HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem3 Structured version   Visualization version   GIF version

Theorem normlem3 29193
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 21-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem2.4 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
normlem3.5 𝐴 = (𝐺 ·ih 𝐺)
normlem3.6 𝐶 = (𝐹 ·ih 𝐹)
normlem3.7 𝑅 ∈ ℝ
Assertion
Ref Expression
normlem3 (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))

Proof of Theorem normlem3
StepHypRef Expression
1 normlem3.6 . . 3 𝐶 = (𝐹 ·ih 𝐹)
2 normlem3.5 . . . . . . 7 𝐴 = (𝐺 ·ih 𝐺)
3 normlem1.3 . . . . . . . 8 𝐺 ∈ ℋ
43, 3hicli 29162 . . . . . . 7 (𝐺 ·ih 𝐺) ∈ ℂ
52, 4eqeltri 2834 . . . . . 6 𝐴 ∈ ℂ
6 normlem3.7 . . . . . . . 8 𝑅 ∈ ℝ
76recni 10847 . . . . . . 7 𝑅 ∈ ℂ
87sqcli 13750 . . . . . 6 (𝑅↑2) ∈ ℂ
95, 8mulcli 10840 . . . . 5 (𝐴 · (𝑅↑2)) ∈ ℂ
10 normlem1.1 . . . . . . . 8 𝑆 ∈ ℂ
11 normlem1.2 . . . . . . . 8 𝐹 ∈ ℋ
12 normlem2.4 . . . . . . . 8 𝐵 = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
1310, 11, 3, 12normlem2 29192 . . . . . . 7 𝐵 ∈ ℝ
1413recni 10847 . . . . . 6 𝐵 ∈ ℂ
1514, 7mulcli 10840 . . . . 5 (𝐵 · 𝑅) ∈ ℂ
169, 15addcomi 11023 . . . 4 ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) = ((𝐵 · 𝑅) + (𝐴 · (𝑅↑2)))
1710cjcli 14732 . . . . . . . . . 10 (∗‘𝑆) ∈ ℂ
1811, 3hicli 29162 . . . . . . . . . 10 (𝐹 ·ih 𝐺) ∈ ℂ
1917, 18mulcli 10840 . . . . . . . . 9 ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ
203, 11hicli 29162 . . . . . . . . . 10 (𝐺 ·ih 𝐹) ∈ ℂ
2110, 20mulcli 10840 . . . . . . . . 9 (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ
2219, 21addcli 10839 . . . . . . . 8 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ
2322, 7mulneg1i 11278 . . . . . . 7 (-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅) = -((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅)
2412oveq1i 7223 . . . . . . 7 (𝐵 · 𝑅) = (-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅)
2522, 7mulneg2i 11279 . . . . . . 7 ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · -𝑅) = -((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · 𝑅)
2623, 24, 253eqtr4i 2775 . . . . . 6 (𝐵 · 𝑅) = ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · -𝑅)
277negcli 11146 . . . . . . 7 -𝑅 ∈ ℂ
2819, 21, 27adddiri 10846 . . . . . 6 ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) · -𝑅) = ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) · -𝑅) + ((𝑆 · (𝐺 ·ih 𝐹)) · -𝑅))
2917, 18, 27mul32i 11028 . . . . . . 7 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) · -𝑅) = (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))
3010, 20, 27mul32i 11028 . . . . . . 7 ((𝑆 · (𝐺 ·ih 𝐹)) · -𝑅) = ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))
3129, 30oveq12i 7225 . . . . . 6 ((((∗‘𝑆) · (𝐹 ·ih 𝐺)) · -𝑅) + ((𝑆 · (𝐺 ·ih 𝐹)) · -𝑅)) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)))
3226, 28, 313eqtri 2769 . . . . 5 (𝐵 · 𝑅) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)))
332oveq2i 7224 . . . . . 6 ((𝑅↑2) · 𝐴) = ((𝑅↑2) · (𝐺 ·ih 𝐺))
348, 5, 33mulcomli 10842 . . . . 5 (𝐴 · (𝑅↑2)) = ((𝑅↑2) · (𝐺 ·ih 𝐺))
3532, 34oveq12i 7225 . . . 4 ((𝐵 · 𝑅) + (𝐴 · (𝑅↑2))) = (((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))
3617, 27mulcli 10840 . . . . . 6 ((∗‘𝑆) · -𝑅) ∈ ℂ
3736, 18mulcli 10840 . . . . 5 (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) ∈ ℂ
3810, 27mulcli 10840 . . . . . 6 (𝑆 · -𝑅) ∈ ℂ
3938, 20mulcli 10840 . . . . 5 ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) ∈ ℂ
408, 4mulcli 10840 . . . . 5 ((𝑅↑2) · (𝐺 ·ih 𝐺)) ∈ ℂ
4137, 39, 40addassi 10843 . . . 4 (((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + ((𝑆 · -𝑅) · (𝐺 ·ih 𝐹))) + ((𝑅↑2) · (𝐺 ·ih 𝐺))) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
4216, 35, 413eqtri 2769 . . 3 ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) = ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
431, 42oveq12i 7225 . 2 (𝐶 + ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅))) = ((𝐹 ·ih 𝐹) + ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))))
449, 15addcli 10839 . . 3 ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) ∈ ℂ
4511, 11hicli 29162 . . . 4 (𝐹 ·ih 𝐹) ∈ ℂ
461, 45eqeltri 2834 . . 3 𝐶 ∈ ℂ
4744, 46addcomi 11023 . 2 (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) = (𝐶 + ((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)))
4839, 40addcli 10839 . . 3 (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))) ∈ ℂ
4945, 37, 48addassi 10843 . 2 (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))) = ((𝐹 ·ih 𝐹) + ((((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺)) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺)))))
5043, 47, 493eqtr4i 2775 1 (((𝐴 · (𝑅↑2)) + (𝐵 · 𝑅)) + 𝐶) = (((𝐹 ·ih 𝐹) + (((∗‘𝑆) · -𝑅) · (𝐹 ·ih 𝐺))) + (((𝑆 · -𝑅) · (𝐺 ·ih 𝐹)) + ((𝑅↑2) · (𝐺 ·ih 𝐺))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wcel 2110  cfv 6380  (class class class)co 7213  cc 10727  cr 10728   + caddc 10732   · cmul 10734  -cneg 11063  2c2 11885  cexp 13635  ccj 14659  chba 29000   ·ih csp 29003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-hfi 29160  ax-his1 29163
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664
This theorem is referenced by:  normlem4  29194
  Copyright terms: Public domain W3C validator