| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dpmul1000 | Structured version Visualization version GIF version | ||
| Description: Multiply by 1000 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
| Ref | Expression |
|---|---|
| dpmul1000.a | ⊢ 𝐴 ∈ ℕ0 |
| dpmul1000.b | ⊢ 𝐵 ∈ ℕ0 |
| dpmul1000.c | ⊢ 𝐶 ∈ ℕ0 |
| dpmul1000.d | ⊢ 𝐷 ∈ ℝ |
| Ref | Expression |
|---|---|
| dpmul1000 | ⊢ ((𝐴._𝐵_𝐶𝐷) · ;;;1000) = ;;;𝐴𝐵𝐶𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dpmul1000.a | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | dpmul1000.b | . . . . . . . 8 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 2 | nn0rei 12395 | . . . . . . 7 ⊢ 𝐵 ∈ ℝ |
| 4 | dpmul1000.c | . . . . . . . . 9 ⊢ 𝐶 ∈ ℕ0 | |
| 5 | 4 | nn0rei 12395 | . . . . . . . 8 ⊢ 𝐶 ∈ ℝ |
| 6 | dpmul1000.d | . . . . . . . 8 ⊢ 𝐷 ∈ ℝ | |
| 7 | dp2cl 32820 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → _𝐶𝐷 ∈ ℝ) | |
| 8 | 5, 6, 7 | mp2an 692 | . . . . . . 7 ⊢ _𝐶𝐷 ∈ ℝ |
| 9 | dp2cl 32820 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ _𝐶𝐷 ∈ ℝ) → _𝐵_𝐶𝐷 ∈ ℝ) | |
| 10 | 3, 8, 9 | mp2an 692 | . . . . . 6 ⊢ _𝐵_𝐶𝐷 ∈ ℝ |
| 11 | dpcl 32831 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ _𝐵_𝐶𝐷 ∈ ℝ) → (𝐴._𝐵_𝐶𝐷) ∈ ℝ) | |
| 12 | 1, 10, 11 | mp2an 692 | . . . . 5 ⊢ (𝐴._𝐵_𝐶𝐷) ∈ ℝ |
| 13 | 12 | recni 11129 | . . . 4 ⊢ (𝐴._𝐵_𝐶𝐷) ∈ ℂ |
| 14 | 10nn0 12609 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
| 15 | 0nn0 12399 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 16 | 14, 15 | deccl 12606 | . . . . 5 ⊢ ;;100 ∈ ℕ0 |
| 17 | 16 | nn0cni 12396 | . . . 4 ⊢ ;;100 ∈ ℂ |
| 18 | 14 | nn0cni 12396 | . . . 4 ⊢ ;10 ∈ ℂ |
| 19 | 13, 17, 18 | mulassi 11126 | . . 3 ⊢ (((𝐴._𝐵_𝐶𝐷) · ;;100) · ;10) = ((𝐴._𝐵_𝐶𝐷) · (;;100 · ;10)) |
| 20 | 1, 2, 8 | dpmul100 32837 | . . . 4 ⊢ ((𝐴._𝐵_𝐶𝐷) · ;;100) = ;;𝐴𝐵_𝐶𝐷 |
| 21 | 20 | oveq1i 7359 | . . 3 ⊢ (((𝐴._𝐵_𝐶𝐷) · ;;100) · ;10) = (;;𝐴𝐵_𝐶𝐷 · ;10) |
| 22 | 16 | dec0u 12612 | . . . . 5 ⊢ (;10 · ;;100) = ;;;1000 |
| 23 | 18, 17, 22 | mulcomli 11124 | . . . 4 ⊢ (;;100 · ;10) = ;;;1000 |
| 24 | 23 | oveq2i 7360 | . . 3 ⊢ ((𝐴._𝐵_𝐶𝐷) · (;;100 · ;10)) = ((𝐴._𝐵_𝐶𝐷) · ;;;1000) |
| 25 | 19, 21, 24 | 3eqtr3i 2760 | . 2 ⊢ (;;𝐴𝐵_𝐶𝐷 · ;10) = ((𝐴._𝐵_𝐶𝐷) · ;;;1000) |
| 26 | dfdec10 12594 | . . . 4 ⊢ ;;𝐴𝐵_𝐶𝐷 = ((;10 · ;𝐴𝐵) + _𝐶𝐷) | |
| 27 | 26 | oveq1i 7359 | . . 3 ⊢ (;;𝐴𝐵_𝐶𝐷 · ;10) = (((;10 · ;𝐴𝐵) + _𝐶𝐷) · ;10) |
| 28 | 1, 2 | deccl 12606 | . . . . . 6 ⊢ ;𝐴𝐵 ∈ ℕ0 |
| 29 | 28 | nn0cni 12396 | . . . . 5 ⊢ ;𝐴𝐵 ∈ ℂ |
| 30 | 18, 29 | mulcli 11122 | . . . 4 ⊢ (;10 · ;𝐴𝐵) ∈ ℂ |
| 31 | 8 | recni 11129 | . . . 4 ⊢ _𝐶𝐷 ∈ ℂ |
| 32 | 30, 31, 18 | adddiri 11128 | . . 3 ⊢ (((;10 · ;𝐴𝐵) + _𝐶𝐷) · ;10) = (((;10 · ;𝐴𝐵) · ;10) + (_𝐶𝐷 · ;10)) |
| 33 | 28, 4, 6 | dfdec100 32775 | . . . 4 ⊢ ;;;𝐴𝐵𝐶𝐷 = ((;;100 · ;𝐴𝐵) + ;𝐶𝐷) |
| 34 | 14 | dec0u 12612 | . . . . . . 7 ⊢ (;10 · ;10) = ;;100 |
| 35 | 34 | oveq1i 7359 | . . . . . 6 ⊢ ((;10 · ;10) · ;𝐴𝐵) = (;;100 · ;𝐴𝐵) |
| 36 | 18, 18, 29 | mul32i 11312 | . . . . . 6 ⊢ ((;10 · ;10) · ;𝐴𝐵) = ((;10 · ;𝐴𝐵) · ;10) |
| 37 | 35, 36 | eqtr3i 2754 | . . . . 5 ⊢ (;;100 · ;𝐴𝐵) = ((;10 · ;𝐴𝐵) · ;10) |
| 38 | 4, 6 | dpmul10 32835 | . . . . . 6 ⊢ ((𝐶.𝐷) · ;10) = ;𝐶𝐷 |
| 39 | dpval 32830 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℝ) → (𝐶.𝐷) = _𝐶𝐷) | |
| 40 | 4, 6, 39 | mp2an 692 | . . . . . . 7 ⊢ (𝐶.𝐷) = _𝐶𝐷 |
| 41 | 40 | oveq1i 7359 | . . . . . 6 ⊢ ((𝐶.𝐷) · ;10) = (_𝐶𝐷 · ;10) |
| 42 | 38, 41 | eqtr3i 2754 | . . . . 5 ⊢ ;𝐶𝐷 = (_𝐶𝐷 · ;10) |
| 43 | 37, 42 | oveq12i 7361 | . . . 4 ⊢ ((;;100 · ;𝐴𝐵) + ;𝐶𝐷) = (((;10 · ;𝐴𝐵) · ;10) + (_𝐶𝐷 · ;10)) |
| 44 | 33, 43 | eqtr2i 2753 | . . 3 ⊢ (((;10 · ;𝐴𝐵) · ;10) + (_𝐶𝐷 · ;10)) = ;;;𝐴𝐵𝐶𝐷 |
| 45 | 27, 32, 44 | 3eqtri 2756 | . 2 ⊢ (;;𝐴𝐵_𝐶𝐷 · ;10) = ;;;𝐴𝐵𝐶𝐷 |
| 46 | 25, 45 | eqtr3i 2754 | 1 ⊢ ((𝐴._𝐵_𝐶𝐷) · ;;;1000) = ;;;𝐴𝐵𝐶𝐷 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7349 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 · cmul 11014 ℕ0cn0 12384 ;cdc 12591 _cdp2 32811 .cdp 32828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-dec 12592 df-dp2 32812 df-dp 32829 |
| This theorem is referenced by: dpmul4 32854 |
| Copyright terms: Public domain | W3C validator |