Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dpmul1000 Structured version   Visualization version   GIF version

Theorem dpmul1000 32819
Description: Multiply by 1000 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.)
Hypotheses
Ref Expression
dpmul1000.a 𝐴 ∈ ℕ0
dpmul1000.b 𝐵 ∈ ℕ0
dpmul1000.c 𝐶 ∈ ℕ0
dpmul1000.d 𝐷 ∈ ℝ
Assertion
Ref Expression
dpmul1000 ((𝐴.𝐵𝐶𝐷) · 1000) = 𝐴𝐵𝐶𝐷

Proof of Theorem dpmul1000
StepHypRef Expression
1 dpmul1000.a . . . . . 6 𝐴 ∈ ℕ0
2 dpmul1000.b . . . . . . . 8 𝐵 ∈ ℕ0
32nn0rei 12510 . . . . . . 7 𝐵 ∈ ℝ
4 dpmul1000.c . . . . . . . . 9 𝐶 ∈ ℕ0
54nn0rei 12510 . . . . . . . 8 𝐶 ∈ ℝ
6 dpmul1000.d . . . . . . . 8 𝐷 ∈ ℝ
7 dp2cl 32800 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → 𝐶𝐷 ∈ ℝ)
85, 6, 7mp2an 692 . . . . . . 7 𝐶𝐷 ∈ ℝ
9 dp2cl 32800 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶𝐷 ∈ ℝ) → 𝐵𝐶𝐷 ∈ ℝ)
103, 8, 9mp2an 692 . . . . . 6 𝐵𝐶𝐷 ∈ ℝ
11 dpcl 32811 . . . . . 6 ((𝐴 ∈ ℕ0𝐵𝐶𝐷 ∈ ℝ) → (𝐴.𝐵𝐶𝐷) ∈ ℝ)
121, 10, 11mp2an 692 . . . . 5 (𝐴.𝐵𝐶𝐷) ∈ ℝ
1312recni 11247 . . . 4 (𝐴.𝐵𝐶𝐷) ∈ ℂ
14 10nn0 12724 . . . . . 6 10 ∈ ℕ0
15 0nn0 12514 . . . . . 6 0 ∈ ℕ0
1614, 15deccl 12721 . . . . 5 100 ∈ ℕ0
1716nn0cni 12511 . . . 4 100 ∈ ℂ
1814nn0cni 12511 . . . 4 10 ∈ ℂ
1913, 17, 18mulassi 11244 . . 3 (((𝐴.𝐵𝐶𝐷) · 100) · 10) = ((𝐴.𝐵𝐶𝐷) · (100 · 10))
201, 2, 8dpmul100 32817 . . . 4 ((𝐴.𝐵𝐶𝐷) · 100) = 𝐴𝐵𝐶𝐷
2120oveq1i 7413 . . 3 (((𝐴.𝐵𝐶𝐷) · 100) · 10) = (𝐴𝐵𝐶𝐷 · 10)
2216dec0u 12727 . . . . 5 (10 · 100) = 1000
2318, 17, 22mulcomli 11242 . . . 4 (100 · 10) = 1000
2423oveq2i 7414 . . 3 ((𝐴.𝐵𝐶𝐷) · (100 · 10)) = ((𝐴.𝐵𝐶𝐷) · 1000)
2519, 21, 243eqtr3i 2766 . 2 (𝐴𝐵𝐶𝐷 · 10) = ((𝐴.𝐵𝐶𝐷) · 1000)
26 dfdec10 12709 . . . 4 𝐴𝐵𝐶𝐷 = ((10 · 𝐴𝐵) + 𝐶𝐷)
2726oveq1i 7413 . . 3 (𝐴𝐵𝐶𝐷 · 10) = (((10 · 𝐴𝐵) + 𝐶𝐷) · 10)
281, 2deccl 12721 . . . . . 6 𝐴𝐵 ∈ ℕ0
2928nn0cni 12511 . . . . 5 𝐴𝐵 ∈ ℂ
3018, 29mulcli 11240 . . . 4 (10 · 𝐴𝐵) ∈ ℂ
318recni 11247 . . . 4 𝐶𝐷 ∈ ℂ
3230, 31, 18adddiri 11246 . . 3 (((10 · 𝐴𝐵) + 𝐶𝐷) · 10) = (((10 · 𝐴𝐵) · 10) + (𝐶𝐷 · 10))
3328, 4, 6dfdec100 32755 . . . 4 𝐴𝐵𝐶𝐷 = ((100 · 𝐴𝐵) + 𝐶𝐷)
3414dec0u 12727 . . . . . . 7 (10 · 10) = 100
3534oveq1i 7413 . . . . . 6 ((10 · 10) · 𝐴𝐵) = (100 · 𝐴𝐵)
3618, 18, 29mul32i 11429 . . . . . 6 ((10 · 10) · 𝐴𝐵) = ((10 · 𝐴𝐵) · 10)
3735, 36eqtr3i 2760 . . . . 5 (100 · 𝐴𝐵) = ((10 · 𝐴𝐵) · 10)
384, 6dpmul10 32815 . . . . . 6 ((𝐶.𝐷) · 10) = 𝐶𝐷
39 dpval 32810 . . . . . . . 8 ((𝐶 ∈ ℕ0𝐷 ∈ ℝ) → (𝐶.𝐷) = 𝐶𝐷)
404, 6, 39mp2an 692 . . . . . . 7 (𝐶.𝐷) = 𝐶𝐷
4140oveq1i 7413 . . . . . 6 ((𝐶.𝐷) · 10) = (𝐶𝐷 · 10)
4238, 41eqtr3i 2760 . . . . 5 𝐶𝐷 = (𝐶𝐷 · 10)
4337, 42oveq12i 7415 . . . 4 ((100 · 𝐴𝐵) + 𝐶𝐷) = (((10 · 𝐴𝐵) · 10) + (𝐶𝐷 · 10))
4433, 43eqtr2i 2759 . . 3 (((10 · 𝐴𝐵) · 10) + (𝐶𝐷 · 10)) = 𝐴𝐵𝐶𝐷
4527, 32, 443eqtri 2762 . 2 (𝐴𝐵𝐶𝐷 · 10) = 𝐴𝐵𝐶𝐷
4625, 45eqtr3i 2760 1 ((𝐴.𝐵𝐶𝐷) · 1000) = 𝐴𝐵𝐶𝐷
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  (class class class)co 7403  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132  0cn0 12499  cdc 12706  cdp2 32791  .cdp 32808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-dec 12707  df-dp2 32792  df-dp 32809
This theorem is referenced by:  dpmul4  32834
  Copyright terms: Public domain W3C validator