . . 10 (∗‘𝑆) ∈ ℂ
1811, 3hicli 31110 . . . . . . . . . 10 (𝐹 ·ih 𝐺) ∈ ℂ
1917, 18mulcli 11266 . . . . . . . . 9 ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ
203, 11hicli 31110 . . . . . . . . . 10 (𝐺 ·ih 𝐹) ∈ ℂ
2110, 20mulcli 11266 . . . . . . . . 9 (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ
2219, 21addcli 11265 . . . . . . . 8 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ
2322, 7mulneg1i 11707 . . . . . . 7 (-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅) = -((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅)
2412oveq1i 7441 . . . . . . 7 (𝐵 · 𝑅) = (-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅)
2522, 7mulneg2i 11708 . . . . . . 7 ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · -𝑅) = -((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅)
2623, 24, 253eqtr4i 2773 . . . . . 6 (𝐵 · 𝑅) = ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · -𝑅)
277negcli 11575 . . . . . . 7 -𝑅 ∈ ℂ
2819, 21, 27adddiri 11272 . . . . . 6 ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · -𝑅) = ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) · -𝑅) + ((𝑆 · (𝐺 ·ih 𝐹)) · -𝑅))
2917, 18, 27mul32i 11455 . . . . . . 7 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) · -𝑅) = (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))
3010, 20, 27mul32i 11455 . . . . . . 7 ((𝑆 · (𝐺 ·ih 𝐹)) · -𝑅) = ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))
3129, 30oveq12i 7443 . . . . . 6 ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) · -𝑅) + ((𝑆 · (𝐺 ·ih 𝐹)) · -𝑅)) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)))
3226, 28, 313eqtri 2767 . . . . 5 (𝐵 · 𝑅) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)))
332oveq2i 7442 . . . . . 6 ((𝑅↑2) · 𝐴) = ((𝑅↑2) · (𝐺 ·ih 𝐺))
348, 5, 33mulcomli 11268 . . . . 5 (𝐴 · (𝑅↑2)) = ((𝑅↑2) · (𝐺 ·ih 𝐺))
3532, 34oveq12i 7443 . . . 4 ((𝐵 · 𝑅) + (𝐴 · (𝑅↑2))) = (((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))
3617, 27mulcli 11266 . . . . . 6 ((∗‘𝑆) · -𝑅) ∈ ℂ
3736, 18mulcli 11266 . . . . 5 (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) ∈ ℂ
3810, 27mulcli 11266 . . . . . 6 (𝑆 · -𝑅) ∈ ℂ
3938, 20mulcli 11266 . . . . 5 ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) ∈ ℂ
408, 4mulcli 11266 . . . . 5 ((𝑅↑2) · (𝐺 ·ih 𝐺)) ∈ ℂ
4137, 39, 40addassi 11269 . . . 4 (((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))) + ((𝑅↑2) · (𝐺 ·ih 𝐺))) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
4216, 35, 413eqtri 2767 . . 3 ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
431, 42oveq12i 7443 . 2 (𝐶 + ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅))) = ((𝐹 ·ih 𝐹) + ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))))
449, 15addcli 11265 . . 3 ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) ∈ ℂ
4511, 11hicli 31110 . . . 4 (𝐹 ·ih 𝐹) ∈ ℂ
461, 45eqeltri 2835 . . 3 𝐶 ∈ ℂ
4744, 46addcomi 11450 . 2 (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) = (𝐶 + ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)))
4839, 40addcli 11265 . . 3 (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))) ∈ ℂ
4945, 37, 48addassi 11269 . 2 (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) = ((𝐹 ·ih 𝐹) + ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))))
5043, 47, 493eqtr4i 2773 1 (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  cc 11151  cr 11152   + caddc 11156   · cmul 11158  -cneg 11491  2c2 12319  cexp 14099  ccj 15132  chba 30948   ·ih csp 30951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-hfi 31108  ax-his1 31111
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137
This theorem is referenced by:  normlem4  31142
  Copyright terms: Public domain W3C validator