Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dpmul1000 | Structured version Visualization version GIF version |
Description: Multiply by 1000 a decimal expansion. (Contributed by Thierry Arnoux, 25-Dec-2021.) |
Ref | Expression |
---|---|
dpmul1000.a | ⊢ 𝐴 ∈ ℕ0 |
dpmul1000.b | ⊢ 𝐵 ∈ ℕ0 |
dpmul1000.c | ⊢ 𝐶 ∈ ℕ0 |
dpmul1000.d | ⊢ 𝐷 ∈ ℝ |
Ref | Expression |
---|---|
dpmul1000 | ⊢ ((𝐴._𝐵_𝐶𝐷) · ;;;1000) = ;;;𝐴𝐵𝐶𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dpmul1000.a | . . . . . 6 ⊢ 𝐴 ∈ ℕ0 | |
2 | dpmul1000.b | . . . . . . . 8 ⊢ 𝐵 ∈ ℕ0 | |
3 | 2 | nn0rei 12174 | . . . . . . 7 ⊢ 𝐵 ∈ ℝ |
4 | dpmul1000.c | . . . . . . . . 9 ⊢ 𝐶 ∈ ℕ0 | |
5 | 4 | nn0rei 12174 | . . . . . . . 8 ⊢ 𝐶 ∈ ℝ |
6 | dpmul1000.d | . . . . . . . 8 ⊢ 𝐷 ∈ ℝ | |
7 | dp2cl 31056 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → _𝐶𝐷 ∈ ℝ) | |
8 | 5, 6, 7 | mp2an 688 | . . . . . . 7 ⊢ _𝐶𝐷 ∈ ℝ |
9 | dp2cl 31056 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ _𝐶𝐷 ∈ ℝ) → _𝐵_𝐶𝐷 ∈ ℝ) | |
10 | 3, 8, 9 | mp2an 688 | . . . . . 6 ⊢ _𝐵_𝐶𝐷 ∈ ℝ |
11 | dpcl 31067 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ0 ∧ _𝐵_𝐶𝐷 ∈ ℝ) → (𝐴._𝐵_𝐶𝐷) ∈ ℝ) | |
12 | 1, 10, 11 | mp2an 688 | . . . . 5 ⊢ (𝐴._𝐵_𝐶𝐷) ∈ ℝ |
13 | 12 | recni 10920 | . . . 4 ⊢ (𝐴._𝐵_𝐶𝐷) ∈ ℂ |
14 | 10nn0 12384 | . . . . . 6 ⊢ ;10 ∈ ℕ0 | |
15 | 0nn0 12178 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
16 | 14, 15 | deccl 12381 | . . . . 5 ⊢ ;;100 ∈ ℕ0 |
17 | 16 | nn0cni 12175 | . . . 4 ⊢ ;;100 ∈ ℂ |
18 | 14 | nn0cni 12175 | . . . 4 ⊢ ;10 ∈ ℂ |
19 | 13, 17, 18 | mulassi 10917 | . . 3 ⊢ (((𝐴._𝐵_𝐶𝐷) · ;;100) · ;10) = ((𝐴._𝐵_𝐶𝐷) · (;;100 · ;10)) |
20 | 1, 2, 8 | dpmul100 31073 | . . . 4 ⊢ ((𝐴._𝐵_𝐶𝐷) · ;;100) = ;;𝐴𝐵_𝐶𝐷 |
21 | 20 | oveq1i 7265 | . . 3 ⊢ (((𝐴._𝐵_𝐶𝐷) · ;;100) · ;10) = (;;𝐴𝐵_𝐶𝐷 · ;10) |
22 | 16 | dec0u 12387 | . . . . 5 ⊢ (;10 · ;;100) = ;;;1000 |
23 | 18, 17, 22 | mulcomli 10915 | . . . 4 ⊢ (;;100 · ;10) = ;;;1000 |
24 | 23 | oveq2i 7266 | . . 3 ⊢ ((𝐴._𝐵_𝐶𝐷) · (;;100 · ;10)) = ((𝐴._𝐵_𝐶𝐷) · ;;;1000) |
25 | 19, 21, 24 | 3eqtr3i 2774 | . 2 ⊢ (;;𝐴𝐵_𝐶𝐷 · ;10) = ((𝐴._𝐵_𝐶𝐷) · ;;;1000) |
26 | dfdec10 12369 | . . . 4 ⊢ ;;𝐴𝐵_𝐶𝐷 = ((;10 · ;𝐴𝐵) + _𝐶𝐷) | |
27 | 26 | oveq1i 7265 | . . 3 ⊢ (;;𝐴𝐵_𝐶𝐷 · ;10) = (((;10 · ;𝐴𝐵) + _𝐶𝐷) · ;10) |
28 | 1, 2 | deccl 12381 | . . . . . 6 ⊢ ;𝐴𝐵 ∈ ℕ0 |
29 | 28 | nn0cni 12175 | . . . . 5 ⊢ ;𝐴𝐵 ∈ ℂ |
30 | 18, 29 | mulcli 10913 | . . . 4 ⊢ (;10 · ;𝐴𝐵) ∈ ℂ |
31 | 8 | recni 10920 | . . . 4 ⊢ _𝐶𝐷 ∈ ℂ |
32 | 30, 31, 18 | adddiri 10919 | . . 3 ⊢ (((;10 · ;𝐴𝐵) + _𝐶𝐷) · ;10) = (((;10 · ;𝐴𝐵) · ;10) + (_𝐶𝐷 · ;10)) |
33 | 28, 4, 6 | dfdec100 31046 | . . . 4 ⊢ ;;;𝐴𝐵𝐶𝐷 = ((;;100 · ;𝐴𝐵) + ;𝐶𝐷) |
34 | 14 | dec0u 12387 | . . . . . . 7 ⊢ (;10 · ;10) = ;;100 |
35 | 34 | oveq1i 7265 | . . . . . 6 ⊢ ((;10 · ;10) · ;𝐴𝐵) = (;;100 · ;𝐴𝐵) |
36 | 18, 18, 29 | mul32i 11101 | . . . . . 6 ⊢ ((;10 · ;10) · ;𝐴𝐵) = ((;10 · ;𝐴𝐵) · ;10) |
37 | 35, 36 | eqtr3i 2768 | . . . . 5 ⊢ (;;100 · ;𝐴𝐵) = ((;10 · ;𝐴𝐵) · ;10) |
38 | 4, 6 | dpmul10 31071 | . . . . . 6 ⊢ ((𝐶.𝐷) · ;10) = ;𝐶𝐷 |
39 | dpval 31066 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℝ) → (𝐶.𝐷) = _𝐶𝐷) | |
40 | 4, 6, 39 | mp2an 688 | . . . . . . 7 ⊢ (𝐶.𝐷) = _𝐶𝐷 |
41 | 40 | oveq1i 7265 | . . . . . 6 ⊢ ((𝐶.𝐷) · ;10) = (_𝐶𝐷 · ;10) |
42 | 38, 41 | eqtr3i 2768 | . . . . 5 ⊢ ;𝐶𝐷 = (_𝐶𝐷 · ;10) |
43 | 37, 42 | oveq12i 7267 | . . . 4 ⊢ ((;;100 · ;𝐴𝐵) + ;𝐶𝐷) = (((;10 · ;𝐴𝐵) · ;10) + (_𝐶𝐷 · ;10)) |
44 | 33, 43 | eqtr2i 2767 | . . 3 ⊢ (((;10 · ;𝐴𝐵) · ;10) + (_𝐶𝐷 · ;10)) = ;;;𝐴𝐵𝐶𝐷 |
45 | 27, 32, 44 | 3eqtri 2770 | . 2 ⊢ (;;𝐴𝐵_𝐶𝐷 · ;10) = ;;;𝐴𝐵𝐶𝐷 |
46 | 25, 45 | eqtr3i 2768 | 1 ⊢ ((𝐴._𝐵_𝐶𝐷) · ;;;1000) = ;;;𝐴𝐵𝐶𝐷 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 ℕ0cn0 12163 ;cdc 12366 _cdp2 31047 .cdp 31064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-dec 12367 df-dp2 31048 df-dp 31065 |
This theorem is referenced by: dpmul4 31090 |
Copyright terms: Public domain | W3C validator |