| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dpmul1000 | Structured version Visualization version GIF version | ||
| Description: Multiply by 1000 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
| Ref | Expression |
|---|---|
| dpmul1000.a | ⊢ 𝐴 ∈ ℕ0 |
| dpmul1000.b | ⊢ 𝐵 ∈ ℕ0 |
| dpmul1000.c | ⊢ 𝐶 ∈ ℕ0 |
| dpmul1000.d | ⊢ 𝐷 ∈ ℝ |
| Ref | Expression |
|---|---|
| dpmul1000 | ⊢ ((𝐴._𝐵_𝐶𝐷) · ;;;1000) = ;;;𝐴𝐵𝐶𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dpmul1000.a | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | dpmul1000.b | . . . . . . . 8 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 2 | nn0rei 12429 | . . . . . . 7 ⊢ 𝐵 ∈ ℝ |
| 4 | dpmul1000.c | . . . . . . . . 9 ⊢ 𝐶 ∈ ℕ0 | |
| 5 | 4 | nn0rei 12429 | . . . . . . . 8 ⊢ 𝐶 ∈ ℝ |
| 6 | dpmul1000.d | . . . . . . . 8 ⊢ 𝐷 ∈ ℝ | |
| 7 | dp2cl 32850 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → _𝐶𝐷 ∈ ℝ) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . . . . 7 ⊢ _𝐶𝐷 ∈ ℝ |
| 9 | dp2cl 32850 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ _𝐶𝐷 ∈ ℝ) → _𝐵_𝐶𝐷 ∈ ℝ) | |
| 10 | 3, 8, 9 | mp2an 692 | . . . . . 6 ⊢ _𝐵_𝐶𝐷 ∈ ℝ |
| 11 | dpcl 32861 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ _𝐵_𝐶𝐷 ∈ ℝ) → (𝐴._𝐵_𝐶𝐷) ∈ ℝ) | |
| 12 | 1, 10, 11 | mp2an 692 | . . . . 5 ⊢ (𝐴._𝐵_𝐶𝐷) ∈ ℝ |
| 13 | 12 | recni 11164 | . . . 4 ⊢ (𝐴._𝐵_𝐶𝐷) ∈ ℂ |
| 14 | 10nn0 12643 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
| 15 | 0nn0 12433 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 16 | 14, 15 | deccl 12640 | . . . . 5 ⊢ ;;100 ∈ ℕ0 |
| 17 | 16 | nn0cni 12430 | . . . 4 ⊢ ;;100 ∈ ℂ |
| 18 | 14 | nn0cni 12430 | . . . 4 ⊢ ;10 ∈ ℂ |
| 19 | 13, 17, 18 | mulassi 11161 | . . 3 ⊢ (((𝐴._𝐵_𝐶𝐷) · ;;100) · ;10) = ((𝐴._𝐵_𝐶𝐷) · (;;100 · ;10)) |
| 20 | 1, 2, 8 | dpmul100 32867 | . . . 4 ⊢ ((𝐴._𝐵_𝐶𝐷) · ;;100) = ;;𝐴𝐵_𝐶𝐷 |
| 21 | 20 | oveq1i 7379 | . . 3 ⊢ (((𝐴._𝐵_𝐶𝐷) · ;;100) · ;10) = (;;𝐴𝐵_𝐶𝐷 · ;10) |
| 22 | 16 | dec0u 12646 | . . . . 5 ⊢ (;10 · ;;100) = ;;;1000 |
| 23 | 18, 17, 22 | mulcomli 11159 | . . . 4 ⊢ (;;100 · ;10) = ;;;1000 |
| 24 | 23 | oveq2i 7380 | . . 3 ⊢ ((𝐴._𝐵_𝐶𝐷) · (;;100 · ;10)) = ((𝐴._𝐵_𝐶𝐷) · ;;;1000) |
| 25 | 19, 21, 24 | 3eqtr3i 2760 | . 2 ⊢ (;;𝐴𝐵_𝐶𝐷 · ;10) = ((𝐴._𝐵_𝐶𝐷) · ;;;1000) |
| 26 | dfdec10 12628 | . . . 4 ⊢ ;;𝐴𝐵_𝐶𝐷 = ((;10 · ;𝐴𝐵) + _𝐶𝐷) | |
| 27 | 26 | oveq1i 7379 | . . 3 ⊢ (;;𝐴𝐵_𝐶𝐷 · ;10) = (((;10 · ;𝐴𝐵) + _𝐶𝐷) · ;10) |
| 28 | 1, 2 | deccl 12640 | . . . . . 6 ⊢ ;𝐴𝐵 ∈ ℕ0 |
| 29 | 28 | nn0cni 12430 | . . . . 5 ⊢ ;𝐴𝐵 ∈ ℂ |
| 30 | 18, 29 | mulcli 11157 | . . . 4 ⊢ (;10 · ;𝐴𝐵) ∈ ℂ |
| 31 | 8 | recni 11164 | . . . 4 ⊢ _𝐶𝐷 ∈ ℂ |
| 32 | 30, 31, 18 | adddiri 11163 | . . 3 ⊢ (((;10 · ;𝐴𝐵) + _𝐶𝐷) · ;10) = (((;10 · ;𝐴𝐵) · ;10) + (_𝐶𝐷 · ;10)) |
| 33 | 28, 4, 6 | dfdec100 32805 | . . . 4 ⊢ ;;;𝐴𝐵𝐶𝐷 = ((;;100 · ;𝐴𝐵) + ;𝐶𝐷) |
| 34 | 14 | dec0u 12646 | . . . . . . 7 ⊢ (;10 · ;10) = ;;100 |
| 35 | 34 | oveq1i 7379 | . . . . . 6 ⊢ ((;10 · ;10) · ;𝐴𝐵) = (;;100 · ;𝐴𝐵) |
| 36 | 18, 18, 29 | mul32i 11346 | . . . . . 6 ⊢ ((;10 · ;10) · ;𝐴𝐵) = ((;10 · ;𝐴𝐵) · ;10) |
| 37 | 35, 36 | eqtr3i 2754 | . . . . 5 ⊢ (;;100 · ;𝐴𝐵) = ((;10 · ;𝐴𝐵) · ;10) |
| 38 | 4, 6 | dpmul10 32865 | . . . . . 6 ⊢ ((𝐶.𝐷) · ;10) = ;𝐶𝐷 |
| 39 | dpval 32860 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℝ) → (𝐶.𝐷) = _𝐶𝐷) | |
| 40 | 4, 6, 39 | mp2an 692 | . . . . . . 7 ⊢ (𝐶.𝐷) = _𝐶𝐷 |
| 41 | 40 | oveq1i 7379 | . . . . . 6 ⊢ ((𝐶.𝐷) · ;10) = (_𝐶𝐷 · ;10) |
| 42 | 38, 41 | eqtr3i 2754 | . . . . 5 ⊢ ;𝐶𝐷 = (_𝐶𝐷 · ;10) |
| 43 | 37, 42 | oveq12i 7381 | . . . 4 ⊢ ((;;100 · ;𝐴𝐵) + ;𝐶𝐷) = (((;10 · ;𝐴𝐵) · ;10) + (_𝐶𝐷 · ;10)) |
| 44 | 33, 43 | eqtr2i 2753 | . . 3 ⊢ (((;10 · ;𝐴𝐵) · ;10) + (_𝐶𝐷 · ;10)) = ;;;𝐴𝐵𝐶𝐷 |
| 45 | 27, 32, 44 | 3eqtri 2756 | . 2 ⊢ (;;𝐴𝐵_𝐶𝐷 · ;10) = ;;;𝐴𝐵𝐶𝐷 |
| 46 | 25, 45 | eqtr3i 2754 | 1 ⊢ ((𝐴._𝐵_𝐶𝐷) · ;;;1000) = ;;;𝐴𝐵𝐶𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 ℕ0cn0 12418 ;cdc 12625 _cdp2 32841 .cdp 32858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-dec 12626 df-dp2 32842 df-dp 32859 |
| This theorem is referenced by: dpmul4 32884 |
| Copyright terms: Public domain | W3C validator |