| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dpmul1000 | Structured version Visualization version GIF version | ||
| Description: Multiply by 1000 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
| Ref | Expression |
|---|---|
| dpmul1000.a | ⊢ 𝐴 ∈ ℕ0 |
| dpmul1000.b | ⊢ 𝐵 ∈ ℕ0 |
| dpmul1000.c | ⊢ 𝐶 ∈ ℕ0 |
| dpmul1000.d | ⊢ 𝐷 ∈ ℝ |
| Ref | Expression |
|---|---|
| dpmul1000 | ⊢ ((𝐴._𝐵_𝐶𝐷) · ;;;1000) = ;;;𝐴𝐵𝐶𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dpmul1000.a | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | dpmul1000.b | . . . . . . . 8 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 2 | nn0rei 12510 | . . . . . . 7 ⊢ 𝐵 ∈ ℝ |
| 4 | dpmul1000.c | . . . . . . . . 9 ⊢ 𝐶 ∈ ℕ0 | |
| 5 | 4 | nn0rei 12510 | . . . . . . . 8 ⊢ 𝐶 ∈ ℝ |
| 6 | dpmul1000.d | . . . . . . . 8 ⊢ 𝐷 ∈ ℝ | |
| 7 | dp2cl 32800 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → _𝐶𝐷 ∈ ℝ) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . . . . 7 ⊢ _𝐶𝐷 ∈ ℝ |
| 9 | dp2cl 32800 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ _𝐶𝐷 ∈ ℝ) → _𝐵_𝐶𝐷 ∈ ℝ) | |
| 10 | 3, 8, 9 | mp2an 692 | . . . . . 6 ⊢ _𝐵_𝐶𝐷 ∈ ℝ |
| 11 | dpcl 32811 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ _𝐵_𝐶𝐷 ∈ ℝ) → (𝐴._𝐵_𝐶𝐷) ∈ ℝ) | |
| 12 | 1, 10, 11 | mp2an 692 | . . . . 5 ⊢ (𝐴._𝐵_𝐶𝐷) ∈ ℝ |
| 13 | 12 | recni 11247 | . . . 4 ⊢ (𝐴._𝐵_𝐶𝐷) ∈ ℂ |
| 14 | 10nn0 12724 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
| 15 | 0nn0 12514 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 16 | 14, 15 | deccl 12721 | . . . . 5 ⊢ ;;100 ∈ ℕ0 |
| 17 | 16 | nn0cni 12511 | . . . 4 ⊢ ;;100 ∈ ℂ |
| 18 | 14 | nn0cni 12511 | . . . 4 ⊢ ;10 ∈ ℂ |
| 19 | 13, 17, 18 | mulassi 11244 | . . 3 ⊢ (((𝐴._𝐵_𝐶𝐷) · ;;100) · ;10) = ((𝐴._𝐵_𝐶𝐷) · (;;100 · ;10)) |
| 20 | 1, 2, 8 | dpmul100 32817 | . . . 4 ⊢ ((𝐴._𝐵_𝐶𝐷) · ;;100) = ;;𝐴𝐵_𝐶𝐷 |
| 21 | 20 | oveq1i 7413 | . . 3 ⊢ (((𝐴._𝐵_𝐶𝐷) · ;;100) · ;10) = (;;𝐴𝐵_𝐶𝐷 · ;10) |
| 22 | 16 | dec0u 12727 | . . . . 5 ⊢ (;10 · ;;100) = ;;;1000 |
| 23 | 18, 17, 22 | mulcomli 11242 | . . . 4 ⊢ (;;100 · ;10) = ;;;1000 |
| 24 | 23 | oveq2i 7414 | . . 3 ⊢ ((𝐴._𝐵_𝐶𝐷) · (;;100 · ;10)) = ((𝐴._𝐵_𝐶𝐷) · ;;;1000) |
| 25 | 19, 21, 24 | 3eqtr3i 2766 | . 2 ⊢ (;;𝐴𝐵_𝐶𝐷 · ;10) = ((𝐴._𝐵_𝐶𝐷) · ;;;1000) |
| 26 | dfdec10 12709 | . . . 4 ⊢ ;;𝐴𝐵_𝐶𝐷 = ((;10 · ;𝐴𝐵) + _𝐶𝐷) | |
| 27 | 26 | oveq1i 7413 | . . 3 ⊢ (;;𝐴𝐵_𝐶𝐷 · ;10) = (((;10 · ;𝐴𝐵) + _𝐶𝐷) · ;10) |
| 28 | 1, 2 | deccl 12721 | . . . . . 6 ⊢ ;𝐴𝐵 ∈ ℕ0 |
| 29 | 28 | nn0cni 12511 | . . . . 5 ⊢ ;𝐴𝐵 ∈ ℂ |
| 30 | 18, 29 | mulcli 11240 | . . . 4 ⊢ (;10 · ;𝐴𝐵) ∈ ℂ |
| 31 | 8 | recni 11247 | . . . 4 ⊢ _𝐶𝐷 ∈ ℂ |
| 32 | 30, 31, 18 | adddiri 11246 | . . 3 ⊢ (((;10 · ;𝐴𝐵) + _𝐶𝐷) · ;10) = (((;10 · ;𝐴𝐵) · ;10) + (_𝐶𝐷 · ;10)) |
| 33 | 28, 4, 6 | dfdec100 32755 | . . . 4 ⊢ ;;;𝐴𝐵𝐶𝐷 = ((;;100 · ;𝐴𝐵) + ;𝐶𝐷) |
| 34 | 14 | dec0u 12727 | . . . . . . 7 ⊢ (;10 · ;10) = ;;100 |
| 35 | 34 | oveq1i 7413 | . . . . . 6 ⊢ ((;10 · ;10) · ;𝐴𝐵) = (;;100 · ;𝐴𝐵) |
| 36 | 18, 18, 29 | mul32i 11429 | . . . . . 6 ⊢ ((;10 · ;10) · ;𝐴𝐵) = ((;10 · ;𝐴𝐵) · ;10) |
| 37 | 35, 36 | eqtr3i 2760 | . . . . 5 ⊢ (;;100 · ;𝐴𝐵) = ((;10 · ;𝐴𝐵) · ;10) |
| 38 | 4, 6 | dpmul10 32815 | . . . . . 6 ⊢ ((𝐶.𝐷) · ;10) = ;𝐶𝐷 |
| 39 | dpval 32810 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℝ) → (𝐶.𝐷) = _𝐶𝐷) | |
| 40 | 4, 6, 39 | mp2an 692 | . . . . . . 7 ⊢ (𝐶.𝐷) = _𝐶𝐷 |
| 41 | 40 | oveq1i 7413 | . . . . . 6 ⊢ ((𝐶.𝐷) · ;10) = (_𝐶𝐷 · ;10) |
| 42 | 38, 41 | eqtr3i 2760 | . . . . 5 ⊢ ;𝐶𝐷 = (_𝐶𝐷 · ;10) |
| 43 | 37, 42 | oveq12i 7415 | . . . 4 ⊢ ((;;100 · ;𝐴𝐵) + ;𝐶𝐷) = (((;10 · ;𝐴𝐵) · ;10) + (_𝐶𝐷 · ;10)) |
| 44 | 33, 43 | eqtr2i 2759 | . . 3 ⊢ (((;10 · ;𝐴𝐵) · ;10) + (_𝐶𝐷 · ;10)) = ;;;𝐴𝐵𝐶𝐷 |
| 45 | 27, 32, 44 | 3eqtri 2762 | . 2 ⊢ (;;𝐴𝐵_𝐶𝐷 · ;10) = ;;;𝐴𝐵𝐶𝐷 |
| 46 | 25, 45 | eqtr3i 2760 | 1 ⊢ ((𝐴._𝐵_𝐶𝐷) · ;;;1000) = ;;;𝐴𝐵𝐶𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7403 ℝcr 11126 0cc0 11127 1c1 11128 + caddc 11130 · cmul 11132 ℕ0cn0 12499 ;cdc 12706 _cdp2 32791 .cdp 32808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-dec 12707 df-dp2 32792 df-dp 32809 |
| This theorem is referenced by: dpmul4 32834 |
| Copyright terms: Public domain | W3C validator |