Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpmul1000 Structured version   Visualization version   GIF version

Theorem dpmul1000 32826
Description: Multiply by 1000 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.)
Hypotheses
Ref Expression
dpmul1000.a 𝐴 ∈ ℕ0
dpmul1000.b 𝐵 ∈ ℕ0
dpmul1000.c 𝐶 ∈ ℕ0
dpmul1000.d 𝐷 ∈ ℝ
Assertion
Ref Expression
dpmul1000 ((𝐴.𝐵𝐶𝐷) · 1000) = 𝐴𝐵𝐶𝐷

Proof of Theorem dpmul1000
StepHypRef Expression
1 dpmul1000.a . . . . . 6 𝐴 ∈ ℕ0
2 dpmul1000.b . . . . . . . 8 𝐵 ∈ ℕ0
32nn0rei 12460 . . . . . . 7 𝐵 ∈ ℝ
4 dpmul1000.c . . . . . . . . 9 𝐶 ∈ ℕ0
54nn0rei 12460 . . . . . . . 8 𝐶 ∈ ℝ
6 dpmul1000.d . . . . . . . 8 𝐷 ∈ ℝ
7 dp2cl 32807 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → 𝐶𝐷 ∈ ℝ)
85, 6, 7mp2an 692 . . . . . . 7 𝐶𝐷 ∈ ℝ
9 dp2cl 32807 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶𝐷 ∈ ℝ) → 𝐵𝐶𝐷 ∈ ℝ)
103, 8, 9mp2an 692 . . . . . 6 𝐵𝐶𝐷 ∈ ℝ
11 dpcl 32818 . . . . . 6 ((𝐴 ∈ ℕ0𝐵𝐶𝐷 ∈ ℝ) → (𝐴.𝐵𝐶𝐷) ∈ ℝ)
121, 10, 11mp2an 692 . . . . 5 (𝐴.𝐵𝐶𝐷) ∈ ℝ
1312recni 11195 . . . 4 (𝐴.𝐵𝐶𝐷) ∈ ℂ
14 10nn0 12674 . . . . . 6 10 ∈ ℕ0
15 0nn0 12464 . . . . . 6 0 ∈ ℕ0
1614, 15deccl 12671 . . . . 5 100 ∈ ℕ0
1716nn0cni 12461 . . . 4 100 ∈ ℂ
1814nn0cni 12461 . . . 4 10 ∈ ℂ
1913, 17, 18mulassi 11192 . . 3 (((𝐴.𝐵𝐶𝐷) · 100) · 10) = ((𝐴.𝐵𝐶𝐷) · (100 · 10))
201, 2, 8dpmul100 32824 . . . 4 ((𝐴.𝐵𝐶𝐷) · 100) = 𝐴𝐵𝐶𝐷
2120oveq1i 7400 . . 3 (((𝐴.𝐵𝐶𝐷) · 100) · 10) = (𝐴𝐵𝐶𝐷 · 10)
2216dec0u 12677 . . . . 5 (10 · 100) = 1000
2318, 17, 22mulcomli 11190 . . . 4 (100 · 10) = 1000
2423oveq2i 7401 . . 3 ((𝐴.𝐵𝐶𝐷) · (100 · 10)) = ((𝐴.𝐵𝐶𝐷) · 1000)
2519, 21, 243eqtr3i 2761 . 2 (𝐴𝐵𝐶𝐷 · 10) = ((𝐴.𝐵𝐶𝐷) · 1000)
26 dfdec10 12659 . . . 4 𝐴𝐵𝐶𝐷 = ((10 · 𝐴𝐵) + 𝐶𝐷)
2726oveq1i 7400 . . 3 (𝐴𝐵𝐶𝐷 · 10) = (((10 · 𝐴𝐵) + 𝐶𝐷) · 10)
281, 2deccl 12671 . . . . . 6 𝐴𝐵 ∈ ℕ0
2928nn0cni 12461 . . . . 5 𝐴𝐵 ∈ ℂ
3018, 29mulcli 11188 . . . 4 (10 · 𝐴𝐵) ∈ ℂ
318recni 11195 . . . 4 𝐶𝐷 ∈ ℂ
3230, 31, 18adddiri 11194 . . 3 (((10 · 𝐴𝐵) + 𝐶𝐷) · 10) = (((10 · 𝐴𝐵) · 10) + (𝐶𝐷 · 10))
3328, 4, 6dfdec100 32762 . . . 4 𝐴𝐵𝐶𝐷 = ((100 · 𝐴𝐵) + 𝐶𝐷)
3414dec0u 12677 . . . . . . 7 (10 · 10) = 100
3534oveq1i 7400 . . . . . 6 ((10 · 10) · 𝐴𝐵) = (100 · 𝐴𝐵)
3618, 18, 29mul32i 11377 . . . . . 6 ((10 · 10) · 𝐴𝐵) = ((10 · 𝐴𝐵) · 10)
3735, 36eqtr3i 2755 . . . . 5 (100 · 𝐴𝐵) = ((10 · 𝐴𝐵) · 10)
384, 6dpmul10 32822 . . . . . 6 ((𝐶.𝐷) · 10) = 𝐶𝐷
39 dpval 32817 . . . . . . . 8 ((𝐶 ∈ ℕ0𝐷 ∈ ℝ) → (𝐶.𝐷) = 𝐶𝐷)
404, 6, 39mp2an 692 . . . . . . 7 (𝐶.𝐷) = 𝐶𝐷
4140oveq1i 7400 . . . . . 6 ((𝐶.𝐷) · 10) = (𝐶𝐷 · 10)
4238, 41eqtr3i 2755 . . . . 5 𝐶𝐷 = (𝐶𝐷 · 10)
4337, 42oveq12i 7402 . . . 4 ((100 · 𝐴𝐵) + 𝐶𝐷) = (((10 · 𝐴𝐵) · 10) + (𝐶𝐷 · 10))
4433, 43eqtr2i 2754 . . 3 (((10 · 𝐴𝐵) · 10) + (𝐶𝐷 · 10)) = 𝐴𝐵𝐶𝐷
4527, 32, 443eqtri 2757 . 2 (𝐴𝐵𝐶𝐷 · 10) = 𝐴𝐵𝐶𝐷
4625, 45eqtr3i 2755 1 ((𝐴.𝐵𝐶𝐷) · 1000) = 𝐴𝐵𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  0cn0 12449  cdc 12656  cdp2 32798  .cdp 32815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-dec 12657  df-dp2 32799  df-dp 32816
This theorem is referenced by:  dpmul4  32841
  Copyright terms: Public domain W3C validator