MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpoly4 Structured version   Visualization version   GIF version

Theorem bpoly4 15162
Description: The Bernoulli polynomials at four. (Contributed by Scott Fenton, 8-Jul-2015.)
Assertion
Ref Expression
bpoly4 (𝑋 ∈ ℂ → (4 BernPoly 𝑋) = ((((𝑋↑4) − (2 · (𝑋↑3))) + (𝑋↑2)) − (1 / 30)))

Proof of Theorem bpoly4
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 4nn0 11639 . . 3 4 ∈ ℕ0
2 bpolyval 15152 . . 3 ((4 ∈ ℕ0𝑋 ∈ ℂ) → (4 BernPoly 𝑋) = ((𝑋↑4) − Σ𝑘 ∈ (0...(4 − 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)))))
31, 2mpan 681 . 2 (𝑋 ∈ ℂ → (4 BernPoly 𝑋) = ((𝑋↑4) − Σ𝑘 ∈ (0...(4 − 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)))))
4 4m1e3 11487 . . . . . . 7 (4 − 1) = 3
5 df-3 11415 . . . . . . 7 3 = (2 + 1)
64, 5eqtri 2849 . . . . . 6 (4 − 1) = (2 + 1)
76oveq2i 6916 . . . . 5 (0...(4 − 1)) = (0...(2 + 1))
87sumeq1i 14805 . . . 4 Σ𝑘 ∈ (0...(4 − 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(2 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)))
9 2eluzge0 12015 . . . . . . 7 2 ∈ (ℤ‘0)
109a1i 11 . . . . . 6 (𝑋 ∈ ℂ → 2 ∈ (ℤ‘0))
11 elfzelz 12635 . . . . . . . . . 10 (𝑘 ∈ (0...(2 + 1)) → 𝑘 ∈ ℤ)
12 bccl 13402 . . . . . . . . . 10 ((4 ∈ ℕ0𝑘 ∈ ℤ) → (4C𝑘) ∈ ℕ0)
131, 11, 12sylancr 581 . . . . . . . . 9 (𝑘 ∈ (0...(2 + 1)) → (4C𝑘) ∈ ℕ0)
1413nn0cnd 11680 . . . . . . . 8 (𝑘 ∈ (0...(2 + 1)) → (4C𝑘) ∈ ℂ)
1514adantl 475 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) → (4C𝑘) ∈ ℂ)
16 elfznn0 12727 . . . . . . . . . 10 (𝑘 ∈ (0...(2 + 1)) → 𝑘 ∈ ℕ0)
17 bpolycl 15155 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑋 ∈ ℂ) → (𝑘 BernPoly 𝑋) ∈ ℂ)
1816, 17sylan 575 . . . . . . . . 9 ((𝑘 ∈ (0...(2 + 1)) ∧ 𝑋 ∈ ℂ) → (𝑘 BernPoly 𝑋) ∈ ℂ)
1918ancoms 452 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) → (𝑘 BernPoly 𝑋) ∈ ℂ)
20 4re 11436 . . . . . . . . . . . . 13 4 ∈ ℝ
2120a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ (0...(2 + 1)) → 4 ∈ ℝ)
2211zred 11810 . . . . . . . . . . . 12 (𝑘 ∈ (0...(2 + 1)) → 𝑘 ∈ ℝ)
2321, 22resubcld 10782 . . . . . . . . . . 11 (𝑘 ∈ (0...(2 + 1)) → (4 − 𝑘) ∈ ℝ)
24 peano2re 10528 . . . . . . . . . . 11 ((4 − 𝑘) ∈ ℝ → ((4 − 𝑘) + 1) ∈ ℝ)
2523, 24syl 17 . . . . . . . . . 10 (𝑘 ∈ (0...(2 + 1)) → ((4 − 𝑘) + 1) ∈ ℝ)
2625recnd 10385 . . . . . . . . 9 (𝑘 ∈ (0...(2 + 1)) → ((4 − 𝑘) + 1) ∈ ℂ)
2726adantl 475 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) → ((4 − 𝑘) + 1) ∈ ℂ)
28 1red 10357 . . . . . . . . . . 11 (𝑘 ∈ (0...(2 + 1)) → 1 ∈ ℝ)
295oveq2i 6916 . . . . . . . . . . . . . 14 (0...3) = (0...(2 + 1))
3029eleq2i 2898 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) ↔ 𝑘 ∈ (0...(2 + 1)))
31 elfzelz 12635 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0...3) → 𝑘 ∈ ℤ)
3231zred 11810 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...3) → 𝑘 ∈ ℝ)
33 3re 11431 . . . . . . . . . . . . . . 15 3 ∈ ℝ
3433a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...3) → 3 ∈ ℝ)
3520a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...3) → 4 ∈ ℝ)
36 elfzle2 12638 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...3) → 𝑘 ≤ 3)
37 3lt4 11532 . . . . . . . . . . . . . . 15 3 < 4
3837a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ (0...3) → 3 < 4)
3932, 34, 35, 36, 38lelttrd 10514 . . . . . . . . . . . . 13 (𝑘 ∈ (0...3) → 𝑘 < 4)
4030, 39sylbir 227 . . . . . . . . . . . 12 (𝑘 ∈ (0...(2 + 1)) → 𝑘 < 4)
4122, 21posdifd 10939 . . . . . . . . . . . 12 (𝑘 ∈ (0...(2 + 1)) → (𝑘 < 4 ↔ 0 < (4 − 𝑘)))
4240, 41mpbid 224 . . . . . . . . . . 11 (𝑘 ∈ (0...(2 + 1)) → 0 < (4 − 𝑘))
43 0lt1 10874 . . . . . . . . . . . 12 0 < 1
4443a1i 11 . . . . . . . . . . 11 (𝑘 ∈ (0...(2 + 1)) → 0 < 1)
4523, 28, 42, 44addgt0d 10927 . . . . . . . . . 10 (𝑘 ∈ (0...(2 + 1)) → 0 < ((4 − 𝑘) + 1))
4645gt0ne0d 10916 . . . . . . . . 9 (𝑘 ∈ (0...(2 + 1)) → ((4 − 𝑘) + 1) ≠ 0)
4746adantl 475 . . . . . . . 8 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) → ((4 − 𝑘) + 1) ≠ 0)
4819, 27, 47divcld 11127 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) → ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) ∈ ℂ)
4915, 48mulcld 10377 . . . . . 6 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(2 + 1))) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) ∈ ℂ)
505eqeq2i 2837 . . . . . . 7 (𝑘 = 3 ↔ 𝑘 = (2 + 1))
51 oveq2 6913 . . . . . . . . 9 (𝑘 = 3 → (4C𝑘) = (4C3))
52 4bc3eq4 13408 . . . . . . . . 9 (4C3) = 4
5351, 52syl6eq 2877 . . . . . . . 8 (𝑘 = 3 → (4C𝑘) = 4)
54 oveq1 6912 . . . . . . . . 9 (𝑘 = 3 → (𝑘 BernPoly 𝑋) = (3 BernPoly 𝑋))
55 oveq2 6913 . . . . . . . . . . 11 (𝑘 = 3 → (4 − 𝑘) = (4 − 3))
5655oveq1d 6920 . . . . . . . . . 10 (𝑘 = 3 → ((4 − 𝑘) + 1) = ((4 − 3) + 1))
57 4cn 11437 . . . . . . . . . . . . 13 4 ∈ ℂ
58 3cn 11432 . . . . . . . . . . . . 13 3 ∈ ℂ
59 ax-1cn 10310 . . . . . . . . . . . . 13 1 ∈ ℂ
60 3p1e4 11503 . . . . . . . . . . . . 13 (3 + 1) = 4
6157, 58, 59, 60subaddrii 10691 . . . . . . . . . . . 12 (4 − 3) = 1
6261oveq1i 6915 . . . . . . . . . . 11 ((4 − 3) + 1) = (1 + 1)
63 df-2 11414 . . . . . . . . . . 11 2 = (1 + 1)
6462, 63eqtr4i 2852 . . . . . . . . . 10 ((4 − 3) + 1) = 2
6556, 64syl6eq 2877 . . . . . . . . 9 (𝑘 = 3 → ((4 − 𝑘) + 1) = 2)
6654, 65oveq12d 6923 . . . . . . . 8 (𝑘 = 3 → ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) = ((3 BernPoly 𝑋) / 2))
6753, 66oveq12d 6923 . . . . . . 7 (𝑘 = 3 → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (4 · ((3 BernPoly 𝑋) / 2)))
6850, 67sylbir 227 . . . . . 6 (𝑘 = (2 + 1) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (4 · ((3 BernPoly 𝑋) / 2)))
6910, 49, 68fsump1 14862 . . . . 5 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(2 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...2)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (4 · ((3 BernPoly 𝑋) / 2))))
7063oveq2i 6916 . . . . . . . 8 (0...2) = (0...(1 + 1))
7170sumeq1i 14805 . . . . . . 7 Σ𝑘 ∈ (0...2)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = Σ𝑘 ∈ (0...(1 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)))
72 1eluzge0 12014 . . . . . . . . . 10 1 ∈ (ℤ‘0)
7372a1i 11 . . . . . . . . 9 (𝑋 ∈ ℂ → 1 ∈ (ℤ‘0))
74 fzssp1 12677 . . . . . . . . . . . 12 (0...(1 + 1)) ⊆ (0...((1 + 1) + 1))
7563oveq1i 6915 . . . . . . . . . . . . 13 (2 + 1) = ((1 + 1) + 1)
7675oveq2i 6916 . . . . . . . . . . . 12 (0...(2 + 1)) = (0...((1 + 1) + 1))
7774, 76sseqtr4i 3863 . . . . . . . . . . 11 (0...(1 + 1)) ⊆ (0...(2 + 1))
7877sseli 3823 . . . . . . . . . 10 (𝑘 ∈ (0...(1 + 1)) → 𝑘 ∈ (0...(2 + 1)))
7978, 49sylan2 586 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(1 + 1))) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) ∈ ℂ)
8063eqeq2i 2837 . . . . . . . . . 10 (𝑘 = 2 ↔ 𝑘 = (1 + 1))
81 oveq2 6913 . . . . . . . . . . . 12 (𝑘 = 2 → (4C𝑘) = (4C2))
82 4bc2eq6 13409 . . . . . . . . . . . 12 (4C2) = 6
8381, 82syl6eq 2877 . . . . . . . . . . 11 (𝑘 = 2 → (4C𝑘) = 6)
84 oveq1 6912 . . . . . . . . . . . 12 (𝑘 = 2 → (𝑘 BernPoly 𝑋) = (2 BernPoly 𝑋))
85 oveq2 6913 . . . . . . . . . . . . . 14 (𝑘 = 2 → (4 − 𝑘) = (4 − 2))
8685oveq1d 6920 . . . . . . . . . . . . 13 (𝑘 = 2 → ((4 − 𝑘) + 1) = ((4 − 2) + 1))
87 2cn 11426 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
88 2p2e4 11493 . . . . . . . . . . . . . . . 16 (2 + 2) = 4
8957, 87, 87, 88subaddrii 10691 . . . . . . . . . . . . . . 15 (4 − 2) = 2
9089oveq1i 6915 . . . . . . . . . . . . . 14 ((4 − 2) + 1) = (2 + 1)
9190, 5eqtr4i 2852 . . . . . . . . . . . . 13 ((4 − 2) + 1) = 3
9286, 91syl6eq 2877 . . . . . . . . . . . 12 (𝑘 = 2 → ((4 − 𝑘) + 1) = 3)
9384, 92oveq12d 6923 . . . . . . . . . . 11 (𝑘 = 2 → ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) = ((2 BernPoly 𝑋) / 3))
9483, 93oveq12d 6923 . . . . . . . . . 10 (𝑘 = 2 → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (6 · ((2 BernPoly 𝑋) / 3)))
9580, 94sylbir 227 . . . . . . . . 9 (𝑘 = (1 + 1) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (6 · ((2 BernPoly 𝑋) / 3)))
9673, 79, 95fsump1 14862 . . . . . . . 8 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...1)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (6 · ((2 BernPoly 𝑋) / 3))))
97 0p1e1 11480 . . . . . . . . . . . 12 (0 + 1) = 1
9897oveq2i 6916 . . . . . . . . . . 11 (0...(0 + 1)) = (0...1)
9998sumeq1i 14805 . . . . . . . . . 10 Σ𝑘 ∈ (0...(0 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = Σ𝑘 ∈ (0...1)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)))
100 0nn0 11635 . . . . . . . . . . . . . 14 0 ∈ ℕ0
101 nn0uz 12004 . . . . . . . . . . . . . 14 0 = (ℤ‘0)
102100, 101eleqtri 2904 . . . . . . . . . . . . 13 0 ∈ (ℤ‘0)
103102a1i 11 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → 0 ∈ (ℤ‘0))
104 3nn 11430 . . . . . . . . . . . . . . . . 17 3 ∈ ℕ
105 nnuz 12005 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
106104, 105eleqtri 2904 . . . . . . . . . . . . . . . 16 3 ∈ (ℤ‘1)
107 fzss2 12674 . . . . . . . . . . . . . . . 16 (3 ∈ (ℤ‘1) → (0...1) ⊆ (0...3))
108106, 107ax-mp 5 . . . . . . . . . . . . . . 15 (0...1) ⊆ (0...3)
109 2p1e3 11500 . . . . . . . . . . . . . . . 16 (2 + 1) = 3
110109oveq2i 6916 . . . . . . . . . . . . . . 15 (0...(2 + 1)) = (0...3)
111108, 98, 1103sstr4i 3869 . . . . . . . . . . . . . 14 (0...(0 + 1)) ⊆ (0...(2 + 1))
112111sseli 3823 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(0 + 1)) → 𝑘 ∈ (0...(2 + 1)))
113112, 49sylan2 586 . . . . . . . . . . . 12 ((𝑋 ∈ ℂ ∧ 𝑘 ∈ (0...(0 + 1))) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) ∈ ℂ)
11497eqeq2i 2837 . . . . . . . . . . . . 13 (𝑘 = (0 + 1) ↔ 𝑘 = 1)
115 oveq2 6913 . . . . . . . . . . . . . . 15 (𝑘 = 1 → (4C𝑘) = (4C1))
116 bcn1 13393 . . . . . . . . . . . . . . . 16 (4 ∈ ℕ0 → (4C1) = 4)
1171, 116ax-mp 5 . . . . . . . . . . . . . . 15 (4C1) = 4
118115, 117syl6eq 2877 . . . . . . . . . . . . . 14 (𝑘 = 1 → (4C𝑘) = 4)
119 oveq1 6912 . . . . . . . . . . . . . . 15 (𝑘 = 1 → (𝑘 BernPoly 𝑋) = (1 BernPoly 𝑋))
120 oveq2 6913 . . . . . . . . . . . . . . . . 17 (𝑘 = 1 → (4 − 𝑘) = (4 − 1))
121120oveq1d 6920 . . . . . . . . . . . . . . . 16 (𝑘 = 1 → ((4 − 𝑘) + 1) = ((4 − 1) + 1))
1224oveq1i 6915 . . . . . . . . . . . . . . . . 17 ((4 − 1) + 1) = (3 + 1)
123 df-4 11416 . . . . . . . . . . . . . . . . 17 4 = (3 + 1)
124122, 123eqtr4i 2852 . . . . . . . . . . . . . . . 16 ((4 − 1) + 1) = 4
125121, 124syl6eq 2877 . . . . . . . . . . . . . . 15 (𝑘 = 1 → ((4 − 𝑘) + 1) = 4)
126119, 125oveq12d 6923 . . . . . . . . . . . . . 14 (𝑘 = 1 → ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) = ((1 BernPoly 𝑋) / 4))
127118, 126oveq12d 6923 . . . . . . . . . . . . 13 (𝑘 = 1 → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (4 · ((1 BernPoly 𝑋) / 4)))
128114, 127sylbi 209 . . . . . . . . . . . 12 (𝑘 = (0 + 1) → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (4 · ((1 BernPoly 𝑋) / 4)))
129103, 113, 128fsump1 14862 . . . . . . . . . . 11 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (Σ𝑘 ∈ (0...0)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (4 · ((1 BernPoly 𝑋) / 4))))
130 0z 11715 . . . . . . . . . . . . . 14 0 ∈ ℤ
13159a1i 11 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℂ → 1 ∈ ℂ)
132 bpolycl 15155 . . . . . . . . . . . . . . . . 17 ((0 ∈ ℕ0𝑋 ∈ ℂ) → (0 BernPoly 𝑋) ∈ ℂ)
133100, 132mpan 681 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) ∈ ℂ)
134 5cn 11441 . . . . . . . . . . . . . . . . 17 5 ∈ ℂ
135134a1i 11 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℂ → 5 ∈ ℂ)
136 0re 10358 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
137 5pos 11467 . . . . . . . . . . . . . . . . . 18 0 < 5
138136, 137gtneii 10468 . . . . . . . . . . . . . . . . 17 5 ≠ 0
139138a1i 11 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℂ → 5 ≠ 0)
140133, 135, 139divcld 11127 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 5) ∈ ℂ)
141131, 140mulcld 10377 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 5)) ∈ ℂ)
142 oveq2 6913 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (4C𝑘) = (4C0))
143 bcn0 13390 . . . . . . . . . . . . . . . . . 18 (4 ∈ ℕ0 → (4C0) = 1)
1441, 143ax-mp 5 . . . . . . . . . . . . . . . . 17 (4C0) = 1
145142, 144syl6eq 2877 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → (4C𝑘) = 1)
146 oveq1 6912 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋))
147 oveq2 6913 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 0 → (4 − 𝑘) = (4 − 0))
148147oveq1d 6920 . . . . . . . . . . . . . . . . . 18 (𝑘 = 0 → ((4 − 𝑘) + 1) = ((4 − 0) + 1))
14957subid1i 10674 . . . . . . . . . . . . . . . . . . . 20 (4 − 0) = 4
150149oveq1i 6915 . . . . . . . . . . . . . . . . . . 19 ((4 − 0) + 1) = (4 + 1)
151 4p1e5 11504 . . . . . . . . . . . . . . . . . . 19 (4 + 1) = 5
152150, 151eqtri 2849 . . . . . . . . . . . . . . . . . 18 ((4 − 0) + 1) = 5
153148, 152syl6eq 2877 . . . . . . . . . . . . . . . . 17 (𝑘 = 0 → ((4 − 𝑘) + 1) = 5)
154146, 153oveq12d 6923 . . . . . . . . . . . . . . . 16 (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 5))
155145, 154oveq12d 6923 . . . . . . . . . . . . . . 15 (𝑘 = 0 → ((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 5)))
156155fsum1 14853 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 5)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 5)))
157130, 141, 156sylancr 581 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 5)))
158 bpoly0 15153 . . . . . . . . . . . . . . . 16 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1)
159158oveq1d 6920 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 5) = (1 / 5))
160159oveq2d 6921 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 5)) = (1 · (1 / 5)))
161134, 138reccli 11081 . . . . . . . . . . . . . . 15 (1 / 5) ∈ ℂ
162161mulid2i 10362 . . . . . . . . . . . . . 14 (1 · (1 / 5)) = (1 / 5)
163160, 162syl6eq 2877 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 5)) = (1 / 5))
164157, 163eqtrd 2861 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (1 / 5))
165 1nn0 11636 . . . . . . . . . . . . . . 15 1 ∈ ℕ0
166 bpolycl 15155 . . . . . . . . . . . . . . 15 ((1 ∈ ℕ0𝑋 ∈ ℂ) → (1 BernPoly 𝑋) ∈ ℂ)
167165, 166mpan 681 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) ∈ ℂ)
168 nn0cn 11629 . . . . . . . . . . . . . . 15 (4 ∈ ℕ0 → 4 ∈ ℂ)
1691, 168mp1i 13 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → 4 ∈ ℂ)
170 4ne0 11466 . . . . . . . . . . . . . . 15 4 ≠ 0
171170a1i 11 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → 4 ≠ 0)
172167, 169, 171divcan2d 11129 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (4 · ((1 BernPoly 𝑋) / 4)) = (1 BernPoly 𝑋))
173 bpoly1 15154 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))
174172, 173eqtrd 2861 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (4 · ((1 BernPoly 𝑋) / 4)) = (𝑋 − (1 / 2)))
175164, 174oveq12d 6923 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...0)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (4 · ((1 BernPoly 𝑋) / 4))) = ((1 / 5) + (𝑋 − (1 / 2))))
176129, 175eqtrd 2861 . . . . . . . . . 10 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(0 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = ((1 / 5) + (𝑋 − (1 / 2))))
17799, 176syl5eqr 2875 . . . . . . . . 9 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...1)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = ((1 / 5) + (𝑋 − (1 / 2))))
178 6cn 11445 . . . . . . . . . . . 12 6 ∈ ℂ
179178a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℂ → 6 ∈ ℂ)
180 2nn0 11637 . . . . . . . . . . . 12 2 ∈ ℕ0
181 bpolycl 15155 . . . . . . . . . . . 12 ((2 ∈ ℕ0𝑋 ∈ ℂ) → (2 BernPoly 𝑋) ∈ ℂ)
182180, 181mpan 681 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) ∈ ℂ)
18358a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℂ → 3 ∈ ℂ)
184 3ne0 11464 . . . . . . . . . . . 12 3 ≠ 0
185184a1i 11 . . . . . . . . . . 11 (𝑋 ∈ ℂ → 3 ≠ 0)
186179, 182, 183, 185div12d 11163 . . . . . . . . . 10 (𝑋 ∈ ℂ → (6 · ((2 BernPoly 𝑋) / 3)) = ((2 BernPoly 𝑋) · (6 / 3)))
187 3t2e6 11524 . . . . . . . . . . . . 13 (3 · 2) = 6
188178, 58, 87, 184divmuli 11105 . . . . . . . . . . . . 13 ((6 / 3) = 2 ↔ (3 · 2) = 6)
189187, 188mpbir 223 . . . . . . . . . . . 12 (6 / 3) = 2
190189oveq2i 6916 . . . . . . . . . . 11 ((2 BernPoly 𝑋) · (6 / 3)) = ((2 BernPoly 𝑋) · 2)
19187a1i 11 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → 2 ∈ ℂ)
192182, 191mulcomd 10378 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((2 BernPoly 𝑋) · 2) = (2 · (2 BernPoly 𝑋)))
193 bpoly2 15160 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (2 BernPoly 𝑋) = (((𝑋↑2) − 𝑋) + (1 / 6)))
194193oveq2d 6921 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (2 · (2 BernPoly 𝑋)) = (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))
195192, 194eqtrd 2861 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((2 BernPoly 𝑋) · 2) = (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))
196190, 195syl5eq 2873 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((2 BernPoly 𝑋) · (6 / 3)) = (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))
197186, 196eqtrd 2861 . . . . . . . . 9 (𝑋 ∈ ℂ → (6 · ((2 BernPoly 𝑋) / 3)) = (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))
198177, 197oveq12d 6923 . . . . . . . 8 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...1)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (6 · ((2 BernPoly 𝑋) / 3))) = (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))
19996, 198eqtrd 2861 . . . . . . 7 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))
20071, 199syl5eq 2873 . . . . . 6 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...2)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))
201 3nn0 11638 . . . . . . . . 9 3 ∈ ℕ0
202 bpolycl 15155 . . . . . . . . 9 ((3 ∈ ℕ0𝑋 ∈ ℂ) → (3 BernPoly 𝑋) ∈ ℂ)
203201, 202mpan 681 . . . . . . . 8 (𝑋 ∈ ℂ → (3 BernPoly 𝑋) ∈ ℂ)
204 2ne0 11462 . . . . . . . . 9 2 ≠ 0
205204a1i 11 . . . . . . . 8 (𝑋 ∈ ℂ → 2 ≠ 0)
206169, 203, 191, 205div12d 11163 . . . . . . 7 (𝑋 ∈ ℂ → (4 · ((3 BernPoly 𝑋) / 2)) = ((3 BernPoly 𝑋) · (4 / 2)))
207 4d2e2 11528 . . . . . . . . 9 (4 / 2) = 2
208207oveq2i 6916 . . . . . . . 8 ((3 BernPoly 𝑋) · (4 / 2)) = ((3 BernPoly 𝑋) · 2)
209203, 191mulcomd 10378 . . . . . . . . 9 (𝑋 ∈ ℂ → ((3 BernPoly 𝑋) · 2) = (2 · (3 BernPoly 𝑋)))
210 bpoly3 15161 . . . . . . . . . 10 (𝑋 ∈ ℂ → (3 BernPoly 𝑋) = (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))
211210oveq2d 6921 . . . . . . . . 9 (𝑋 ∈ ℂ → (2 · (3 BernPoly 𝑋)) = (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))
212209, 211eqtrd 2861 . . . . . . . 8 (𝑋 ∈ ℂ → ((3 BernPoly 𝑋) · 2) = (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))
213208, 212syl5eq 2873 . . . . . . 7 (𝑋 ∈ ℂ → ((3 BernPoly 𝑋) · (4 / 2)) = (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))
214206, 213eqtrd 2861 . . . . . 6 (𝑋 ∈ ℂ → (4 · ((3 BernPoly 𝑋) / 2)) = (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))
215200, 214oveq12d 6923 . . . . 5 (𝑋 ∈ ℂ → (Σ𝑘 ∈ (0...2)((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) + (4 · ((3 BernPoly 𝑋) / 2))) = ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))))
21669, 215eqtrd 2861 . . . 4 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(2 + 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))))
2178, 216syl5eq 2873 . . 3 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(4 − 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1))) = ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))))
218217oveq2d 6921 . 2 (𝑋 ∈ ℂ → ((𝑋↑4) − Σ𝑘 ∈ (0...(4 − 1))((4C𝑘) · ((𝑘 BernPoly 𝑋) / ((4 − 𝑘) + 1)))) = ((𝑋↑4) − ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))))
219 expcl 13172 . . . . 5 ((𝑋 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝑋↑4) ∈ ℂ)
2201, 219mpan2 682 . . . 4 (𝑋 ∈ ℂ → (𝑋↑4) ∈ ℂ)
221 expcl 13172 . . . . . 6 ((𝑋 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑋↑3) ∈ ℂ)
222201, 221mpan2 682 . . . . 5 (𝑋 ∈ ℂ → (𝑋↑3) ∈ ℂ)
223191, 222mulcld 10377 . . . 4 (𝑋 ∈ ℂ → (2 · (𝑋↑3)) ∈ ℂ)
224 sqcl 13219 . . . . 5 (𝑋 ∈ ℂ → (𝑋↑2) ∈ ℂ)
225201, 100deccl 11836 . . . . . . . 8 30 ∈ ℕ0
226225nn0cni 11631 . . . . . . 7 30 ∈ ℂ
227 dfdec10 11824 . . . . . . . . 9 30 = ((10 · 3) + 0)
228 10re 11840 . . . . . . . . . . . 12 10 ∈ ℝ
229228recni 10371 . . . . . . . . . . 11 10 ∈ ℂ
230229, 58mulcli 10364 . . . . . . . . . 10 (10 · 3) ∈ ℂ
231230addid1i 10542 . . . . . . . . 9 ((10 · 3) + 0) = (10 · 3)
232227, 231eqtri 2849 . . . . . . . 8 30 = (10 · 3)
233 10pos 11838 . . . . . . . . . 10 0 < 10
234136, 233gtneii 10468 . . . . . . . . 9 10 ≠ 0
235229, 58, 234, 184mulne0i 10995 . . . . . . . 8 (10 · 3) ≠ 0
236232, 235eqnetri 3069 . . . . . . 7 30 ≠ 0
237226, 236reccli 11081 . . . . . 6 (1 / 30) ∈ ℂ
238237a1i 11 . . . . 5 (𝑋 ∈ ℂ → (1 / 30) ∈ ℂ)
239224, 238subcld 10713 . . . 4 (𝑋 ∈ ℂ → ((𝑋↑2) − (1 / 30)) ∈ ℂ)
240220, 223, 239subsubd 10741 . . 3 (𝑋 ∈ ℂ → ((𝑋↑4) − ((2 · (𝑋↑3)) − ((𝑋↑2) − (1 / 30)))) = (((𝑋↑4) − (2 · (𝑋↑3))) + ((𝑋↑2) − (1 / 30))))
241161a1i 11 . . . . . . . 8 (𝑋 ∈ ℂ → (1 / 5) ∈ ℂ)
242 id 22 . . . . . . . . 9 (𝑋 ∈ ℂ → 𝑋 ∈ ℂ)
24387, 204reccli 11081 . . . . . . . . . 10 (1 / 2) ∈ ℂ
244243a1i 11 . . . . . . . . 9 (𝑋 ∈ ℂ → (1 / 2) ∈ ℂ)
245242, 244subcld 10713 . . . . . . . 8 (𝑋 ∈ ℂ → (𝑋 − (1 / 2)) ∈ ℂ)
246241, 245addcld 10376 . . . . . . 7 (𝑋 ∈ ℂ → ((1 / 5) + (𝑋 − (1 / 2))) ∈ ℂ)
247224, 242subcld 10713 . . . . . . . . 9 (𝑋 ∈ ℂ → ((𝑋↑2) − 𝑋) ∈ ℂ)
248 6pos 11468 . . . . . . . . . . . 12 0 < 6
249136, 248gtneii 10468 . . . . . . . . . . 11 6 ≠ 0
250178, 249reccli 11081 . . . . . . . . . 10 (1 / 6) ∈ ℂ
251250a1i 11 . . . . . . . . 9 (𝑋 ∈ ℂ → (1 / 6) ∈ ℂ)
252247, 251addcld 10376 . . . . . . . 8 (𝑋 ∈ ℂ → (((𝑋↑2) − 𝑋) + (1 / 6)) ∈ ℂ)
253191, 252mulcld 10377 . . . . . . 7 (𝑋 ∈ ℂ → (2 · (((𝑋↑2) − 𝑋) + (1 / 6))) ∈ ℂ)
254246, 253addcld 10376 . . . . . 6 (𝑋 ∈ ℂ → (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) ∈ ℂ)
25558, 87, 204divcli 11093 . . . . . . . . . . 11 (3 / 2) ∈ ℂ
256255a1i 11 . . . . . . . . . 10 (𝑋 ∈ ℂ → (3 / 2) ∈ ℂ)
257256, 224mulcld 10377 . . . . . . . . 9 (𝑋 ∈ ℂ → ((3 / 2) · (𝑋↑2)) ∈ ℂ)
258222, 257subcld 10713 . . . . . . . 8 (𝑋 ∈ ℂ → ((𝑋↑3) − ((3 / 2) · (𝑋↑2))) ∈ ℂ)
259244, 242mulcld 10377 . . . . . . . 8 (𝑋 ∈ ℂ → ((1 / 2) · 𝑋) ∈ ℂ)
260258, 259addcld 10376 . . . . . . 7 (𝑋 ∈ ℂ → (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)) ∈ ℂ)
261191, 260mulcld 10377 . . . . . 6 (𝑋 ∈ ℂ → (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) ∈ ℂ)
262254, 261addcomd 10557 . . . . 5 (𝑋 ∈ ℂ → ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))) = ((2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))))
263191, 258, 259adddid 10381 . . . . . . 7 (𝑋 ∈ ℂ → (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) = ((2 · ((𝑋↑3) − ((3 / 2) · (𝑋↑2)))) + (2 · ((1 / 2) · 𝑋))))
264191, 222, 257subdid 10810 . . . . . . . 8 (𝑋 ∈ ℂ → (2 · ((𝑋↑3) − ((3 / 2) · (𝑋↑2)))) = ((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))))
26587, 204recidi 11082 . . . . . . . . . 10 (2 · (1 / 2)) = 1
266265oveq1i 6915 . . . . . . . . 9 ((2 · (1 / 2)) · 𝑋) = (1 · 𝑋)
267191, 244, 242mulassd 10380 . . . . . . . . 9 (𝑋 ∈ ℂ → ((2 · (1 / 2)) · 𝑋) = (2 · ((1 / 2) · 𝑋)))
268 mulid2 10355 . . . . . . . . 9 (𝑋 ∈ ℂ → (1 · 𝑋) = 𝑋)
269266, 267, 2683eqtr3a 2885 . . . . . . . 8 (𝑋 ∈ ℂ → (2 · ((1 / 2) · 𝑋)) = 𝑋)
270264, 269oveq12d 6923 . . . . . . 7 (𝑋 ∈ ℂ → ((2 · ((𝑋↑3) − ((3 / 2) · (𝑋↑2)))) + (2 · ((1 / 2) · 𝑋))) = (((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + 𝑋))
271263, 270eqtrd 2861 . . . . . 6 (𝑋 ∈ ℂ → (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) = (((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + 𝑋))
272271oveq1d 6920 . . . . 5 (𝑋 ∈ ℂ → ((2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))) + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = ((((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + 𝑋) + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))))
273191, 257mulcld 10377 . . . . . . . 8 (𝑋 ∈ ℂ → (2 · ((3 / 2) · (𝑋↑2))) ∈ ℂ)
274223, 273subcld 10713 . . . . . . 7 (𝑋 ∈ ℂ → ((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) ∈ ℂ)
275274, 242, 254addassd 10379 . . . . . 6 (𝑋 ∈ ℂ → ((((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + 𝑋) + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = (((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))))
276242, 254addcld 10376 . . . . . . 7 (𝑋 ∈ ℂ → (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) ∈ ℂ)
277223, 273, 276subsubd 10741 . . . . . 6 (𝑋 ∈ ℂ → ((2 · (𝑋↑3)) − ((2 · ((3 / 2) · (𝑋↑2))) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))))) = (((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))))
27858, 87, 204divcan2i 11094 . . . . . . . . . . 11 (2 · (3 / 2)) = 3
279278oveq1i 6915 . . . . . . . . . 10 ((2 · (3 / 2)) · (𝑋↑2)) = (3 · (𝑋↑2))
280191, 256, 224mulassd 10380 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((2 · (3 / 2)) · (𝑋↑2)) = (2 · ((3 / 2) · (𝑋↑2))))
281279, 280syl5reqr 2876 . . . . . . . . 9 (𝑋 ∈ ℂ → (2 · ((3 / 2) · (𝑋↑2))) = (3 · (𝑋↑2)))
282281oveq1d 6920 . . . . . . . 8 (𝑋 ∈ ℂ → ((2 · ((3 / 2) · (𝑋↑2))) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))) = ((3 · (𝑋↑2)) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))))
283242, 246, 253add12d 10581 . . . . . . . . . 10 (𝑋 ∈ ℂ → (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = (((1 / 5) + (𝑋 − (1 / 2))) + (𝑋 + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))))
284191, 247, 251adddid 10381 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (2 · (((𝑋↑2) − 𝑋) + (1 / 6))) = ((2 · ((𝑋↑2) − 𝑋)) + (2 · (1 / 6))))
285191, 224, 242subdid 10810 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℂ → (2 · ((𝑋↑2) − 𝑋)) = ((2 · (𝑋↑2)) − (2 · 𝑋)))
286187oveq2i 6916 . . . . . . . . . . . . . . . . 17 (2 / (3 · 2)) = (2 / 6)
28758, 184reccli 11081 . . . . . . . . . . . . . . . . . . . 20 (1 / 3) ∈ ℂ
28858, 87, 287mul32i 10551 . . . . . . . . . . . . . . . . . . 19 ((3 · 2) · (1 / 3)) = ((3 · (1 / 3)) · 2)
28958, 184recidi 11082 . . . . . . . . . . . . . . . . . . . . 21 (3 · (1 / 3)) = 1
290289oveq1i 6915 . . . . . . . . . . . . . . . . . . . 20 ((3 · (1 / 3)) · 2) = (1 · 2)
29187mulid2i 10362 . . . . . . . . . . . . . . . . . . . 20 (1 · 2) = 2
292290, 291eqtri 2849 . . . . . . . . . . . . . . . . . . 19 ((3 · (1 / 3)) · 2) = 2
293288, 292eqtri 2849 . . . . . . . . . . . . . . . . . 18 ((3 · 2) · (1 / 3)) = 2
294187, 178eqeltri 2902 . . . . . . . . . . . . . . . . . . 19 (3 · 2) ∈ ℂ
295187, 249eqnetri 3069 . . . . . . . . . . . . . . . . . . 19 (3 · 2) ≠ 0
29687, 294, 287, 295divmuli 11105 . . . . . . . . . . . . . . . . . 18 ((2 / (3 · 2)) = (1 / 3) ↔ ((3 · 2) · (1 / 3)) = 2)
297293, 296mpbir 223 . . . . . . . . . . . . . . . . 17 (2 / (3 · 2)) = (1 / 3)
29887, 178, 249divreci 11096 . . . . . . . . . . . . . . . . 17 (2 / 6) = (2 · (1 / 6))
299286, 297, 2983eqtr3ri 2858 . . . . . . . . . . . . . . . 16 (2 · (1 / 6)) = (1 / 3)
300299a1i 11 . . . . . . . . . . . . . . 15 (𝑋 ∈ ℂ → (2 · (1 / 6)) = (1 / 3))
301285, 300oveq12d 6923 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → ((2 · ((𝑋↑2) − 𝑋)) + (2 · (1 / 6))) = (((2 · (𝑋↑2)) − (2 · 𝑋)) + (1 / 3)))
302284, 301eqtrd 2861 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (2 · (((𝑋↑2) − 𝑋) + (1 / 6))) = (((2 · (𝑋↑2)) − (2 · 𝑋)) + (1 / 3)))
303302oveq2d 6921 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (𝑋 + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) = (𝑋 + (((2 · (𝑋↑2)) − (2 · 𝑋)) + (1 / 3))))
304191, 224mulcld 10377 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (2 · (𝑋↑2)) ∈ ℂ)
305191, 242mulcld 10377 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → (2 · 𝑋) ∈ ℂ)
306304, 305subcld 10713 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((2 · (𝑋↑2)) − (2 · 𝑋)) ∈ ℂ)
307287a1i 11 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (1 / 3) ∈ ℂ)
308242, 306, 307addassd 10379 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((𝑋 + ((2 · (𝑋↑2)) − (2 · 𝑋))) + (1 / 3)) = (𝑋 + (((2 · (𝑋↑2)) − (2 · 𝑋)) + (1 / 3))))
309242, 304, 305addsub12d 10736 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋 + ((2 · (𝑋↑2)) − (2 · 𝑋))) = ((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))))
310309oveq1d 6920 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((𝑋 + ((2 · (𝑋↑2)) − (2 · 𝑋))) + (1 / 3)) = (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3)))
311303, 308, 3103eqtr2d 2867 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (𝑋 + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) = (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3)))
312311oveq2d 6921 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((1 / 5) + (𝑋 − (1 / 2))) + (𝑋 + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3))))
313283, 312eqtrd 2861 . . . . . . . . 9 (𝑋 ∈ ℂ → (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3))))
314313oveq2d 6921 . . . . . . . 8 (𝑋 ∈ ℂ → ((3 · (𝑋↑2)) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))) = ((3 · (𝑋↑2)) − (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3)))))
315242, 305subcld 10713 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (𝑋 − (2 · 𝑋)) ∈ ℂ)
316304, 315addcld 10376 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) ∈ ℂ)
317241, 245, 316, 307add4d 10583 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3))) = (((1 / 5) + ((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋)))) + ((𝑋 − (1 / 2)) + (1 / 3))))
318241, 304, 315add12d 10581 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((1 / 5) + ((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋)))) = ((2 · (𝑋↑2)) + ((1 / 5) + (𝑋 − (2 · 𝑋)))))
319318oveq1d 6920 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (((1 / 5) + ((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋)))) + ((𝑋 − (1 / 2)) + (1 / 3))) = (((2 · (𝑋↑2)) + ((1 / 5) + (𝑋 − (2 · 𝑋)))) + ((𝑋 − (1 / 2)) + (1 / 3))))
320241, 315addcld 10376 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((1 / 5) + (𝑋 − (2 · 𝑋))) ∈ ℂ)
321245, 307addcld 10376 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((𝑋 − (1 / 2)) + (1 / 3)) ∈ ℂ)
322304, 320, 321addassd 10379 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (((2 · (𝑋↑2)) + ((1 / 5) + (𝑋 − (2 · 𝑋)))) + ((𝑋 − (1 / 2)) + (1 / 3))) = ((2 · (𝑋↑2)) + (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3)))))
323317, 319, 3223eqtrd 2865 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3))) = ((2 · (𝑋↑2)) + (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3)))))
324323oveq2d 6921 . . . . . . . . 9 (𝑋 ∈ ℂ → ((3 · (𝑋↑2)) − (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3)))) = ((3 · (𝑋↑2)) − ((2 · (𝑋↑2)) + (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3))))))
325183, 224mulcld 10377 . . . . . . . . . 10 (𝑋 ∈ ℂ → (3 · (𝑋↑2)) ∈ ℂ)
326320, 321addcld 10376 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3))) ∈ ℂ)
327325, 304, 326subsub4d 10744 . . . . . . . . 9 (𝑋 ∈ ℂ → (((3 · (𝑋↑2)) − (2 · (𝑋↑2))) − (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3)))) = ((3 · (𝑋↑2)) − ((2 · (𝑋↑2)) + (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3))))))
32858, 87, 59, 109subaddrii 10691 . . . . . . . . . . . 12 (3 − 2) = 1
329328oveq1i 6915 . . . . . . . . . . 11 ((3 − 2) · (𝑋↑2)) = (1 · (𝑋↑2))
330183, 191, 224subdird 10811 . . . . . . . . . . 11 (𝑋 ∈ ℂ → ((3 − 2) · (𝑋↑2)) = ((3 · (𝑋↑2)) − (2 · (𝑋↑2))))
331224mulid2d 10375 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (1 · (𝑋↑2)) = (𝑋↑2))
332329, 330, 3313eqtr3a 2885 . . . . . . . . . 10 (𝑋 ∈ ℂ → ((3 · (𝑋↑2)) − (2 · (𝑋↑2))) = (𝑋↑2))
333241, 305, 242subsubd 10741 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((1 / 5) − ((2 · 𝑋) − 𝑋)) = (((1 / 5) − (2 · 𝑋)) + 𝑋))
334 2txmxeqx 11498 . . . . . . . . . . . . . 14 (𝑋 ∈ ℂ → ((2 · 𝑋) − 𝑋) = 𝑋)
335334oveq2d 6921 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((1 / 5) − ((2 · 𝑋) − 𝑋)) = ((1 / 5) − 𝑋))
336241, 305, 242subadd23d 10735 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → (((1 / 5) − (2 · 𝑋)) + 𝑋) = ((1 / 5) + (𝑋 − (2 · 𝑋))))
337333, 335, 3363eqtr3d 2869 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → ((1 / 5) − 𝑋) = ((1 / 5) + (𝑋 − (2 · 𝑋))))
338242, 244, 307subsubd 10741 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (𝑋 − ((1 / 2) − (1 / 3))) = ((𝑋 − (1 / 2)) + (1 / 3)))
339337, 338oveq12d 6923 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (((1 / 5) − 𝑋) + (𝑋 − ((1 / 2) − (1 / 3)))) = (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3))))
340243, 287subcli 10678 . . . . . . . . . . . . . 14 ((1 / 2) − (1 / 3)) ∈ ℂ
341340a1i 11 . . . . . . . . . . . . 13 (𝑋 ∈ ℂ → ((1 / 2) − (1 / 3)) ∈ ℂ)
342241, 242, 341npncand 10737 . . . . . . . . . . . 12 (𝑋 ∈ ℂ → (((1 / 5) − 𝑋) + (𝑋 − ((1 / 2) − (1 / 3)))) = ((1 / 5) − ((1 / 2) − (1 / 3))))
343 halfthird 11966 . . . . . . . . . . . . . 14 ((1 / 2) − (1 / 3)) = (1 / 6)
344343oveq2i 6916 . . . . . . . . . . . . 13 ((1 / 5) − ((1 / 2) − (1 / 3))) = ((1 / 5) − (1 / 6))
345 5recm6rec 11967 . . . . . . . . . . . . 13 ((1 / 5) − (1 / 6)) = (1 / 30)
346344, 345eqtri 2849 . . . . . . . . . . . 12 ((1 / 5) − ((1 / 2) − (1 / 3))) = (1 / 30)
347342, 346syl6eq 2877 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (((1 / 5) − 𝑋) + (𝑋 − ((1 / 2) − (1 / 3)))) = (1 / 30))
348339, 347eqtr3d 2863 . . . . . . . . . 10 (𝑋 ∈ ℂ → (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3))) = (1 / 30))
349332, 348oveq12d 6923 . . . . . . . . 9 (𝑋 ∈ ℂ → (((3 · (𝑋↑2)) − (2 · (𝑋↑2))) − (((1 / 5) + (𝑋 − (2 · 𝑋))) + ((𝑋 − (1 / 2)) + (1 / 3)))) = ((𝑋↑2) − (1 / 30)))
350324, 327, 3493eqtr2d 2867 . . . . . . . 8 (𝑋 ∈ ℂ → ((3 · (𝑋↑2)) − (((1 / 5) + (𝑋 − (1 / 2))) + (((2 · (𝑋↑2)) + (𝑋 − (2 · 𝑋))) + (1 / 3)))) = ((𝑋↑2) − (1 / 30)))
351282, 314, 3503eqtrd 2865 . . . . . . 7 (𝑋 ∈ ℂ → ((2 · ((3 / 2) · (𝑋↑2))) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))))) = ((𝑋↑2) − (1 / 30)))
352351oveq2d 6921 . . . . . 6 (𝑋 ∈ ℂ → ((2 · (𝑋↑3)) − ((2 · ((3 / 2) · (𝑋↑2))) − (𝑋 + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))))) = ((2 · (𝑋↑3)) − ((𝑋↑2) − (1 / 30))))
353275, 277, 3523eqtr2d 2867 . . . . 5 (𝑋 ∈ ℂ → ((((2 · (𝑋↑3)) − (2 · ((3 / 2) · (𝑋↑2)))) + 𝑋) + (((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6))))) = ((2 · (𝑋↑3)) − ((𝑋↑2) − (1 / 30))))
354262, 272, 3533eqtrd 2865 . . . 4 (𝑋 ∈ ℂ → ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋)))) = ((2 · (𝑋↑3)) − ((𝑋↑2) − (1 / 30))))
355354oveq2d 6921 . . 3 (𝑋 ∈ ℂ → ((𝑋↑4) − ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))) = ((𝑋↑4) − ((2 · (𝑋↑3)) − ((𝑋↑2) − (1 / 30)))))
356220, 223subcld 10713 . . . 4 (𝑋 ∈ ℂ → ((𝑋↑4) − (2 · (𝑋↑3))) ∈ ℂ)
357356, 224, 238addsubassd 10733 . . 3 (𝑋 ∈ ℂ → ((((𝑋↑4) − (2 · (𝑋↑3))) + (𝑋↑2)) − (1 / 30)) = (((𝑋↑4) − (2 · (𝑋↑3))) + ((𝑋↑2) − (1 / 30))))
358240, 355, 3573eqtr4d 2871 . 2 (𝑋 ∈ ℂ → ((𝑋↑4) − ((((1 / 5) + (𝑋 − (1 / 2))) + (2 · (((𝑋↑2) − 𝑋) + (1 / 6)))) + (2 · (((𝑋↑3) − ((3 / 2) · (𝑋↑2))) + ((1 / 2) · 𝑋))))) = ((((𝑋↑4) − (2 · (𝑋↑3))) + (𝑋↑2)) − (1 / 30)))
3593, 218, 3583eqtrd 2865 1 (𝑋 ∈ ℂ → (4 BernPoly 𝑋) = ((((𝑋↑4) − (2 · (𝑋↑3))) + (𝑋↑2)) − (1 / 30)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wne 2999  wss 3798   class class class wbr 4873  cfv 6123  (class class class)co 6905  cc 10250  cr 10251  0cc0 10252  1c1 10253   + caddc 10255   · cmul 10257   < clt 10391  cmin 10585   / cdiv 11009  cn 11350  2c2 11406  3c3 11407  4c4 11408  5c5 11409  6c6 11410  0cn0 11618  cz 11704  cdc 11821  cuz 11968  ...cfz 12619  cexp 13154  Ccbc 13382  Σcsu 14793   BernPoly cbp 15149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-oi 8684  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-rp 12113  df-fz 12620  df-fzo 12761  df-seq 13096  df-exp 13155  df-fac 13354  df-bc 13383  df-hash 13411  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-clim 14596  df-sum 14794  df-bpoly 15150
This theorem is referenced by:  fsumcube  15163
  Copyright terms: Public domain W3C validator