Step | Hyp | Ref
| Expression |
1 | | 4nn0 12182 |
. . 3
⊢ 4 ∈
ℕ0 |
2 | | bpolyval 15687 |
. . 3
⊢ ((4
∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (4 BernPoly 𝑋) = ((𝑋↑4) − Σ𝑘 ∈ (0...(4 − 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))))) |
3 | 1, 2 | mpan 686 |
. 2
⊢ (𝑋 ∈ ℂ → (4
BernPoly 𝑋) = ((𝑋↑4) − Σ𝑘 ∈ (0...(4 −
1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))))) |
4 | | 4m1e3 12032 |
. . . . . . 7
⊢ (4
− 1) = 3 |
5 | | df-3 11967 |
. . . . . . 7
⊢ 3 = (2 +
1) |
6 | 4, 5 | eqtri 2766 |
. . . . . 6
⊢ (4
− 1) = (2 + 1) |
7 | 6 | oveq2i 7266 |
. . . . 5
⊢ (0...(4
− 1)) = (0...(2 + 1)) |
8 | 7 | sumeq1i 15338 |
. . . 4
⊢
Σ𝑘 ∈
(0...(4 − 1))((4C𝑘)
· ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(2 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) |
9 | | 2eluzge0 12562 |
. . . . . . 7
⊢ 2 ∈
(ℤ≥‘0) |
10 | 9 | a1i 11 |
. . . . . 6
⊢ (𝑋 ∈ ℂ → 2 ∈
(ℤ≥‘0)) |
11 | | elfzelz 13185 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...(2 + 1)) →
𝑘 ∈
ℤ) |
12 | | bccl 13964 |
. . . . . . . . . 10
⊢ ((4
∈ ℕ0 ∧ 𝑘 ∈ ℤ) → (4C𝑘) ∈
ℕ0) |
13 | 1, 11, 12 | sylancr 586 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...(2 + 1)) →
(4C𝑘) ∈
ℕ0) |
14 | 13 | nn0cnd 12225 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...(2 + 1)) →
(4C𝑘) ∈
ℂ) |
15 | 14 | adantl 481 |
. . . . . . 7
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) →
(4C𝑘) ∈
ℂ) |
16 | | elfznn0 13278 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...(2 + 1)) →
𝑘 ∈
ℕ0) |
17 | | bpolycl 15690 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ0
∧ 𝑋 ∈ ℂ)
→ (𝑘 BernPoly 𝑋) ∈
ℂ) |
18 | 16, 17 | sylan 579 |
. . . . . . . . 9
⊢ ((𝑘 ∈ (0...(2 + 1)) ∧
𝑋 ∈ ℂ) →
(𝑘 BernPoly 𝑋) ∈
ℂ) |
19 | 18 | ancoms 458 |
. . . . . . . 8
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) →
(𝑘 BernPoly 𝑋) ∈
ℂ) |
20 | | 4re 11987 |
. . . . . . . . . . . . 13
⊢ 4 ∈
ℝ |
21 | 20 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...(2 + 1)) → 4
∈ ℝ) |
22 | 11 | zred 12355 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...(2 + 1)) →
𝑘 ∈
ℝ) |
23 | 21, 22 | resubcld 11333 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...(2 + 1)) → (4
− 𝑘) ∈
ℝ) |
24 | | peano2re 11078 |
. . . . . . . . . . 11
⊢ ((4
− 𝑘) ∈ ℝ
→ ((4 − 𝑘) + 1)
∈ ℝ) |
25 | 23, 24 | syl 17 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...(2 + 1)) → ((4
− 𝑘) + 1) ∈
ℝ) |
26 | 25 | recnd 10934 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...(2 + 1)) → ((4
− 𝑘) + 1) ∈
ℂ) |
27 | 26 | adantl 481 |
. . . . . . . 8
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) →
((4 − 𝑘) + 1) ∈
ℂ) |
28 | | 1red 10907 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...(2 + 1)) → 1
∈ ℝ) |
29 | 5 | oveq2i 7266 |
. . . . . . . . . . . . . 14
⊢ (0...3) =
(0...(2 + 1)) |
30 | 29 | eleq2i 2830 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...3) ↔ 𝑘 ∈ (0...(2 +
1))) |
31 | | elfzelz 13185 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℤ) |
32 | 31 | zred 12355 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...3) → 𝑘 ∈
ℝ) |
33 | | 3re 11983 |
. . . . . . . . . . . . . . 15
⊢ 3 ∈
ℝ |
34 | 33 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...3) → 3 ∈
ℝ) |
35 | 20 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...3) → 4 ∈
ℝ) |
36 | | elfzle2 13189 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...3) → 𝑘 ≤ 3) |
37 | | 3lt4 12077 |
. . . . . . . . . . . . . . 15
⊢ 3 <
4 |
38 | 37 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...3) → 3 <
4) |
39 | 32, 34, 35, 36, 38 | lelttrd 11063 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...3) → 𝑘 < 4) |
40 | 30, 39 | sylbir 234 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...(2 + 1)) →
𝑘 < 4) |
41 | 22, 21 | posdifd 11492 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...(2 + 1)) →
(𝑘 < 4 ↔ 0 < (4
− 𝑘))) |
42 | 40, 41 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...(2 + 1)) → 0
< (4 − 𝑘)) |
43 | | 0lt1 11427 |
. . . . . . . . . . . 12
⊢ 0 <
1 |
44 | 43 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...(2 + 1)) → 0
< 1) |
45 | 23, 28, 42, 44 | addgt0d 11480 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...(2 + 1)) → 0
< ((4 − 𝑘) +
1)) |
46 | 45 | gt0ne0d 11469 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...(2 + 1)) → ((4
− 𝑘) + 1) ≠
0) |
47 | 46 | adantl 481 |
. . . . . . . 8
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) →
((4 − 𝑘) + 1) ≠
0) |
48 | 19, 27, 47 | divcld 11681 |
. . . . . . 7
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) →
((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) ∈
ℂ) |
49 | 15, 48 | mulcld 10926 |
. . . . . 6
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) →
((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) ∈ ℂ) |
50 | 5 | eqeq2i 2751 |
. . . . . . 7
⊢ (𝑘 = 3 ↔ 𝑘 = (2 + 1)) |
51 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑘 = 3 → (4C𝑘) = (4C3)) |
52 | | 4bc3eq4 13970 |
. . . . . . . . 9
⊢ (4C3) =
4 |
53 | 51, 52 | eqtrdi 2795 |
. . . . . . . 8
⊢ (𝑘 = 3 → (4C𝑘) = 4) |
54 | | oveq1 7262 |
. . . . . . . . 9
⊢ (𝑘 = 3 → (𝑘 BernPoly 𝑋) = (3 BernPoly 𝑋)) |
55 | | oveq2 7263 |
. . . . . . . . . . 11
⊢ (𝑘 = 3 → (4 − 𝑘) = (4 −
3)) |
56 | 55 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (𝑘 = 3 → ((4 − 𝑘) + 1) = ((4 − 3) +
1)) |
57 | | 4cn 11988 |
. . . . . . . . . . . . 13
⊢ 4 ∈
ℂ |
58 | | 3cn 11984 |
. . . . . . . . . . . . 13
⊢ 3 ∈
ℂ |
59 | | ax-1cn 10860 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
60 | | 3p1e4 12048 |
. . . . . . . . . . . . 13
⊢ (3 + 1) =
4 |
61 | 57, 58, 59, 60 | subaddrii 11240 |
. . . . . . . . . . . 12
⊢ (4
− 3) = 1 |
62 | 61 | oveq1i 7265 |
. . . . . . . . . . 11
⊢ ((4
− 3) + 1) = (1 + 1) |
63 | | df-2 11966 |
. . . . . . . . . . 11
⊢ 2 = (1 +
1) |
64 | 62, 63 | eqtr4i 2769 |
. . . . . . . . . 10
⊢ ((4
− 3) + 1) = 2 |
65 | 56, 64 | eqtrdi 2795 |
. . . . . . . . 9
⊢ (𝑘 = 3 → ((4 − 𝑘) + 1) = 2) |
66 | 54, 65 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑘 = 3 → ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) = ((3 BernPoly 𝑋) / 2)) |
67 | 53, 66 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑘 = 3 → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (4 · ((3 BernPoly 𝑋) / 2))) |
68 | 50, 67 | sylbir 234 |
. . . . . 6
⊢ (𝑘 = (2 + 1) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (4 · ((3 BernPoly 𝑋) / 2))) |
69 | 10, 49, 68 | fsump1 15396 |
. . . . 5
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈ (0...(2 +
1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...2)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (4 · ((3 BernPoly 𝑋) / 2)))) |
70 | 63 | oveq2i 7266 |
. . . . . . . 8
⊢ (0...2) =
(0...(1 + 1)) |
71 | 70 | sumeq1i 15338 |
. . . . . . 7
⊢
Σ𝑘 ∈
(0...2)((4C𝑘) ·
((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(1 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) |
72 | | 1eluzge0 12561 |
. . . . . . . . . 10
⊢ 1 ∈
(ℤ≥‘0) |
73 | 72 | a1i 11 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℂ → 1 ∈
(ℤ≥‘0)) |
74 | | fzssp1 13228 |
. . . . . . . . . . . 12
⊢ (0...(1 +
1)) ⊆ (0...((1 + 1) + 1)) |
75 | 63 | oveq1i 7265 |
. . . . . . . . . . . . 13
⊢ (2 + 1) =
((1 + 1) + 1) |
76 | 75 | oveq2i 7266 |
. . . . . . . . . . . 12
⊢ (0...(2 +
1)) = (0...((1 + 1) + 1)) |
77 | 74, 76 | sseqtrri 3954 |
. . . . . . . . . . 11
⊢ (0...(1 +
1)) ⊆ (0...(2 + 1)) |
78 | 77 | sseli 3913 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...(1 + 1)) →
𝑘 ∈ (0...(2 +
1))) |
79 | 78, 49 | sylan2 592 |
. . . . . . . . 9
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(1 + 1))) →
((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) ∈ ℂ) |
80 | 63 | eqeq2i 2751 |
. . . . . . . . . 10
⊢ (𝑘 = 2 ↔ 𝑘 = (1 + 1)) |
81 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝑘 = 2 → (4C𝑘) = (4C2)) |
82 | | 4bc2eq6 13971 |
. . . . . . . . . . . 12
⊢ (4C2) =
6 |
83 | 81, 82 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (𝑘 = 2 → (4C𝑘) = 6) |
84 | | oveq1 7262 |
. . . . . . . . . . . 12
⊢ (𝑘 = 2 → (𝑘 BernPoly 𝑋) = (2 BernPoly 𝑋)) |
85 | | oveq2 7263 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 2 → (4 − 𝑘) = (4 −
2)) |
86 | 85 | oveq1d 7270 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 2 → ((4 − 𝑘) + 1) = ((4 − 2) +
1)) |
87 | | 2cn 11978 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℂ |
88 | | 2p2e4 12038 |
. . . . . . . . . . . . . . . 16
⊢ (2 + 2) =
4 |
89 | 57, 87, 87, 88 | subaddrii 11240 |
. . . . . . . . . . . . . . 15
⊢ (4
− 2) = 2 |
90 | 89 | oveq1i 7265 |
. . . . . . . . . . . . . 14
⊢ ((4
− 2) + 1) = (2 + 1) |
91 | 90, 5 | eqtr4i 2769 |
. . . . . . . . . . . . 13
⊢ ((4
− 2) + 1) = 3 |
92 | 86, 91 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ (𝑘 = 2 → ((4 − 𝑘) + 1) = 3) |
93 | 84, 92 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (𝑘 = 2 → ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) = ((2 BernPoly 𝑋) / 3)) |
94 | 83, 93 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝑘 = 2 → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (6 · ((2 BernPoly 𝑋) / 3))) |
95 | 80, 94 | sylbir 234 |
. . . . . . . . 9
⊢ (𝑘 = (1 + 1) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (6 · ((2 BernPoly 𝑋) / 3))) |
96 | 73, 79, 95 | fsump1 15396 |
. . . . . . . 8
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈ (0...(1 +
1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...1)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (6 · ((2 BernPoly 𝑋) / 3)))) |
97 | | 0p1e1 12025 |
. . . . . . . . . . . 12
⊢ (0 + 1) =
1 |
98 | 97 | oveq2i 7266 |
. . . . . . . . . . 11
⊢ (0...(0 +
1)) = (0...1) |
99 | 98 | sumeq1i 15338 |
. . . . . . . . . 10
⊢
Σ𝑘 ∈
(0...(0 + 1))((4C𝑘)
· ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = Σ𝑘 ∈ (0...1)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) |
100 | | 0nn0 12178 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℕ0 |
101 | | nn0uz 12549 |
. . . . . . . . . . . . . 14
⊢
ℕ0 = (ℤ≥‘0) |
102 | 100, 101 | eleqtri 2837 |
. . . . . . . . . . . . 13
⊢ 0 ∈
(ℤ≥‘0) |
103 | 102 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → 0 ∈
(ℤ≥‘0)) |
104 | | 3nn 11982 |
. . . . . . . . . . . . . . . . 17
⊢ 3 ∈
ℕ |
105 | | nnuz 12550 |
. . . . . . . . . . . . . . . . 17
⊢ ℕ =
(ℤ≥‘1) |
106 | 104, 105 | eleqtri 2837 |
. . . . . . . . . . . . . . . 16
⊢ 3 ∈
(ℤ≥‘1) |
107 | | fzss2 13225 |
. . . . . . . . . . . . . . . 16
⊢ (3 ∈
(ℤ≥‘1) → (0...1) ⊆
(0...3)) |
108 | 106, 107 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (0...1)
⊆ (0...3) |
109 | | 2p1e3 12045 |
. . . . . . . . . . . . . . . 16
⊢ (2 + 1) =
3 |
110 | 109 | oveq2i 7266 |
. . . . . . . . . . . . . . 15
⊢ (0...(2 +
1)) = (0...3) |
111 | 108, 98, 110 | 3sstr4i 3960 |
. . . . . . . . . . . . . 14
⊢ (0...(0 +
1)) ⊆ (0...(2 + 1)) |
112 | 111 | sseli 3913 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...(0 + 1)) →
𝑘 ∈ (0...(2 +
1))) |
113 | 112, 49 | sylan2 592 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(0 + 1))) →
((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) ∈ ℂ) |
114 | 97 | eqeq2i 2751 |
. . . . . . . . . . . . 13
⊢ (𝑘 = (0 + 1) ↔ 𝑘 = 1) |
115 | | oveq2 7263 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 1 → (4C𝑘) = (4C1)) |
116 | | bcn1 13955 |
. . . . . . . . . . . . . . . 16
⊢ (4 ∈
ℕ0 → (4C1) = 4) |
117 | 1, 116 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ (4C1) =
4 |
118 | 115, 117 | eqtrdi 2795 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 1 → (4C𝑘) = 4) |
119 | | oveq1 7262 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 1 → (𝑘 BernPoly 𝑋) = (1 BernPoly 𝑋)) |
120 | | oveq2 7263 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 1 → (4 − 𝑘) = (4 −
1)) |
121 | 120 | oveq1d 7270 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 1 → ((4 − 𝑘) + 1) = ((4 − 1) +
1)) |
122 | 4 | oveq1i 7265 |
. . . . . . . . . . . . . . . . 17
⊢ ((4
− 1) + 1) = (3 + 1) |
123 | | df-4 11968 |
. . . . . . . . . . . . . . . . 17
⊢ 4 = (3 +
1) |
124 | 122, 123 | eqtr4i 2769 |
. . . . . . . . . . . . . . . 16
⊢ ((4
− 1) + 1) = 4 |
125 | 121, 124 | eqtrdi 2795 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 1 → ((4 − 𝑘) + 1) = 4) |
126 | 119, 125 | oveq12d 7273 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 1 → ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) = ((1 BernPoly 𝑋) / 4)) |
127 | 118, 126 | oveq12d 7273 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 1 → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (4 · ((1 BernPoly 𝑋) / 4))) |
128 | 114, 127 | sylbi 216 |
. . . . . . . . . . . 12
⊢ (𝑘 = (0 + 1) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (4 · ((1 BernPoly 𝑋) / 4))) |
129 | 103, 113,
128 | fsump1 15396 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈ (0...(0 +
1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...0)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (4 · ((1 BernPoly 𝑋) / 4)))) |
130 | | 0z 12260 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℤ |
131 | 59 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ ℂ → 1 ∈
ℂ) |
132 | | bpolycl 15690 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (0 BernPoly 𝑋) ∈
ℂ) |
133 | 100, 132 | mpan 686 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ ℂ → (0
BernPoly 𝑋) ∈
ℂ) |
134 | | 5cn 11991 |
. . . . . . . . . . . . . . . . 17
⊢ 5 ∈
ℂ |
135 | 134 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ ℂ → 5 ∈
ℂ) |
136 | | 0re 10908 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
ℝ |
137 | | 5pos 12012 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 <
5 |
138 | 136, 137 | gtneii 11017 |
. . . . . . . . . . . . . . . . 17
⊢ 5 ≠
0 |
139 | 138 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ ℂ → 5 ≠
0) |
140 | 133, 135,
139 | divcld 11681 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ ℂ → ((0
BernPoly 𝑋) / 5) ∈
ℂ) |
141 | 131, 140 | mulcld 10926 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℂ → (1
· ((0 BernPoly 𝑋) /
5)) ∈ ℂ) |
142 | | oveq2 7263 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (4C𝑘) = (4C0)) |
143 | | bcn0 13952 |
. . . . . . . . . . . . . . . . . 18
⊢ (4 ∈
ℕ0 → (4C0) = 1) |
144 | 1, 143 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
⊢ (4C0) =
1 |
145 | 142, 144 | eqtrdi 2795 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → (4C𝑘) = 1) |
146 | | oveq1 7262 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋)) |
147 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 0 → (4 − 𝑘) = (4 −
0)) |
148 | 147 | oveq1d 7270 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 0 → ((4 − 𝑘) + 1) = ((4 − 0) +
1)) |
149 | 57 | subid1i 11223 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (4
− 0) = 4 |
150 | 149 | oveq1i 7265 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((4
− 0) + 1) = (4 + 1) |
151 | | 4p1e5 12049 |
. . . . . . . . . . . . . . . . . . 19
⊢ (4 + 1) =
5 |
152 | 150, 151 | eqtri 2766 |
. . . . . . . . . . . . . . . . . 18
⊢ ((4
− 0) + 1) = 5 |
153 | 148, 152 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 0 → ((4 − 𝑘) + 1) = 5) |
154 | 146, 153 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 5)) |
155 | 145, 154 | oveq12d 7273 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 0 → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 5))) |
156 | 155 | fsum1 15387 |
. . . . . . . . . . . . . 14
⊢ ((0
∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 5)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 5))) |
157 | 130, 141,
156 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈
(0...0)((4C𝑘) ·
((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (1 · ((0
BernPoly 𝑋) /
5))) |
158 | | bpoly0 15688 |
. . . . . . . . . . . . . . . 16
⊢ (𝑋 ∈ ℂ → (0
BernPoly 𝑋) =
1) |
159 | 158 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ ℂ → ((0
BernPoly 𝑋) / 5) = (1 /
5)) |
160 | 159 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℂ → (1
· ((0 BernPoly 𝑋) /
5)) = (1 · (1 / 5))) |
161 | 134, 138 | reccli 11635 |
. . . . . . . . . . . . . . 15
⊢ (1 / 5)
∈ ℂ |
162 | 161 | mulid2i 10911 |
. . . . . . . . . . . . . 14
⊢ (1
· (1 / 5)) = (1 / 5) |
163 | 160, 162 | eqtrdi 2795 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → (1
· ((0 BernPoly 𝑋) /
5)) = (1 / 5)) |
164 | 157, 163 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈
(0...0)((4C𝑘) ·
((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (1 /
5)) |
165 | | 1nn0 12179 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℕ0 |
166 | | bpolycl 15690 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (1 BernPoly 𝑋) ∈
ℂ) |
167 | 165, 166 | mpan 686 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℂ → (1
BernPoly 𝑋) ∈
ℂ) |
168 | | nn0cn 12173 |
. . . . . . . . . . . . . . 15
⊢ (4 ∈
ℕ0 → 4 ∈ ℂ) |
169 | 1, 168 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℂ → 4 ∈
ℂ) |
170 | | 4ne0 12011 |
. . . . . . . . . . . . . . 15
⊢ 4 ≠
0 |
171 | 170 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℂ → 4 ≠
0) |
172 | 167, 169,
171 | divcan2d 11683 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → (4
· ((1 BernPoly 𝑋) /
4)) = (1 BernPoly 𝑋)) |
173 | | bpoly1 15689 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → (1
BernPoly 𝑋) = (𝑋 − (1 /
2))) |
174 | 172, 173 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → (4
· ((1 BernPoly 𝑋) /
4)) = (𝑋 − (1 /
2))) |
175 | 164, 174 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ →
(Σ𝑘 ∈
(0...0)((4C𝑘) ·
((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (4 · ((1
BernPoly 𝑋) / 4))) = ((1 /
5) + (𝑋 − (1 /
2)))) |
176 | 129, 175 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈ (0...(0 +
1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = ((1 / 5) + (𝑋 − (1 / 2)))) |
177 | 99, 176 | eqtr3id 2793 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈
(0...1)((4C𝑘) ·
((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = ((1 / 5) + (𝑋 − (1 /
2)))) |
178 | | 6cn 11994 |
. . . . . . . . . . . 12
⊢ 6 ∈
ℂ |
179 | 178 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → 6 ∈
ℂ) |
180 | | 2nn0 12180 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ0 |
181 | | bpolycl 15690 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (2 BernPoly 𝑋) ∈
ℂ) |
182 | 180, 181 | mpan 686 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → (2
BernPoly 𝑋) ∈
ℂ) |
183 | 58 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → 3 ∈
ℂ) |
184 | | 3ne0 12009 |
. . . . . . . . . . . 12
⊢ 3 ≠
0 |
185 | 184 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → 3 ≠
0) |
186 | 179, 182,
183, 185 | div12d 11717 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ℂ → (6
· ((2 BernPoly 𝑋) /
3)) = ((2 BernPoly 𝑋)
· (6 / 3))) |
187 | | 3t2e6 12069 |
. . . . . . . . . . . . 13
⊢ (3
· 2) = 6 |
188 | 178, 58, 87, 184 | divmuli 11659 |
. . . . . . . . . . . . 13
⊢ ((6 / 3)
= 2 ↔ (3 · 2) = 6) |
189 | 187, 188 | mpbir 230 |
. . . . . . . . . . . 12
⊢ (6 / 3) =
2 |
190 | 189 | oveq2i 7266 |
. . . . . . . . . . 11
⊢ ((2
BernPoly 𝑋) · (6 /
3)) = ((2 BernPoly 𝑋)
· 2) |
191 | 87 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → 2 ∈
ℂ) |
192 | 182, 191 | mulcomd 10927 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → ((2
BernPoly 𝑋) · 2) =
(2 · (2 BernPoly 𝑋))) |
193 | | bpoly2 15695 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → (2
BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6))) |
194 | 193 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → (2
· (2 BernPoly 𝑋)) =
(2 · (((𝑋↑2)
− 𝑋) + (1 /
6)))) |
195 | 192, 194 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → ((2
BernPoly 𝑋) · 2) =
(2 · (((𝑋↑2)
− 𝑋) + (1 /
6)))) |
196 | 190, 195 | eqtrid 2790 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ℂ → ((2
BernPoly 𝑋) · (6 /
3)) = (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) |
197 | 186, 196 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℂ → (6
· ((2 BernPoly 𝑋) /
3)) = (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) |
198 | 177, 197 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑋 ∈ ℂ →
(Σ𝑘 ∈
(0...1)((4C𝑘) ·
((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (6 · ((2
BernPoly 𝑋) / 3))) = (((1 /
5) + (𝑋 − (1 / 2))) +
(2 · (((𝑋↑2)
− 𝑋) + (1 /
6))))) |
199 | 96, 198 | eqtrd 2778 |
. . . . . . 7
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈ (0...(1 +
1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) |
200 | 71, 199 | eqtrid 2790 |
. . . . . 6
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈
(0...2)((4C𝑘) ·
((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (((1 / 5) + (𝑋 − (1 / 2))) + (2 ·
(((𝑋↑2) − 𝑋) + (1 / 6))))) |
201 | | 3nn0 12181 |
. . . . . . . . 9
⊢ 3 ∈
ℕ0 |
202 | | bpolycl 15690 |
. . . . . . . . 9
⊢ ((3
∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (3 BernPoly 𝑋) ∈
ℂ) |
203 | 201, 202 | mpan 686 |
. . . . . . . 8
⊢ (𝑋 ∈ ℂ → (3
BernPoly 𝑋) ∈
ℂ) |
204 | | 2ne0 12007 |
. . . . . . . . 9
⊢ 2 ≠
0 |
205 | 204 | a1i 11 |
. . . . . . . 8
⊢ (𝑋 ∈ ℂ → 2 ≠
0) |
206 | 169, 203,
191, 205 | div12d 11717 |
. . . . . . 7
⊢ (𝑋 ∈ ℂ → (4
· ((3 BernPoly 𝑋) /
2)) = ((3 BernPoly 𝑋)
· (4 / 2))) |
207 | | 4d2e2 12073 |
. . . . . . . . 9
⊢ (4 / 2) =
2 |
208 | 207 | oveq2i 7266 |
. . . . . . . 8
⊢ ((3
BernPoly 𝑋) · (4 /
2)) = ((3 BernPoly 𝑋)
· 2) |
209 | 203, 191 | mulcomd 10927 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℂ → ((3
BernPoly 𝑋) · 2) =
(2 · (3 BernPoly 𝑋))) |
210 | | bpoly3 15696 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ℂ → (3
BernPoly 𝑋) = (((𝑋↑3) − ((3 / 2)
· (𝑋↑2))) + ((1
/ 2) · 𝑋))) |
211 | 210 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℂ → (2
· (3 BernPoly 𝑋)) =
(2 · (((𝑋↑3)
− ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))) |
212 | 209, 211 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝑋 ∈ ℂ → ((3
BernPoly 𝑋) · 2) =
(2 · (((𝑋↑3)
− ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))) |
213 | 208, 212 | eqtrid 2790 |
. . . . . . 7
⊢ (𝑋 ∈ ℂ → ((3
BernPoly 𝑋) · (4 /
2)) = (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) ·
𝑋)))) |
214 | 206, 213 | eqtrd 2778 |
. . . . . 6
⊢ (𝑋 ∈ ℂ → (4
· ((3 BernPoly 𝑋) /
2)) = (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) ·
𝑋)))) |
215 | 200, 214 | oveq12d 7273 |
. . . . 5
⊢ (𝑋 ∈ ℂ →
(Σ𝑘 ∈
(0...2)((4C𝑘) ·
((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (4 · ((3
BernPoly 𝑋) / 2))) = ((((1
/ 5) + (𝑋 − (1 / 2)))
+ (2 · (((𝑋↑2)
− 𝑋) + (1 / 6)))) +
(2 · (((𝑋↑3)
− ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))) |
216 | 69, 215 | eqtrd 2778 |
. . . 4
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈ (0...(2 +
1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 ·
(((𝑋↑3) − ((3 /
2) · (𝑋↑2))) +
((1 / 2) · 𝑋))))) |
217 | 8, 216 | eqtrid 2790 |
. . 3
⊢ (𝑋 ∈ ℂ →
Σ𝑘 ∈ (0...(4
− 1))((4C𝑘) ·
((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = ((((1 / 5) + (𝑋 − (1 / 2))) + (2 ·
(((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 ·
(((𝑋↑3) − ((3 /
2) · (𝑋↑2))) +
((1 / 2) · 𝑋))))) |
218 | 217 | oveq2d 7271 |
. 2
⊢ (𝑋 ∈ ℂ → ((𝑋↑4) − Σ𝑘 ∈ (0...(4 −
1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)))) = ((𝑋↑4) − ((((1 / 5) + (𝑋 − (1 / 2))) + (2 ·
(((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 ·
(((𝑋↑3) − ((3 /
2) · (𝑋↑2))) +
((1 / 2) · 𝑋)))))) |
219 | | expcl 13728 |
. . . . 5
⊢ ((𝑋 ∈ ℂ ∧ 4 ∈
ℕ0) → (𝑋↑4) ∈ ℂ) |
220 | 1, 219 | mpan2 687 |
. . . 4
⊢ (𝑋 ∈ ℂ → (𝑋↑4) ∈
ℂ) |
221 | | expcl 13728 |
. . . . . 6
⊢ ((𝑋 ∈ ℂ ∧ 3 ∈
ℕ0) → (𝑋↑3) ∈ ℂ) |
222 | 201, 221 | mpan2 687 |
. . . . 5
⊢ (𝑋 ∈ ℂ → (𝑋↑3) ∈
ℂ) |
223 | 191, 222 | mulcld 10926 |
. . . 4
⊢ (𝑋 ∈ ℂ → (2
· (𝑋↑3)) ∈
ℂ) |
224 | | sqcl 13766 |
. . . . 5
⊢ (𝑋 ∈ ℂ → (𝑋↑2) ∈
ℂ) |
225 | 201, 100 | deccl 12381 |
. . . . . . . 8
⊢ ;30 ∈
ℕ0 |
226 | 225 | nn0cni 12175 |
. . . . . . 7
⊢ ;30 ∈ ℂ |
227 | | dfdec10 12369 |
. . . . . . . . 9
⊢ ;30 = ((;10 · 3) + 0) |
228 | | 10re 12385 |
. . . . . . . . . . . 12
⊢ ;10 ∈ ℝ |
229 | 228 | recni 10920 |
. . . . . . . . . . 11
⊢ ;10 ∈ ℂ |
230 | 229, 58 | mulcli 10913 |
. . . . . . . . . 10
⊢ (;10 · 3) ∈
ℂ |
231 | 230 | addid1i 11092 |
. . . . . . . . 9
⊢ ((;10 · 3) + 0) = (;10 · 3) |
232 | 227, 231 | eqtri 2766 |
. . . . . . . 8
⊢ ;30 = (;10 · 3) |
233 | | 10pos 12383 |
. . . . . . . . . 10
⊢ 0 <
;10 |
234 | 136, 233 | gtneii 11017 |
. . . . . . . . 9
⊢ ;10 ≠ 0 |
235 | 229, 58, 234, 184 | mulne0i 11548 |
. . . . . . . 8
⊢ (;10 · 3) ≠ 0 |
236 | 232, 235 | eqnetri 3013 |
. . . . . . 7
⊢ ;30 ≠ 0 |
237 | 226, 236 | reccli 11635 |
. . . . . 6
⊢ (1 /
;30) ∈
ℂ |
238 | 237 | a1i 11 |
. . . . 5
⊢ (𝑋 ∈ ℂ → (1 /
;30) ∈
ℂ) |
239 | 224, 238 | subcld 11262 |
. . . 4
⊢ (𝑋 ∈ ℂ → ((𝑋↑2) − (1 / ;30)) ∈ ℂ) |
240 | 220, 223,
239 | subsubd 11290 |
. . 3
⊢ (𝑋 ∈ ℂ → ((𝑋↑4) − ((2 ·
(𝑋↑3)) − ((𝑋↑2) − (1 / ;30)))) = (((𝑋↑4) − (2 · (𝑋↑3))) + ((𝑋↑2) − (1 / ;30)))) |
241 | 161 | a1i 11 |
. . . . . . . 8
⊢ (𝑋 ∈ ℂ → (1 / 5)
∈ ℂ) |
242 | | id 22 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℂ → 𝑋 ∈
ℂ) |
243 | 87, 204 | reccli 11635 |
. . . . . . . . . 10
⊢ (1 / 2)
∈ ℂ |
244 | 243 | a1i 11 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℂ → (1 / 2)
∈ ℂ) |
245 | 242, 244 | subcld 11262 |
. . . . . . . 8
⊢ (𝑋 ∈ ℂ → (𝑋 − (1 / 2)) ∈
ℂ) |
246 | 241, 245 | addcld 10925 |
. . . . . . 7
⊢ (𝑋 ∈ ℂ → ((1 / 5)
+ (𝑋 − (1 / 2)))
∈ ℂ) |
247 | 224, 242 | subcld 11262 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℂ → ((𝑋↑2) − 𝑋) ∈
ℂ) |
248 | | 6pos 12013 |
. . . . . . . . . . . 12
⊢ 0 <
6 |
249 | 136, 248 | gtneii 11017 |
. . . . . . . . . . 11
⊢ 6 ≠
0 |
250 | 178, 249 | reccli 11635 |
. . . . . . . . . 10
⊢ (1 / 6)
∈ ℂ |
251 | 250 | a1i 11 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℂ → (1 / 6)
∈ ℂ) |
252 | 247, 251 | addcld 10925 |
. . . . . . . 8
⊢ (𝑋 ∈ ℂ → (((𝑋↑2) − 𝑋) + (1 / 6)) ∈
ℂ) |
253 | 191, 252 | mulcld 10926 |
. . . . . . 7
⊢ (𝑋 ∈ ℂ → (2
· (((𝑋↑2)
− 𝑋) + (1 / 6)))
∈ ℂ) |
254 | 246, 253 | addcld 10925 |
. . . . . 6
⊢ (𝑋 ∈ ℂ → (((1 / 5)
+ (𝑋 − (1 / 2))) + (2
· (((𝑋↑2)
− 𝑋) + (1 / 6))))
∈ ℂ) |
255 | 58, 87, 204 | divcli 11647 |
. . . . . . . . . . 11
⊢ (3 / 2)
∈ ℂ |
256 | 255 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ℂ → (3 / 2)
∈ ℂ) |
257 | 256, 224 | mulcld 10926 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℂ → ((3 / 2)
· (𝑋↑2)) ∈
ℂ) |
258 | 222, 257 | subcld 11262 |
. . . . . . . 8
⊢ (𝑋 ∈ ℂ → ((𝑋↑3) − ((3 / 2)
· (𝑋↑2)))
∈ ℂ) |
259 | 244, 242 | mulcld 10926 |
. . . . . . . 8
⊢ (𝑋 ∈ ℂ → ((1 / 2)
· 𝑋) ∈
ℂ) |
260 | 258, 259 | addcld 10925 |
. . . . . . 7
⊢ (𝑋 ∈ ℂ → (((𝑋↑3) − ((3 / 2)
· (𝑋↑2))) + ((1
/ 2) · 𝑋)) ∈
ℂ) |
261 | 191, 260 | mulcld 10926 |
. . . . . 6
⊢ (𝑋 ∈ ℂ → (2
· (((𝑋↑3)
− ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) ∈
ℂ) |
262 | 254, 261 | addcomd 11107 |
. . . . 5
⊢ (𝑋 ∈ ℂ → ((((1 /
5) + (𝑋 − (1 / 2))) +
(2 · (((𝑋↑2)
− 𝑋) + (1 / 6)))) +
(2 · (((𝑋↑3)
− ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))) = ((2 · (((𝑋↑3) − ((3 / 2)
· (𝑋↑2))) + ((1
/ 2) · 𝑋))) + (((1 /
5) + (𝑋 − (1 / 2))) +
(2 · (((𝑋↑2)
− 𝑋) + (1 /
6)))))) |
263 | 191, 258,
259 | adddid 10930 |
. . . . . . 7
⊢ (𝑋 ∈ ℂ → (2
· (((𝑋↑3)
− ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) = ((2 · ((𝑋↑3) − ((3 / 2)
· (𝑋↑2)))) + (2
· ((1 / 2) · 𝑋)))) |
264 | 191, 222,
257 | subdid 11361 |
. . . . . . . 8
⊢ (𝑋 ∈ ℂ → (2
· ((𝑋↑3)
− ((3 / 2) · (𝑋↑2)))) = ((2 · (𝑋↑3)) − (2 ·
((3 / 2) · (𝑋↑2))))) |
265 | 87, 204 | recidi 11636 |
. . . . . . . . . 10
⊢ (2
· (1 / 2)) = 1 |
266 | 265 | oveq1i 7265 |
. . . . . . . . 9
⊢ ((2
· (1 / 2)) · 𝑋) = (1 · 𝑋) |
267 | 191, 244,
242 | mulassd 10929 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℂ → ((2
· (1 / 2)) · 𝑋) = (2 · ((1 / 2) · 𝑋))) |
268 | | mulid2 10905 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℂ → (1
· 𝑋) = 𝑋) |
269 | 266, 267,
268 | 3eqtr3a 2803 |
. . . . . . . 8
⊢ (𝑋 ∈ ℂ → (2
· ((1 / 2) · 𝑋)) = 𝑋) |
270 | 264, 269 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑋 ∈ ℂ → ((2
· ((𝑋↑3)
− ((3 / 2) · (𝑋↑2)))) + (2 · ((1 / 2) ·
𝑋))) = (((2 · (𝑋↑3)) − (2 ·
((3 / 2) · (𝑋↑2)))) + 𝑋)) |
271 | 263, 270 | eqtrd 2778 |
. . . . . 6
⊢ (𝑋 ∈ ℂ → (2
· (((𝑋↑3)
− ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) = (((2 · (𝑋↑3)) − (2 ·
((3 / 2) · (𝑋↑2)))) + 𝑋)) |
272 | 271 | oveq1d 7270 |
. . . . 5
⊢ (𝑋 ∈ ℂ → ((2
· (((𝑋↑3)
− ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) + (((1 / 5) + (𝑋 − (1 / 2))) + (2 ·
(((𝑋↑2) − 𝑋) + (1 / 6))))) = ((((2 ·
(𝑋↑3)) − (2
· ((3 / 2) · (𝑋↑2)))) + 𝑋) + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 /
6)))))) |
273 | 191, 257 | mulcld 10926 |
. . . . . . . 8
⊢ (𝑋 ∈ ℂ → (2
· ((3 / 2) · (𝑋↑2))) ∈ ℂ) |
274 | 223, 273 | subcld 11262 |
. . . . . . 7
⊢ (𝑋 ∈ ℂ → ((2
· (𝑋↑3))
− (2 · ((3 / 2) · (𝑋↑2)))) ∈ ℂ) |
275 | 274, 242,
254 | addassd 10928 |
. . . . . 6
⊢ (𝑋 ∈ ℂ → ((((2
· (𝑋↑3))
− (2 · ((3 / 2) · (𝑋↑2)))) + 𝑋) + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = (((2 ·
(𝑋↑3)) − (2
· ((3 / 2) · (𝑋↑2)))) + (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 /
6))))))) |
276 | 242, 254 | addcld 10925 |
. . . . . . 7
⊢ (𝑋 ∈ ℂ → (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 ·
(((𝑋↑2) − 𝑋) + (1 / 6))))) ∈
ℂ) |
277 | 223, 273,
276 | subsubd 11290 |
. . . . . 6
⊢ (𝑋 ∈ ℂ → ((2
· (𝑋↑3))
− ((2 · ((3 / 2) · (𝑋↑2))) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))))) = (((2
· (𝑋↑3))
− (2 · ((3 / 2) · (𝑋↑2)))) + (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 /
6))))))) |
278 | 191, 256,
224 | mulassd 10929 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ℂ → ((2
· (3 / 2)) · (𝑋↑2)) = (2 · ((3 / 2) ·
(𝑋↑2)))) |
279 | 58, 87, 204 | divcan2i 11648 |
. . . . . . . . . . 11
⊢ (2
· (3 / 2)) = 3 |
280 | 279 | oveq1i 7265 |
. . . . . . . . . 10
⊢ ((2
· (3 / 2)) · (𝑋↑2)) = (3 · (𝑋↑2)) |
281 | 278, 280 | eqtr3di 2794 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℂ → (2
· ((3 / 2) · (𝑋↑2))) = (3 · (𝑋↑2))) |
282 | 281 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑋 ∈ ℂ → ((2
· ((3 / 2) · (𝑋↑2))) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))) = ((3 ·
(𝑋↑2)) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 ·
(((𝑋↑2) − 𝑋) + (1 /
6))))))) |
283 | 242, 246,
253 | add12d 11131 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ℂ → (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 ·
(((𝑋↑2) − 𝑋) + (1 / 6))))) = (((1 / 5) +
(𝑋 − (1 / 2))) +
(𝑋 + (2 · (((𝑋↑2) − 𝑋) + (1 /
6)))))) |
284 | 191, 247,
251 | adddid 10930 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℂ → (2
· (((𝑋↑2)
− 𝑋) + (1 / 6))) =
((2 · ((𝑋↑2)
− 𝑋)) + (2 ·
(1 / 6)))) |
285 | 191, 224,
242 | subdid 11361 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ ℂ → (2
· ((𝑋↑2)
− 𝑋)) = ((2 ·
(𝑋↑2)) − (2
· 𝑋))) |
286 | 187 | oveq2i 7266 |
. . . . . . . . . . . . . . . . 17
⊢ (2 / (3
· 2)) = (2 / 6) |
287 | 58, 184 | reccli 11635 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1 / 3)
∈ ℂ |
288 | 58, 87, 287 | mul32i 11101 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((3
· 2) · (1 / 3)) = ((3 · (1 / 3)) ·
2) |
289 | 58, 184 | recidi 11636 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (3
· (1 / 3)) = 1 |
290 | 289 | oveq1i 7265 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((3
· (1 / 3)) · 2) = (1 · 2) |
291 | 87 | mulid2i 10911 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (1
· 2) = 2 |
292 | 290, 291 | eqtri 2766 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((3
· (1 / 3)) · 2) = 2 |
293 | 288, 292 | eqtri 2766 |
. . . . . . . . . . . . . . . . . 18
⊢ ((3
· 2) · (1 / 3)) = 2 |
294 | 187, 178 | eqeltri 2835 |
. . . . . . . . . . . . . . . . . . 19
⊢ (3
· 2) ∈ ℂ |
295 | 187, 249 | eqnetri 3013 |
. . . . . . . . . . . . . . . . . . 19
⊢ (3
· 2) ≠ 0 |
296 | 87, 294, 287, 295 | divmuli 11659 |
. . . . . . . . . . . . . . . . . 18
⊢ ((2 / (3
· 2)) = (1 / 3) ↔ ((3 · 2) · (1 / 3)) =
2) |
297 | 293, 296 | mpbir 230 |
. . . . . . . . . . . . . . . . 17
⊢ (2 / (3
· 2)) = (1 / 3) |
298 | 87, 178, 249 | divreci 11650 |
. . . . . . . . . . . . . . . . 17
⊢ (2 / 6) =
(2 · (1 / 6)) |
299 | 286, 297,
298 | 3eqtr3ri 2775 |
. . . . . . . . . . . . . . . 16
⊢ (2
· (1 / 6)) = (1 / 3) |
300 | 299 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝑋 ∈ ℂ → (2
· (1 / 6)) = (1 / 3)) |
301 | 285, 300 | oveq12d 7273 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℂ → ((2
· ((𝑋↑2)
− 𝑋)) + (2 ·
(1 / 6))) = (((2 · (𝑋↑2)) − (2 · 𝑋)) + (1 / 3))) |
302 | 284, 301 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → (2
· (((𝑋↑2)
− 𝑋) + (1 / 6))) =
(((2 · (𝑋↑2))
− (2 · 𝑋)) +
(1 / 3))) |
303 | 302 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → (𝑋 + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) = (𝑋 + (((2 · (𝑋↑2)) − (2 ·
𝑋)) + (1 /
3)))) |
304 | 191, 224 | mulcld 10926 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℂ → (2
· (𝑋↑2)) ∈
ℂ) |
305 | 191, 242 | mulcld 10926 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℂ → (2
· 𝑋) ∈
ℂ) |
306 | 304, 305 | subcld 11262 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → ((2
· (𝑋↑2))
− (2 · 𝑋))
∈ ℂ) |
307 | 287 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → (1 / 3)
∈ ℂ) |
308 | 242, 306,
307 | addassd 10928 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → ((𝑋 + ((2 · (𝑋↑2)) − (2 ·
𝑋))) + (1 / 3)) = (𝑋 + (((2 · (𝑋↑2)) − (2 ·
𝑋)) + (1 /
3)))) |
309 | 242, 304,
305 | addsub12d 11285 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → (𝑋 + ((2 · (𝑋↑2)) − (2 ·
𝑋))) = ((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋)))) |
310 | 309 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → ((𝑋 + ((2 · (𝑋↑2)) − (2 ·
𝑋))) + (1 / 3)) = (((2
· (𝑋↑2)) +
(𝑋 − (2 ·
𝑋))) + (1 /
3))) |
311 | 303, 308,
310 | 3eqtr2d 2784 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → (𝑋 + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) = (((2 ·
(𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3))) |
312 | 311 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ℂ → (((1 / 5)
+ (𝑋 − (1 / 2))) +
(𝑋 + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = (((1 / 5) +
(𝑋 − (1 / 2))) + (((2
· (𝑋↑2)) +
(𝑋 − (2 ·
𝑋))) + (1 /
3)))) |
313 | 283, 312 | eqtrd 2778 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℂ → (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 ·
(((𝑋↑2) − 𝑋) + (1 / 6))))) = (((1 / 5) +
(𝑋 − (1 / 2))) + (((2
· (𝑋↑2)) +
(𝑋 − (2 ·
𝑋))) + (1 /
3)))) |
314 | 313 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑋 ∈ ℂ → ((3
· (𝑋↑2))
− (𝑋 + (((1 / 5) +
(𝑋 − (1 / 2))) + (2
· (((𝑋↑2)
− 𝑋) + (1 / 6)))))) =
((3 · (𝑋↑2))
− (((1 / 5) + (𝑋
− (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3))))) |
315 | 242, 305 | subcld 11262 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → (𝑋 − (2 · 𝑋)) ∈
ℂ) |
316 | 304, 315 | addcld 10925 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → ((2
· (𝑋↑2)) +
(𝑋 − (2 ·
𝑋))) ∈
ℂ) |
317 | 241, 245,
316, 307 | add4d 11133 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → (((1 / 5)
+ (𝑋 − (1 / 2))) +
(((2 · (𝑋↑2)) +
(𝑋 − (2 ·
𝑋))) + (1 / 3))) = (((1 /
5) + ((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋)))) + ((𝑋 − (1 / 2)) + (1 /
3)))) |
318 | 241, 304,
315 | add12d 11131 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → ((1 / 5)
+ ((2 · (𝑋↑2))
+ (𝑋 − (2 ·
𝑋)))) = ((2 · (𝑋↑2)) + ((1 / 5) + (𝑋 − (2 · 𝑋))))) |
319 | 318 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → (((1 / 5)
+ ((2 · (𝑋↑2))
+ (𝑋 − (2 ·
𝑋)))) + ((𝑋 − (1 / 2)) + (1 / 3))) = (((2
· (𝑋↑2)) + ((1
/ 5) + (𝑋 − (2
· 𝑋)))) + ((𝑋 − (1 / 2)) + (1 /
3)))) |
320 | 241, 315 | addcld 10925 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → ((1 / 5)
+ (𝑋 − (2 ·
𝑋))) ∈
ℂ) |
321 | 245, 307 | addcld 10925 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → ((𝑋 − (1 / 2)) + (1 / 3))
∈ ℂ) |
322 | 304, 320,
321 | addassd 10928 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → (((2
· (𝑋↑2)) + ((1
/ 5) + (𝑋 − (2
· 𝑋)))) + ((𝑋 − (1 / 2)) + (1 / 3))) =
((2 · (𝑋↑2)) +
(((1 / 5) + (𝑋 − (2
· 𝑋))) + ((𝑋 − (1 / 2)) + (1 /
3))))) |
323 | 317, 319,
322 | 3eqtrd 2782 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ℂ → (((1 / 5)
+ (𝑋 − (1 / 2))) +
(((2 · (𝑋↑2)) +
(𝑋 − (2 ·
𝑋))) + (1 / 3))) = ((2
· (𝑋↑2)) + (((1
/ 5) + (𝑋 − (2
· 𝑋))) + ((𝑋 − (1 / 2)) + (1 /
3))))) |
324 | 323 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℂ → ((3
· (𝑋↑2))
− (((1 / 5) + (𝑋
− (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3)))) = ((3 · (𝑋↑2)) − ((2 ·
(𝑋↑2)) + (((1 / 5) +
(𝑋 − (2 ·
𝑋))) + ((𝑋 − (1 / 2)) + (1 /
3)))))) |
325 | 183, 224 | mulcld 10926 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ℂ → (3
· (𝑋↑2)) ∈
ℂ) |
326 | 320, 321 | addcld 10925 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ℂ → (((1 / 5)
+ (𝑋 − (2 ·
𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3))) ∈
ℂ) |
327 | 325, 304,
326 | subsub4d 11293 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℂ → (((3
· (𝑋↑2))
− (2 · (𝑋↑2))) − (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3)))) = ((3
· (𝑋↑2))
− ((2 · (𝑋↑2)) + (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 /
3)))))) |
328 | 58, 87, 59, 109 | subaddrii 11240 |
. . . . . . . . . . . 12
⊢ (3
− 2) = 1 |
329 | 328 | oveq1i 7265 |
. . . . . . . . . . 11
⊢ ((3
− 2) · (𝑋↑2)) = (1 · (𝑋↑2)) |
330 | 183, 191,
224 | subdird 11362 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → ((3
− 2) · (𝑋↑2)) = ((3 · (𝑋↑2)) − (2 · (𝑋↑2)))) |
331 | 224 | mulid2d 10924 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → (1
· (𝑋↑2)) =
(𝑋↑2)) |
332 | 329, 330,
331 | 3eqtr3a 2803 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ℂ → ((3
· (𝑋↑2))
− (2 · (𝑋↑2))) = (𝑋↑2)) |
333 | 241, 305,
242 | subsubd 11290 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → ((1 / 5)
− ((2 · 𝑋)
− 𝑋)) = (((1 / 5)
− (2 · 𝑋)) +
𝑋)) |
334 | | 2txmxeqx 12043 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ ℂ → ((2
· 𝑋) − 𝑋) = 𝑋) |
335 | 334 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → ((1 / 5)
− ((2 · 𝑋)
− 𝑋)) = ((1 / 5)
− 𝑋)) |
336 | 241, 305,
242 | subadd23d 11284 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → (((1 / 5)
− (2 · 𝑋)) +
𝑋) = ((1 / 5) + (𝑋 − (2 · 𝑋)))) |
337 | 333, 335,
336 | 3eqtr3d 2786 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → ((1 / 5)
− 𝑋) = ((1 / 5) +
(𝑋 − (2 ·
𝑋)))) |
338 | 242, 244,
307 | subsubd 11290 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → (𝑋 − ((1 / 2) − (1 /
3))) = ((𝑋 − (1 / 2))
+ (1 / 3))) |
339 | 337, 338 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → (((1 / 5)
− 𝑋) + (𝑋 − ((1 / 2) − (1 /
3)))) = (((1 / 5) + (𝑋
− (2 · 𝑋))) +
((𝑋 − (1 / 2)) + (1 /
3)))) |
340 | 243, 287 | subcli 11227 |
. . . . . . . . . . . . . 14
⊢ ((1 / 2)
− (1 / 3)) ∈ ℂ |
341 | 340 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∈ ℂ → ((1 / 2)
− (1 / 3)) ∈ ℂ) |
342 | 241, 242,
341 | npncand 11286 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ ℂ → (((1 / 5)
− 𝑋) + (𝑋 − ((1 / 2) − (1 /
3)))) = ((1 / 5) − ((1 / 2) − (1 / 3)))) |
343 | | halfthird 12509 |
. . . . . . . . . . . . . 14
⊢ ((1 / 2)
− (1 / 3)) = (1 / 6) |
344 | 343 | oveq2i 7266 |
. . . . . . . . . . . . 13
⊢ ((1 / 5)
− ((1 / 2) − (1 / 3))) = ((1 / 5) − (1 / 6)) |
345 | | 5recm6rec 12510 |
. . . . . . . . . . . . 13
⊢ ((1 / 5)
− (1 / 6)) = (1 / ;30) |
346 | 344, 345 | eqtri 2766 |
. . . . . . . . . . . 12
⊢ ((1 / 5)
− ((1 / 2) − (1 / 3))) = (1 / ;30) |
347 | 342, 346 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ ℂ → (((1 / 5)
− 𝑋) + (𝑋 − ((1 / 2) − (1 /
3)))) = (1 / ;30)) |
348 | 339, 347 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ (𝑋 ∈ ℂ → (((1 / 5)
+ (𝑋 − (2 ·
𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3))) = (1 / ;30)) |
349 | 332, 348 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑋 ∈ ℂ → (((3
· (𝑋↑2))
− (2 · (𝑋↑2))) − (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3)))) = ((𝑋↑2) − (1 / ;30))) |
350 | 324, 327,
349 | 3eqtr2d 2784 |
. . . . . . . 8
⊢ (𝑋 ∈ ℂ → ((3
· (𝑋↑2))
− (((1 / 5) + (𝑋
− (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3)))) = ((𝑋↑2) − (1 / ;30))) |
351 | 282, 314,
350 | 3eqtrd 2782 |
. . . . . . 7
⊢ (𝑋 ∈ ℂ → ((2
· ((3 / 2) · (𝑋↑2))) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))) = ((𝑋↑2) − (1 / ;30))) |
352 | 351 | oveq2d 7271 |
. . . . . 6
⊢ (𝑋 ∈ ℂ → ((2
· (𝑋↑3))
− ((2 · ((3 / 2) · (𝑋↑2))) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))))) = ((2 ·
(𝑋↑3)) − ((𝑋↑2) − (1 / ;30)))) |
353 | 275, 277,
352 | 3eqtr2d 2784 |
. . . . 5
⊢ (𝑋 ∈ ℂ → ((((2
· (𝑋↑3))
− (2 · ((3 / 2) · (𝑋↑2)))) + 𝑋) + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = ((2 ·
(𝑋↑3)) − ((𝑋↑2) − (1 / ;30)))) |
354 | 262, 272,
353 | 3eqtrd 2782 |
. . . 4
⊢ (𝑋 ∈ ℂ → ((((1 /
5) + (𝑋 − (1 / 2))) +
(2 · (((𝑋↑2)
− 𝑋) + (1 / 6)))) +
(2 · (((𝑋↑3)
− ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))) = ((2 · (𝑋↑3)) − ((𝑋↑2) − (1 / ;30)))) |
355 | 354 | oveq2d 7271 |
. . 3
⊢ (𝑋 ∈ ℂ → ((𝑋↑4) − ((((1 / 5) +
(𝑋 − (1 / 2))) + (2
· (((𝑋↑2)
− 𝑋) + (1 / 6)))) +
(2 · (((𝑋↑3)
− ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))) = ((𝑋↑4) − ((2 · (𝑋↑3)) − ((𝑋↑2) − (1 / ;30))))) |
356 | 220, 223 | subcld 11262 |
. . . 4
⊢ (𝑋 ∈ ℂ → ((𝑋↑4) − (2 ·
(𝑋↑3))) ∈
ℂ) |
357 | 356, 224,
238 | addsubassd 11282 |
. . 3
⊢ (𝑋 ∈ ℂ → ((((𝑋↑4) − (2 ·
(𝑋↑3))) + (𝑋↑2)) − (1 / ;30)) = (((𝑋↑4) − (2 · (𝑋↑3))) + ((𝑋↑2) − (1 / ;30)))) |
358 | 240, 355,
357 | 3eqtr4d 2788 |
. 2
⊢ (𝑋 ∈ ℂ → ((𝑋↑4) − ((((1 / 5) +
(𝑋 − (1 / 2))) + (2
· (((𝑋↑2)
− 𝑋) + (1 / 6)))) +
(2 · (((𝑋↑3)
− ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))) = ((((𝑋↑4) − (2 · (𝑋↑3))) + (𝑋↑2)) − (1 / ;30))) |
359 | 3, 218, 358 | 3eqtrd 2782 |
1
⊢ (𝑋 ∈ ℂ → (4
BernPoly 𝑋) = ((((𝑋↑4) − (2 ·
(𝑋↑3))) + (𝑋↑2)) − (1 / ;30))) |