MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpoly4 Structured version   Visualization version   GIF version

Theorem bpoly4 16073
Description: The Bernoulli polynomials at four. (Contributed by Scott Fenton, 8-Jul-2015.)
Assertion
Ref Expression
bpoly4 (𝑋 ∈ ℂ → (4 BernPoly 𝑋) = ((((𝑋↑4) − (2 · (𝑋↑3))) + (𝑋↑2)) − (1 / 30)))

Proof of Theorem bpoly4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 4nn0 12518 . . 3 4 ∈ ℕ0
2 bpolyval 16063 . . 3 ((4 ∈ ℕ0𝑋 ∈ ℂ) → (4 BernPoly 𝑋) = ((𝑋↑4) − Σ𝑘 ∈ (0...(4 − 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)))))
31, 2mpan 690 . 2 (𝑋 ∈ ℂ → (4 BernPoly 𝑋) = ((𝑋↑4) − Σ𝑘 ∈ (0...(4 − 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)))))
4 4m1e3 12367 . . . . . . 7 (4 − 1) = 3
5 df-3 12302 . . . . . . 7 3 = (2 + 1)
64, 5eqtri 2758 . . . . . 6 (4 − 1) = (2 + 1)
76oveq2i 7414 . . . . 5 (0...(4 − 1)) = (0...(2 + 1))
87sumeq1i 15711 . . . 4 Σ𝑘 ∈ (0...(4 − 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(2 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)))
9 2eluzge0 12907 . . . . . . 7 2 ∈ (ℤ‘0)
109a1i 11 . . . . . 6 (𝑋 ∈ ℂ → 2 ∈ (ℤ‘0))
11 elfzelz 13539 . . . . . . . . . 10 (𝑘 ∈ (0...(2 + 1)) → 𝑘 ∈ ℤ)
12 bccl 14338 . . . . . . . . . 10 ((4 ∈ ℕ0𝑘 ∈ ℤ) → (4C𝑘) ∈ ℕ0)
131, 11, 12sylancr 587 . . . . . . . . 9 (𝑘 ∈ (0...(2 + 1)) → (4C𝑘) ∈ ℕ0)
1413nn0cnd 12562 . . . . . . . 8 (𝑘 ∈ (0...(2 + 1)) → (4C𝑘) ∈ ℂ)
1514adantl 481 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) → (4C𝑘) ∈ ℂ)
16 elfznn0 13635 . . . . . . . . . 10 (𝑘 ∈ (0...(2 + 1)) → 𝑘 ∈ ℕ0)
17 bpolycl 16066 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑋 ∈ ℂ) → (𝑘 BernPoly 𝑋) ∈ ℂ)
1816, 17sylan 580 . . . . . . . . 9 ((𝑘 ∈ (0...(2 + 1)) ∧ 𝑋 ∈ ℂ) → (𝑘 BernPoly 𝑋) ∈ ℂ)
1918ancoms 458 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) → (𝑘 BernPoly 𝑋) ∈ ℂ)
20 4re 12322 . . . . . . . . . . . . 13 4 ∈ ℝ
2120a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ (0...(2 + 1)) → 4 ∈ ℝ)
2211zred 12695 . . . . . . . . . . . 12 (𝑘 ∈ (0...(2 + 1)) → 𝑘 ∈ ℝ)
2321, 22resubcld 11663 . . . . . . . . . . 11 (𝑘 ∈ (0...(2 + 1)) → (4 − 𝑘) ∈ ℝ)
24 peano2re 11406 . . . . . . . . . . 11 ((4 − 𝑘) ∈ ℝ → ((4 − 𝑘) + 1) ∈ ℝ)
2523, 24syl 17 . . . . . . . . . 10 (𝑘 ∈ (0...(2 + 1)) → ((4 − 𝑘) + 1) ∈ ℝ)
2625recnd 11261 . . . . . . . . 9 (𝑘 ∈ (0...(2 + 1)) → ((4 − 𝑘) + 1) ∈ ℂ)
2726adantl 481 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) → ((4 − 𝑘) + 1) ∈ ℂ)
28 1red 11234 . . . . . . . . . . 11 (𝑘 ∈ (0...(2 + 1)) → 1 ∈ ℝ)
295oveq2i 7414 . . . . . . . . . . . . . 14 (0...3) = (0...(2 + 1))
3029eleq2i 2826 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) ↔ 𝑘 ∈ (0...(2 + 1)))
31 elfzelz 13539 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
3231zred 12695 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...3) → 𝑘 ∈ ℝ)
33 3re 12318 . . . . . . . . . . . . . . 15 3 ∈ ℝ
3433a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...3) → 3 ∈ ℝ)
3520a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...3) → 4 ∈ ℝ)
36 elfzle2 13543 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...3) → 𝑘 ≤ 3)
37 3lt4 12412 . . . . . . . . . . . . . . 15 3 < 4
3837a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...3) → 3 < 4)
3932, 34, 35, 36, 38lelttrd 11391 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → 𝑘 < 4)
4030, 39sylbir 235 . . . . . . . . . . . 12 (𝑘 ∈ (0...(2 + 1)) → 𝑘 < 4)
4122, 21posdifd 11822 . . . . . . . . . . . 12 (𝑘 ∈ (0...(2 + 1)) → (𝑘 < 4 ↔ 0 < (4 − 𝑘)))
4240, 41mpbid 232 . . . . . . . . . . 11 (𝑘 ∈ (0...(2 + 1)) → 0 < (4 − 𝑘))
43 0lt1 11757 . . . . . . . . . . . 12 0 < 1
4443a1i 11 . . . . . . . . . . 11 (𝑘 ∈ (0...(2 + 1)) → 0 < 1)
4523, 28, 42, 44addgt0d 11810 . . . . . . . . . 10 (𝑘 ∈ (0...(2 + 1)) → 0 < ((4 − 𝑘) + 1))
4645gt0ne0d 11799 . . . . . . . . 9 (𝑘 ∈ (0...(2 + 1)) → ((4 − 𝑘) + 1) ≠ 0)
4746adantl 481 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) → ((4 − 𝑘) + 1) ≠ 0)
4819, 27, 47divcld 12015 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) → ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) ∈ ℂ)
4915, 48mulcld 11253 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) ∈ ℂ)
505eqeq2i 2748 . . . . . . 7 (𝑘 = 3 ↔ 𝑘 = (2 + 1))
51 oveq2 7411 . . . . . . . . 9 (𝑘 = 3 → (4C𝑘) = (4C3))
52 4bc3eq4 14344 . . . . . . . . 9 (4C3) = 4
5351, 52eqtrdi 2786 . . . . . . . 8 (𝑘 = 3 → (4C𝑘) = 4)
54 oveq1 7410 . . . . . . . . 9 (𝑘 = 3 → (𝑘 BernPoly 𝑋) = (3 BernPoly 𝑋))
55 oveq2 7411 . . . . . . . . . . 11 (𝑘 = 3 → (4 − 𝑘) = (4 − 3))
5655oveq1d 7418 . . . . . . . . . 10 (𝑘 = 3 → ((4 − 𝑘) + 1) = ((4 − 3) + 1))
57 4cn 12323 . . . . . . . . . . . . 13 4 ∈ ℂ
58 3cn 12319 . . . . . . . . . . . . 13 3 ∈ ℂ
59 ax-1cn 11185 . . . . . . . . . . . . 13 1 ∈ ℂ
60 3p1e4 12383 . . . . . . . . . . . . 13 (3 + 1) = 4
6157, 58, 59, 60subaddrii 11570 . . . . . . . . . . . 12 (4 − 3) = 1
6261oveq1i 7413 . . . . . . . . . . 11 ((4 − 3) + 1) = (1 + 1)
63 df-2 12301 . . . . . . . . . . 11 2 = (1 + 1)
6462, 63eqtr4i 2761 . . . . . . . . . 10 ((4 − 3) + 1) = 2
6556, 64eqtrdi 2786 . . . . . . . . 9 (𝑘 = 3 → ((4 − 𝑘) + 1) = 2)
6654, 65oveq12d 7421 . . . . . . . 8 (𝑘 = 3 → ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) = ((3 BernPoly 𝑋) / 2))
6753, 66oveq12d 7421 . . . . . . 7 (𝑘 = 3 → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (4 · ((3 BernPoly 𝑋) / 2)))
6850, 67sylbir 235 . . . . . 6 (𝑘 = (2 + 1) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (4 · ((3 BernPoly 𝑋) / 2)))
6910, 49, 68fsump1 15770 . . . . 5 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(2 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...2)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (4 · ((3 BernPoly 𝑋) / 2))))
7063oveq2i 7414 . . . . . . . 8 (0...2) = (0...(1 + 1))
7170sumeq1i 15711 . . . . . . 7 Σ𝑘 ∈ (0...2)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(1 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)))
72 1eluzge0 12906 . . . . . . . . . 10 1 ∈ (ℤ‘0)
7372a1i 11 . . . . . . . . 9 (𝑋 ∈ ℂ → 1 ∈ (ℤ‘0))
74 fzssp1 13582 . . . . . . . . . . . 12 (0...(1 + 1)) ⊆ (0...((1 + 1) + 1))
7563oveq1i 7413 . . . . . . . . . . . . 13 (2 + 1) = ((1 + 1) + 1)
7675oveq2i 7414 . . . . . . . . . . . 12 (0...(2 + 1)) = (0...((1 + 1) + 1))
7774, 76sseqtrri 4008 . . . . . . . . . . 11 (0...(1 + 1)) ⊆ (0...(2 + 1))
7877sseli 3954 . . . . . . . . . 10 (𝑘 ∈ (0...(1 + 1)) → 𝑘 ∈ (0...(2 + 1)))
7978, 49sylan2 593 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(1 + 1))) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) ∈ ℂ)
8063eqeq2i 2748 . . . . . . . . . 10 (𝑘 = 2 ↔ 𝑘 = (1 + 1))
81 oveq2 7411 . . . . . . . . . . . 12 (𝑘 = 2 → (4C𝑘) = (4C2))
82 4bc2eq6 14345 . . . . . . . . . . . 12 (4C2) = 6
8381, 82eqtrdi 2786 . . . . . . . . . . 11 (𝑘 = 2 → (4C𝑘) = 6)
84 oveq1 7410 . . . . . . . . . . . 12 (𝑘 = 2 → (𝑘 BernPoly 𝑋) = (2 BernPoly 𝑋))
85 oveq2 7411 . . . . . . . . . . . . . 14 (𝑘 = 2 → (4 − 𝑘) = (4 − 2))
8685oveq1d 7418 . . . . . . . . . . . . 13 (𝑘 = 2 → ((4 − 𝑘) + 1) = ((4 − 2) + 1))
87 2cn 12313 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
88 2p2e4 12373 . . . . . . . . . . . . . . . 16 (2 + 2) = 4
8957, 87, 87, 88subaddrii 11570 . . . . . . . . . . . . . . 15 (4 − 2) = 2
9089oveq1i 7413 . . . . . . . . . . . . . 14 ((4 − 2) + 1) = (2 + 1)
9190, 5eqtr4i 2761 . . . . . . . . . . . . 13 ((4 − 2) + 1) = 3
9286, 91eqtrdi 2786 . . . . . . . . . . . 12 (𝑘 = 2 → ((4 − 𝑘) + 1) = 3)
9384, 92oveq12d 7421 . . . . . . . . . . 11 (𝑘 = 2 → ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) = ((2 BernPoly 𝑋) / 3))
9483, 93oveq12d 7421 . . . . . . . . . 10 (𝑘 = 2 → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (6 · ((2 BernPoly 𝑋) / 3)))
9580, 94sylbir 235 . . . . . . . . 9 (𝑘 = (1 + 1) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (6 · ((2 BernPoly 𝑋) / 3)))
9673, 79, 95fsump1 15770 . . . . . . . 8 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...1)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (6 · ((2 BernPoly 𝑋) / 3))))
97 0p1e1 12360 . . . . . . . . . . . 12 (0 + 1) = 1
9897oveq2i 7414 . . . . . . . . . . 11 (0...(0 + 1)) = (0...1)
9998sumeq1i 15711 . . . . . . . . . 10 Σ𝑘 ∈ (0...(0 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = Σ𝑘 ∈ (0...1)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)))
100 0nn0 12514 . . . . . . . . . . . . . 14 0 ∈ ℕ0
101 nn0uz 12892 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
102100, 101eleqtri 2832 . . . . . . . . . . . . 13 0 ∈ (ℤ‘0)
103102a1i 11 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → 0 ∈ (ℤ‘0))
104 3nn 12317 . . . . . . . . . . . . . . . . 17 3 ∈ ℕ
105 nnuz 12893 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
106104, 105eleqtri 2832 . . . . . . . . . . . . . . . 16 3 ∈ (ℤ‘1)
107 fzss2 13579 . . . . . . . . . . . . . . . 16 (3 ∈ (ℤ‘1) → (0...1) ⊆ (0...3))
108106, 107ax-mp 5 . . . . . . . . . . . . . . 15 (0...1) ⊆ (0...3)
109 2p1e3 12380 . . . . . . . . . . . . . . . 16 (2 + 1) = 3
110109oveq2i 7414 . . . . . . . . . . . . . . 15 (0...(2 + 1)) = (0...3)
111108, 98, 1103sstr4i 4010 . . . . . . . . . . . . . 14 (0...(0 + 1)) ⊆ (0...(2 + 1))
112111sseli 3954 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(0 + 1)) → 𝑘 ∈ (0...(2 + 1)))
113112, 49sylan2 593 . . . . . . . . . . . 12 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(0 + 1))) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) ∈ ℂ)
11497eqeq2i 2748 . . . . . . . . . . . . 13 (𝑘 = (0 + 1) ↔ 𝑘 = 1)
115 oveq2 7411 . . . . . . . . . . . . . . 15 (𝑘 = 1 → (4C𝑘) = (4C1))
116 bcn1 14329 . . . . . . . . . . . . . . . 16 (4 ∈ ℕ0 → (4C1) = 4)
1171, 116ax-mp 5 . . . . . . . . . . . . . . 15 (4C1) = 4
118115, 117eqtrdi 2786 . . . . . . . . . . . . . 14 (𝑘 = 1 → (4C𝑘) = 4)
119 oveq1 7410 . . . . . . . . . . . . . . 15 (𝑘 = 1 → (𝑘 BernPoly 𝑋) = (1 BernPoly 𝑋))
120 oveq2 7411 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (4 − 𝑘) = (4 − 1))
121120oveq1d 7418 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → ((4 − 𝑘) + 1) = ((4 − 1) + 1))
1224oveq1i 7413 . . . . . . . . . . . . . . . . 17 ((4 − 1) + 1) = (3 + 1)
123 df-4 12303 . . . . . . . . . . . . . . . . 17 4 = (3 + 1)
124122, 123eqtr4i 2761 . . . . . . . . . . . . . . . 16 ((4 − 1) + 1) = 4
125121, 124eqtrdi 2786 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((4 − 𝑘) + 1) = 4)
126119, 125oveq12d 7421 . . . . . . . . . . . . . 14 (𝑘 = 1 → ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) = ((1 BernPoly 𝑋) / 4))
127118, 126oveq12d 7421 . . . . . . . . . . . . 13 (𝑘 = 1 → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (4 · ((1 BernPoly 𝑋) / 4)))
128114, 127sylbi 217 . . . . . . . . . . . 12 (𝑘 = (0 + 1) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (4 · ((1 BernPoly 𝑋) / 4)))
129103, 113, 128fsump1 15770 . . . . . . . . . . 11 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...0)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (4 · ((1 BernPoly 𝑋) / 4))))
130 0z 12597 . . . . . . . . . . . . . 14 0 ∈ ℤ
13159a1i 11 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℂ → 1 ∈ ℂ)
132 bpolycl 16066 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℕ0𝑋 ∈ ℂ) → (0 BernPoly 𝑋) ∈ ℂ)
133100, 132mpan 690 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) ∈ ℂ)
134 5cn 12326 . . . . . . . . . . . . . . . . 17 5 ∈ ℂ
135134a1i 11 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℂ → 5 ∈ ℂ)
136 0re 11235 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
137 5pos 12347 . . . . . . . . . . . . . . . . . 18 0 < 5
138136, 137gtneii 11345 . . . . . . . . . . . . . . . . 17 5 ≠ 0
139138a1i 11 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℂ → 5 ≠ 0)
140133, 135, 139divcld 12015 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 5) ∈ ℂ)
141131, 140mulcld 11253 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 5)) ∈ ℂ)
142 oveq2 7411 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (4C𝑘) = (4C0))
143 bcn0 14326 . . . . . . . . . . . . . . . . . 18 (4 ∈ ℕ0 → (4C0) = 1)
1441, 143ax-mp 5 . . . . . . . . . . . . . . . . 17 (4C0) = 1
145142, 144eqtrdi 2786 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (4C𝑘) = 1)
146 oveq1 7410 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋))
147 oveq2 7411 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 0 → (4 − 𝑘) = (4 − 0))
148147oveq1d 7418 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → ((4 − 𝑘) + 1) = ((4 − 0) + 1))
14957subid1i 11553 . . . . . . . . . . . . . . . . . . . 20 (4 − 0) = 4
150149oveq1i 7413 . . . . . . . . . . . . . . . . . . 19 ((4 − 0) + 1) = (4 + 1)
151 4p1e5 12384 . . . . . . . . . . . . . . . . . . 19 (4 + 1) = 5
152150, 151eqtri 2758 . . . . . . . . . . . . . . . . . 18 ((4 − 0) + 1) = 5
153148, 152eqtrdi 2786 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → ((4 − 𝑘) + 1) = 5)
154146, 153oveq12d 7421 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 5))
155145, 154oveq12d 7421 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 5)))
156155fsum1 15761 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 5)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 5)))
157130, 141, 156sylancr 587 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 5)))
158 bpoly0 16064 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1)
159158oveq1d 7418 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 5) = (1 / 5))
160159oveq2d 7419 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 5)) = (1 · (1 / 5)))
161134, 138reccli 11969 . . . . . . . . . . . . . . 15 (1 / 5) ∈ ℂ
162161mullidi 11238 . . . . . . . . . . . . . 14 (1 · (1 / 5)) = (1 / 5)
163160, 162eqtrdi 2786 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 5)) = (1 / 5))
164157, 163eqtrd 2770 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (1 / 5))
165 1nn0 12515 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
166 bpolycl 16066 . . . . . . . . . . . . . . 15 ((1 ∈ ℕ0𝑋 ∈ ℂ) → (1 BernPoly 𝑋) ∈ ℂ)
167165, 166mpan 690 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) ∈ ℂ)
168 nn0cn 12509 . . . . . . . . . . . . . . 15 (4 ∈ ℕ0 → 4 ∈ ℂ)
1691, 168mp1i 13 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → 4 ∈ ℂ)
170 4ne0 12346 . . . . . . . . . . . . . . 15 4 ≠ 0
171170a1i 11 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → 4 ≠ 0)
172167, 169, 171divcan2d 12017 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (4 · ((1 BernPoly 𝑋) / 4)) = (1 BernPoly 𝑋))
173 bpoly1 16065 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))
174172, 173eqtrd 2770 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (4 · ((1 BernPoly 𝑋) / 4)) = (𝑋 − (1 / 2)))
175164, 174oveq12d 7421 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...0)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (4 · ((1 BernPoly 𝑋) / 4))) = ((1 / 5) + (𝑋 − (1 / 2))))
176129, 175eqtrd 2770 . . . . . . . . . 10 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = ((1 / 5) + (𝑋 − (1 / 2))))
17799, 176eqtr3id 2784 . . . . . . . . 9 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...1)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = ((1 / 5) + (𝑋 − (1 / 2))))
178 6cn 12329 . . . . . . . . . . . 12 6 ∈ ℂ
179178a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℂ → 6 ∈ ℂ)
180 2nn0 12516 . . . . . . . . . . . 12 2 ∈ ℕ0
181 bpolycl 16066 . . . . . . . . . . . 12 ((2 ∈ ℕ0𝑋 ∈ ℂ) → (2 BernPoly 𝑋) ∈ ℂ)
182180, 181mpan 690 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) ∈ ℂ)
18358a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℂ → 3 ∈ ℂ)
184 3ne0 12344 . . . . . . . . . . . 12 3 ≠ 0
185184a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℂ → 3 ≠ 0)
186179, 182, 183, 185div12d 12051 . . . . . . . . . 10 (𝑋 ∈ ℂ → (6 · ((2 BernPoly 𝑋) / 3)) = ((2 BernPoly 𝑋) · (6 / 3)))
187 3t2e6 12404 . . . . . . . . . . . . 13 (3 · 2) = 6
188178, 58, 87, 184divmuli 11993 . . . . . . . . . . . . 13 ((6 / 3) = 2 ↔ (3 · 2) = 6)
189187, 188mpbir 231 . . . . . . . . . . . 12 (6 / 3) = 2
190189oveq2i 7414 . . . . . . . . . . 11 ((2 BernPoly 𝑋) · (6 / 3)) = ((2 BernPoly 𝑋) · 2)
19187a1i 11 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → 2 ∈ ℂ)
192182, 191mulcomd 11254 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((2 BernPoly 𝑋) · 2) = (2 · (2 BernPoly 𝑋)))
193 bpoly2 16071 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6)))
194193oveq2d 7419 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (2 · (2 BernPoly 𝑋)) = (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))
195192, 194eqtrd 2770 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((2 BernPoly 𝑋) · 2) = (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))
196190, 195eqtrid 2782 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((2 BernPoly 𝑋) · (6 / 3)) = (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))
197186, 196eqtrd 2770 . . . . . . . . 9 (𝑋 ∈ ℂ → (6 · ((2 BernPoly 𝑋) / 3)) = (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))
198177, 197oveq12d 7421 . . . . . . . 8 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...1)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (6 · ((2 BernPoly 𝑋) / 3))) = (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))
19996, 198eqtrd 2770 . . . . . . 7 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))
20071, 199eqtrid 2782 . . . . . 6 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...2)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))
201 3nn0 12517 . . . . . . . . 9 3 ∈ ℕ0
202 bpolycl 16066 . . . . . . . . 9 ((3 ∈ ℕ0𝑋 ∈ ℂ) → (3 BernPoly 𝑋) ∈ ℂ)
203201, 202mpan 690 . . . . . . . 8 (𝑋 ∈ ℂ → (3 BernPoly 𝑋) ∈ ℂ)
204 2ne0 12342 . . . . . . . . 9 2 ≠ 0
205204a1i 11 . . . . . . . 8 (𝑋 ∈ ℂ → 2 ≠ 0)
206169, 203, 191, 205div12d 12051 . . . . . . 7 (𝑋 ∈ ℂ → (4 · ((3 BernPoly 𝑋) / 2)) = ((3 BernPoly 𝑋) · (4 / 2)))
207 4d2e2 12408 . . . . . . . . 9 (4 / 2) = 2
208207oveq2i 7414 . . . . . . . 8 ((3 BernPoly 𝑋) · (4 / 2)) = ((3 BernPoly 𝑋) · 2)
209203, 191mulcomd 11254 . . . . . . . . 9 (𝑋 ∈ ℂ → ((3 BernPoly 𝑋) · 2) = (2 · (3 BernPoly 𝑋)))
210 bpoly3 16072 . . . . . . . . . 10 (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))
211210oveq2d 7419 . . . . . . . . 9 (𝑋 ∈ ℂ → (2 · (3 BernPoly 𝑋)) = (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))
212209, 211eqtrd 2770 . . . . . . . 8 (𝑋 ∈ ℂ → ((3 BernPoly 𝑋) · 2) = (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))
213208, 212eqtrid 2782 . . . . . . 7 (𝑋 ∈ ℂ → ((3 BernPoly 𝑋) · (4 / 2)) = (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))
214206, 213eqtrd 2770 . . . . . 6 (𝑋 ∈ ℂ → (4 · ((3 BernPoly 𝑋) / 2)) = (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))
215200, 214oveq12d 7421 . . . . 5 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...2)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (4 · ((3 BernPoly 𝑋) / 2))) = ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))))
21669, 215eqtrd 2770 . . . 4 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(2 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))))
2178, 216eqtrid 2782 . . 3 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(4 − 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))))
218217oveq2d 7419 . 2 (𝑋 ∈ ℂ → ((𝑋↑4) − Σ𝑘 ∈ (0...(4 − 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)))) = ((𝑋↑4) − ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))))
219 expcl 14095 . . . . 5 ((𝑋 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝑋↑4) ∈ ℂ)
2201, 219mpan2 691 . . . 4 (𝑋 ∈ ℂ → (𝑋↑4) ∈ ℂ)
221 expcl 14095 . . . . . 6 ((𝑋 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑋↑3) ∈ ℂ)
222201, 221mpan2 691 . . . . 5 (𝑋 ∈ ℂ → (𝑋↑3) ∈ ℂ)
223191, 222mulcld 11253 . . . 4 (𝑋 ∈ ℂ → (2 · (𝑋↑3)) ∈ ℂ)
224 sqcl 14134 . . . . 5 (𝑋 ∈ ℂ → (𝑋↑2) ∈ ℂ)
225201, 100deccl 12721 . . . . . . . 8 30 ∈ ℕ0
226225nn0cni 12511 . . . . . . 7 30 ∈ ℂ
227 dfdec10 12709 . . . . . . . . 9 30 = ((10 · 3) + 0)
228 10re 12725 . . . . . . . . . . . 12 10 ∈ ℝ
229228recni 11247 . . . . . . . . . . 11 10 ∈ ℂ
230229, 58mulcli 11240 . . . . . . . . . 10 (10 · 3) ∈ ℂ
231230addridi 11420 . . . . . . . . 9 ((10 · 3) + 0) = (10 · 3)
232227, 231eqtri 2758 . . . . . . . 8 30 = (10 · 3)
233 10pos 12723 . . . . . . . . . 10 0 < 10
234136, 233gtneii 11345 . . . . . . . . 9 10 ≠ 0
235229, 58, 234, 184mulne0i 11878 . . . . . . . 8 (10 · 3) ≠ 0
236232, 235eqnetri 3002 . . . . . . 7 30 ≠ 0
237226, 236reccli 11969 . . . . . 6 (1 / 30) ∈ ℂ
238237a1i 11 . . . . 5 (𝑋 ∈ ℂ → (1 / 30) ∈ ℂ)
239224, 238subcld 11592 . . . 4 (𝑋 ∈ ℂ → ((𝑋↑2) − (1 / 30)) ∈ ℂ)
240220, 223, 239subsubd 11620 . . 3 (𝑋 ∈ ℂ → ((𝑋↑4) − ((2 · (𝑋↑3)) − ((𝑋↑2) − (1 / 30)))) = (((𝑋↑4) − (2 · (𝑋↑3))) + ((𝑋↑2) − (1 / 30))))
241161a1i 11 . . . . . . . 8 (𝑋 ∈ ℂ → (1 / 5) ∈ ℂ)
242 id 22 . . . . . . . . 9 (𝑋 ∈ ℂ → 𝑋 ∈ ℂ)
24387, 204reccli 11969 . . . . . . . . . 10 (1 / 2) ∈ ℂ
244243a1i 11 . . . . . . . . 9 (𝑋 ∈ ℂ → (1 / 2) ∈ ℂ)
245242, 244subcld 11592 . . . . . . . 8 (𝑋 ∈ ℂ → (𝑋 − (1 / 2)) ∈ ℂ)
246241, 245addcld 11252 . . . . . . 7 (𝑋 ∈ ℂ → ((1 / 5) + (𝑋 − (1 / 2))) ∈ ℂ)
247224, 242subcld 11592 . . . . . . . . 9 (𝑋 ∈ ℂ → ((𝑋↑2) − 𝑋) ∈ ℂ)
248 6pos 12348 . . . . . . . . . . . 12 0 < 6
249136, 248gtneii 11345 . . . . . . . . . . 11 6 ≠ 0
250178, 249reccli 11969 . . . . . . . . . 10 (1 / 6) ∈ ℂ
251250a1i 11 . . . . . . . . 9 (𝑋 ∈ ℂ → (1 / 6) ∈ ℂ)
252247, 251addcld 11252 . . . . . . . 8 (𝑋 ∈ ℂ → (((𝑋↑2) − 𝑋) + (1 / 6)) ∈ ℂ)
253191, 252mulcld 11253 . . . . . . 7 (𝑋 ∈ ℂ → (2 · (((𝑋↑2) − 𝑋) + (1 / 6))) ∈ ℂ)
254246, 253addcld 11252 . . . . . 6 (𝑋 ∈ ℂ → (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) ∈ ℂ)
25558, 87, 204divcli 11981 . . . . . . . . . . 11 (3 / 2) ∈ ℂ
256255a1i 11 . . . . . . . . . 10 (𝑋 ∈ ℂ → (3 / 2) ∈ ℂ)
257256, 224mulcld 11253 . . . . . . . . 9 (𝑋 ∈ ℂ → ((3 / 2) · (𝑋↑2)) ∈ ℂ)
258222, 257subcld 11592 . . . . . . . 8 (𝑋 ∈ ℂ → ((𝑋↑3) − ((3 / 2) · (𝑋↑2))) ∈ ℂ)
259244, 242mulcld 11253 . . . . . . . 8 (𝑋 ∈ ℂ → ((1 / 2) · 𝑋) ∈ ℂ)
260258, 259addcld 11252 . . . . . . 7 (𝑋 ∈ ℂ → (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)) ∈ ℂ)
261191, 260mulcld 11253 . . . . . 6 (𝑋 ∈ ℂ → (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) ∈ ℂ)
262254, 261addcomd 11435 . . . . 5 (𝑋 ∈ ℂ → ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))) = ((2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))))
263191, 258, 259adddid 11257 . . . . . . 7 (𝑋 ∈ ℂ → (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) = ((2 · ((𝑋↑3) − ((3 / 2) · (𝑋↑2)))) + (2 · ((1 / 2) · 𝑋))))
264191, 222, 257subdid 11691 . . . . . . . 8 (𝑋 ∈ ℂ → (2 · ((𝑋↑3) − ((3 / 2) · (𝑋↑2)))) = ((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))))
26587, 204recidi 11970 . . . . . . . . . 10 (2 · (1 / 2)) = 1
266265oveq1i 7413 . . . . . . . . 9 ((2 · (1 / 2)) · 𝑋) = (1 · 𝑋)
267191, 244, 242mulassd 11256 . . . . . . . . 9 (𝑋 ∈ ℂ → ((2 · (1 / 2)) · 𝑋) = (2 · ((1 / 2) · 𝑋)))
268 mullid 11232 . . . . . . . . 9 (𝑋 ∈ ℂ → (1 · 𝑋) = 𝑋)
269266, 267, 2683eqtr3a 2794 . . . . . . . 8 (𝑋 ∈ ℂ → (2 · ((1 / 2) · 𝑋)) = 𝑋)
270264, 269oveq12d 7421 . . . . . . 7 (𝑋 ∈ ℂ → ((2 · ((𝑋↑3) − ((3 / 2) · (𝑋↑2)))) + (2 · ((1 / 2) · 𝑋))) = (((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + 𝑋))
271263, 270eqtrd 2770 . . . . . 6 (𝑋 ∈ ℂ → (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) = (((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + 𝑋))
272271oveq1d 7418 . . . . 5 (𝑋 ∈ ℂ → ((2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = ((((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + 𝑋) + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))))
273191, 257mulcld 11253 . . . . . . . 8 (𝑋 ∈ ℂ → (2 · ((3 / 2) · (𝑋↑2))) ∈ ℂ)
274223, 273subcld 11592 . . . . . . 7 (𝑋 ∈ ℂ → ((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) ∈ ℂ)
275274, 242, 254addassd 11255 . . . . . 6 (𝑋 ∈ ℂ → ((((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + 𝑋) + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = (((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))))
276242, 254addcld 11252 . . . . . . 7 (𝑋 ∈ ℂ → (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) ∈ ℂ)
277223, 273, 276subsubd 11620 . . . . . 6 (𝑋 ∈ ℂ → ((2 · (𝑋↑3)) − ((2 · ((3 / 2) · (𝑋↑2))) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))))) = (((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))))
278191, 256, 224mulassd 11256 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((2 · (3 / 2)) · (𝑋↑2)) = (2 · ((3 / 2) · (𝑋↑2))))
27958, 87, 204divcan2i 11982 . . . . . . . . . . 11 (2 · (3 / 2)) = 3
280279oveq1i 7413 . . . . . . . . . 10 ((2 · (3 / 2)) · (𝑋↑2)) = (3 · (𝑋↑2))
281278, 280eqtr3di 2785 . . . . . . . . 9 (𝑋 ∈ ℂ → (2 · ((3 / 2) · (𝑋↑2))) = (3 · (𝑋↑2)))
282281oveq1d 7418 . . . . . . . 8 (𝑋 ∈ ℂ → ((2 · ((3 / 2) · (𝑋↑2))) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))) = ((3 · (𝑋↑2)) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))))
283242, 246, 253add12d 11460 . . . . . . . . . 10 (𝑋 ∈ ℂ → (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = (((1 / 5) + (𝑋 − (1 / 2))) + (𝑋 + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))))
284191, 247, 251adddid 11257 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (2 · (((𝑋↑2) − 𝑋) + (1 / 6))) = ((2 · ((𝑋↑2) − 𝑋)) + (2 · (1 / 6))))
285191, 224, 242subdid 11691 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℂ → (2 · ((𝑋↑2) − 𝑋)) = ((2 · (𝑋↑2)) − (2 · 𝑋)))
286187oveq2i 7414 . . . . . . . . . . . . . . . . 17 (2 / (3 · 2)) = (2 / 6)
28758, 184reccli 11969 . . . . . . . . . . . . . . . . . . . 20 (1 / 3) ∈ ℂ
28858, 87, 287mul32i 11429 . . . . . . . . . . . . . . . . . . 19 ((3 · 2) · (1 / 3)) = ((3 · (1 / 3)) · 2)
28958, 184recidi 11970 . . . . . . . . . . . . . . . . . . . . 21 (3 · (1 / 3)) = 1
290289oveq1i 7413 . . . . . . . . . . . . . . . . . . . 20 ((3 · (1 / 3)) · 2) = (1 · 2)
29187mullidi 11238 . . . . . . . . . . . . . . . . . . . 20 (1 · 2) = 2
292290, 291eqtri 2758 . . . . . . . . . . . . . . . . . . 19 ((3 · (1 / 3)) · 2) = 2
293288, 292eqtri 2758 . . . . . . . . . . . . . . . . . 18 ((3 · 2) · (1 / 3)) = 2
294187, 178eqeltri 2830 . . . . . . . . . . . . . . . . . . 19 (3 · 2) ∈ ℂ
295187, 249eqnetri 3002 . . . . . . . . . . . . . . . . . . 19 (3 · 2) ≠ 0
29687, 294, 287, 295divmuli 11993 . . . . . . . . . . . . . . . . . 18 ((2 / (3 · 2)) = (1 / 3) ↔ ((3 · 2) · (1 / 3)) = 2)
297293, 296mpbir 231 . . . . . . . . . . . . . . . . 17 (2 / (3 · 2)) = (1 / 3)
29887, 178, 249divreci 11984 . . . . . . . . . . . . . . . . 17 (2 / 6) = (2 · (1 / 6))
299286, 297, 2983eqtr3ri 2767 . . . . . . . . . . . . . . . 16 (2 · (1 / 6)) = (1 / 3)
300299a1i 11 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℂ → (2 · (1 / 6)) = (1 / 3))
301285, 300oveq12d 7421 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → ((2 · ((𝑋↑2) − 𝑋)) + (2 · (1 / 6))) = (((2 · (𝑋↑2)) − (2 · 𝑋)) + (1 / 3)))
302284, 301eqtrd 2770 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (2 · (((𝑋↑2) − 𝑋) + (1 / 6))) = (((2 · (𝑋↑2)) − (2 · 𝑋)) + (1 / 3)))
303302oveq2d 7419 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (𝑋 + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) = (𝑋 + (((2 · (𝑋↑2)) − (2 · 𝑋)) + (1 / 3))))
304191, 224mulcld 11253 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (2 · (𝑋↑2)) ∈ ℂ)
305191, 242mulcld 11253 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (2 · 𝑋) ∈ ℂ)
306304, 305subcld 11592 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((2 · (𝑋↑2)) − (2 · 𝑋)) ∈ ℂ)
307287a1i 11 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (1 / 3) ∈ ℂ)
308242, 306, 307addassd 11255 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((𝑋 + ((2 · (𝑋↑2)) − (2 · 𝑋))) + (1 / 3)) = (𝑋 + (((2 · (𝑋↑2)) − (2 · 𝑋)) + (1 / 3))))
309242, 304, 305addsub12d 11615 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋 + ((2 · (𝑋↑2)) − (2 · 𝑋))) = ((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))))
310309oveq1d 7418 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((𝑋 + ((2 · (𝑋↑2)) − (2 · 𝑋))) + (1 / 3)) = (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3)))
311303, 308, 3103eqtr2d 2776 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (𝑋 + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) = (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3)))
312311oveq2d 7419 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((1 / 5) + (𝑋 − (1 / 2))) + (𝑋 + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3))))
313283, 312eqtrd 2770 . . . . . . . . 9 (𝑋 ∈ ℂ → (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3))))
314313oveq2d 7419 . . . . . . . 8 (𝑋 ∈ ℂ → ((3 · (𝑋↑2)) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))) = ((3 · (𝑋↑2)) − (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3)))))
315242, 305subcld 11592 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋 − (2 · 𝑋)) ∈ ℂ)
316304, 315addcld 11252 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) ∈ ℂ)
317241, 245, 316, 307add4d 11462 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3))) = (((1 / 5) + ((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋)))) + ((𝑋 − (1 / 2)) + (1 / 3))))
318241, 304, 315add12d 11460 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((1 / 5) + ((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋)))) = ((2 · (𝑋↑2)) + ((1 / 5) + (𝑋 − (2 · 𝑋)))))
319318oveq1d 7418 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (((1 / 5) + ((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋)))) + ((𝑋 − (1 / 2)) + (1 / 3))) = (((2 · (𝑋↑2)) + ((1 / 5) + (𝑋 − (2 · 𝑋)))) + ((𝑋 − (1 / 2)) + (1 / 3))))
320241, 315addcld 11252 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((1 / 5) + (𝑋 − (2 · 𝑋))) ∈ ℂ)
321245, 307addcld 11252 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((𝑋 − (1 / 2)) + (1 / 3)) ∈ ℂ)
322304, 320, 321addassd 11255 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (((2 · (𝑋↑2)) + ((1 / 5) + (𝑋 − (2 · 𝑋)))) + ((𝑋 − (1 / 2)) + (1 / 3))) = ((2 · (𝑋↑2)) + (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3)))))
323317, 319, 3223eqtrd 2774 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3))) = ((2 · (𝑋↑2)) + (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3)))))
324323oveq2d 7419 . . . . . . . . 9 (𝑋 ∈ ℂ → ((3 · (𝑋↑2)) − (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3)))) = ((3 · (𝑋↑2)) − ((2 · (𝑋↑2)) + (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3))))))
325183, 224mulcld 11253 . . . . . . . . . 10 (𝑋 ∈ ℂ → (3 · (𝑋↑2)) ∈ ℂ)
326320, 321addcld 11252 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3))) ∈ ℂ)
327325, 304, 326subsub4d 11623 . . . . . . . . 9 (𝑋 ∈ ℂ → (((3 · (𝑋↑2)) − (2 · (𝑋↑2))) − (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3)))) = ((3 · (𝑋↑2)) − ((2 · (𝑋↑2)) + (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3))))))
32858, 87, 59, 109subaddrii 11570 . . . . . . . . . . . 12 (3 − 2) = 1
329328oveq1i 7413 . . . . . . . . . . 11 ((3 − 2) · (𝑋↑2)) = (1 · (𝑋↑2))
330183, 191, 224subdird 11692 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((3 − 2) · (𝑋↑2)) = ((3 · (𝑋↑2)) − (2 · (𝑋↑2))))
331224mullidd 11251 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (1 · (𝑋↑2)) = (𝑋↑2))
332329, 330, 3313eqtr3a 2794 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((3 · (𝑋↑2)) − (2 · (𝑋↑2))) = (𝑋↑2))
333241, 305, 242subsubd 11620 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((1 / 5) − ((2 · 𝑋) − 𝑋)) = (((1 / 5) − (2 · 𝑋)) + 𝑋))
334 2txmxeqx 12378 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → ((2 · 𝑋) − 𝑋) = 𝑋)
335334oveq2d 7419 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((1 / 5) − ((2 · 𝑋) − 𝑋)) = ((1 / 5) − 𝑋))
336241, 305, 242subadd23d 11614 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (((1 / 5) − (2 · 𝑋)) + 𝑋) = ((1 / 5) + (𝑋 − (2 · 𝑋))))
337333, 335, 3363eqtr3d 2778 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((1 / 5) − 𝑋) = ((1 / 5) + (𝑋 − (2 · 𝑋))))
338242, 244, 307subsubd 11620 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (𝑋 − ((1 / 2) − (1 / 3))) = ((𝑋 − (1 / 2)) + (1 / 3)))
339337, 338oveq12d 7421 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (((1 / 5) − 𝑋) + (𝑋 − ((1 / 2) − (1 / 3)))) = (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3))))
340243, 287subcli 11557 . . . . . . . . . . . . . 14 ((1 / 2) − (1 / 3)) ∈ ℂ
341340a1i 11 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((1 / 2) − (1 / 3)) ∈ ℂ)
342241, 242, 341npncand 11616 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (((1 / 5) − 𝑋) + (𝑋 − ((1 / 2) − (1 / 3)))) = ((1 / 5) − ((1 / 2) − (1 / 3))))
343 halfthird 12460 . . . . . . . . . . . . . 14 ((1 / 2) − (1 / 3)) = (1 / 6)
344343oveq2i 7414 . . . . . . . . . . . . 13 ((1 / 5) − ((1 / 2) − (1 / 3))) = ((1 / 5) − (1 / 6))
345 5recm6rec 12849 . . . . . . . . . . . . 13 ((1 / 5) − (1 / 6)) = (1 / 30)
346344, 345eqtri 2758 . . . . . . . . . . . 12 ((1 / 5) − ((1 / 2) − (1 / 3))) = (1 / 30)
347342, 346eqtrdi 2786 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (((1 / 5) − 𝑋) + (𝑋 − ((1 / 2) − (1 / 3)))) = (1 / 30))
348339, 347eqtr3d 2772 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3))) = (1 / 30))
349332, 348oveq12d 7421 . . . . . . . . 9 (𝑋 ∈ ℂ → (((3 · (𝑋↑2)) − (2 · (𝑋↑2))) − (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3)))) = ((𝑋↑2) − (1 / 30)))
350324, 327, 3493eqtr2d 2776 . . . . . . . 8 (𝑋 ∈ ℂ → ((3 · (𝑋↑2)) − (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3)))) = ((𝑋↑2) − (1 / 30)))
351282, 314, 3503eqtrd 2774 . . . . . . 7 (𝑋 ∈ ℂ → ((2 · ((3 / 2) · (𝑋↑2))) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))) = ((𝑋↑2) − (1 / 30)))
352351oveq2d 7419 . . . . . 6 (𝑋 ∈ ℂ → ((2 · (𝑋↑3)) − ((2 · ((3 / 2) · (𝑋↑2))) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))))) = ((2 · (𝑋↑3)) − ((𝑋↑2) − (1 / 30))))
353275, 277, 3523eqtr2d 2776 . . . . 5 (𝑋 ∈ ℂ → ((((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + 𝑋) + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = ((2 · (𝑋↑3)) − ((𝑋↑2) − (1 / 30))))
354262, 272, 3533eqtrd 2774 . . . 4 (𝑋 ∈ ℂ → ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))) = ((2 · (𝑋↑3)) − ((𝑋↑2) − (1 / 30))))
355354oveq2d 7419 . . 3 (𝑋 ∈ ℂ → ((𝑋↑4) − ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))) = ((𝑋↑4) − ((2 · (𝑋↑3)) − ((𝑋↑2) − (1 / 30)))))
356220, 223subcld 11592 . . . 4 (𝑋 ∈ ℂ → ((𝑋↑4) − (2 · (𝑋↑3))) ∈ ℂ)
357356, 224, 238addsubassd 11612 . . 3 (𝑋 ∈ ℂ → ((((𝑋↑4) − (2 · (𝑋↑3))) + (𝑋↑2)) − (1 / 30)) = (((𝑋↑4) − (2 · (𝑋↑3))) + ((𝑋↑2) − (1 / 30))))
358240, 355, 3573eqtr4d 2780 . 2 (𝑋 ∈ ℂ → ((𝑋↑4) − ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))) = ((((𝑋↑4) − (2 · (𝑋↑3))) + (𝑋↑2)) − (1 / 30)))
3593, 218, 3583eqtrd 2774 1 (𝑋 ∈ ℂ → (4 BernPoly 𝑋) = ((((𝑋↑4) − (2 · (𝑋↑3))) + (𝑋↑2)) − (1 / 30)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  wss 3926   class class class wbr 5119  cfv 6530  (class class class)co 7403  cc 11125  cr 11126  0cc0 11127  1c1 11128   + caddc 11130   · cmul 11132   < clt 11267  cmin 11464   / cdiv 11892  cn 12238  2c2 12293  3c3 12294  4c4 12295  5c5 12296  6c6 12297  0cn0 12499  cz 12586  cdc 12706  cuz 12850  ...cfz 13522  cexp 14077  Ccbc 14318  Σcsu 15700   BernPoly cbp 16060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-fac 14290  df-bc 14319  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-sum 15701  df-bpoly 16061
This theorem is referenced by:  fsumcube  16074
  Copyright terms: Public domain W3C validator