Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpmul1000 Structured version   Visualization version   GIF version

Theorem dpmul1000 32869
Description: Multiply by 1000 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.)
Hypotheses
Ref Expression
dpmul1000.a 𝐴 ∈ ℕ0
dpmul1000.b 𝐵 ∈ ℕ0
dpmul1000.c 𝐶 ∈ ℕ0
dpmul1000.d 𝐷 ∈ ℝ
Assertion
Ref Expression
dpmul1000 ((𝐴.𝐵𝐶𝐷) · 1000) = 𝐴𝐵𝐶𝐷

Proof of Theorem dpmul1000
StepHypRef Expression
1 dpmul1000.a . . . . . 6 𝐴 ∈ ℕ0
2 dpmul1000.b . . . . . . . 8 𝐵 ∈ ℕ0
32nn0rei 12429 . . . . . . 7 𝐵 ∈ ℝ
4 dpmul1000.c . . . . . . . . 9 𝐶 ∈ ℕ0
54nn0rei 12429 . . . . . . . 8 𝐶 ∈ ℝ
6 dpmul1000.d . . . . . . . 8 𝐷 ∈ ℝ
7 dp2cl 32850 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → 𝐶𝐷 ∈ ℝ)
85, 6, 7mp2an 692 . . . . . . 7 𝐶𝐷 ∈ ℝ
9 dp2cl 32850 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶𝐷 ∈ ℝ) → 𝐵𝐶𝐷 ∈ ℝ)
103, 8, 9mp2an 692 . . . . . 6 𝐵𝐶𝐷 ∈ ℝ
11 dpcl 32861 . . . . . 6 ((𝐴 ∈ ℕ0𝐵𝐶𝐷 ∈ ℝ) → (𝐴.𝐵𝐶𝐷) ∈ ℝ)
121, 10, 11mp2an 692 . . . . 5 (𝐴.𝐵𝐶𝐷) ∈ ℝ
1312recni 11164 . . . 4 (𝐴.𝐵𝐶𝐷) ∈ ℂ
14 10nn0 12643 . . . . . 6 10 ∈ ℕ0
15 0nn0 12433 . . . . . 6 0 ∈ ℕ0
1614, 15deccl 12640 . . . . 5 100 ∈ ℕ0
1716nn0cni 12430 . . . 4 100 ∈ ℂ
1814nn0cni 12430 . . . 4 10 ∈ ℂ
1913, 17, 18mulassi 11161 . . 3 (((𝐴.𝐵𝐶𝐷) · 100) · 10) = ((𝐴.𝐵𝐶𝐷) · (100 · 10))
201, 2, 8dpmul100 32867 . . . 4 ((𝐴.𝐵𝐶𝐷) · 100) = 𝐴𝐵𝐶𝐷
2120oveq1i 7379 . . 3 (((𝐴.𝐵𝐶𝐷) · 100) · 10) = (𝐴𝐵𝐶𝐷 · 10)
2216dec0u 12646 . . . . 5 (10 · 100) = 1000
2318, 17, 22mulcomli 11159 . . . 4 (100 · 10) = 1000
2423oveq2i 7380 . . 3 ((𝐴.𝐵𝐶𝐷) · (100 · 10)) = ((𝐴.𝐵𝐶𝐷) · 1000)
2519, 21, 243eqtr3i 2760 . 2 (𝐴𝐵𝐶𝐷 · 10) = ((𝐴.𝐵𝐶𝐷) · 1000)
26 dfdec10 12628 . . . 4 𝐴𝐵𝐶𝐷 = ((10 · 𝐴𝐵) + 𝐶𝐷)
2726oveq1i 7379 . . 3 (𝐴𝐵𝐶𝐷 · 10) = (((10 · 𝐴𝐵) + 𝐶𝐷) · 10)
281, 2deccl 12640 . . . . . 6 𝐴𝐵 ∈ ℕ0
2928nn0cni 12430 . . . . 5 𝐴𝐵 ∈ ℂ
3018, 29mulcli 11157 . . . 4 (10 · 𝐴𝐵) ∈ ℂ
318recni 11164 . . . 4 𝐶𝐷 ∈ ℂ
3230, 31, 18adddiri 11163 . . 3 (((10 · 𝐴𝐵) + 𝐶𝐷) · 10) = (((10 · 𝐴𝐵) · 10) + (𝐶𝐷 · 10))
3328, 4, 6dfdec100 32805 . . . 4 𝐴𝐵𝐶𝐷 = ((100 · 𝐴𝐵) + 𝐶𝐷)
3414dec0u 12646 . . . . . . 7 (10 · 10) = 100
3534oveq1i 7379 . . . . . 6 ((10 · 10) · 𝐴𝐵) = (100 · 𝐴𝐵)
3618, 18, 29mul32i 11346 . . . . . 6 ((10 · 10) · 𝐴𝐵) = ((10 · 𝐴𝐵) · 10)
3735, 36eqtr3i 2754 . . . . 5 (100 · 𝐴𝐵) = ((10 · 𝐴𝐵) · 10)
384, 6dpmul10 32865 . . . . . 6 ((𝐶.𝐷) · 10) = 𝐶𝐷
39 dpval 32860 . . . . . . . 8 ((𝐶 ∈ ℕ0𝐷 ∈ ℝ) → (𝐶.𝐷) = 𝐶𝐷)
404, 6, 39mp2an 692 . . . . . . 7 (𝐶.𝐷) = 𝐶𝐷
4140oveq1i 7379 . . . . . 6 ((𝐶.𝐷) · 10) = (𝐶𝐷 · 10)
4238, 41eqtr3i 2754 . . . . 5 𝐶𝐷 = (𝐶𝐷 · 10)
4337, 42oveq12i 7381 . . . 4 ((100 · 𝐴𝐵) + 𝐶𝐷) = (((10 · 𝐴𝐵) · 10) + (𝐶𝐷 · 10))
4433, 43eqtr2i 2753 . . 3 (((10 · 𝐴𝐵) · 10) + (𝐶𝐷 · 10)) = 𝐴𝐵𝐶𝐷
4527, 32, 443eqtri 2756 . 2 (𝐴𝐵𝐶𝐷 · 10) = 𝐴𝐵𝐶𝐷
4625, 45eqtr3i 2754 1 ((𝐴.𝐵𝐶𝐷) · 1000) = 𝐴𝐵𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  0cn0 12418  cdc 12625  cdp2 32841  .cdp 32858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-dec 12626  df-dp2 32842  df-dp 32859
This theorem is referenced by:  dpmul4  32884
  Copyright terms: Public domain W3C validator