MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quart1lem Structured version   Visualization version   GIF version

Theorem quart1lem 26054
Description: Lemma for quart1 26055. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
quart1.a (𝜑𝐴 ∈ ℂ)
quart1.b (𝜑𝐵 ∈ ℂ)
quart1.c (𝜑𝐶 ∈ ℂ)
quart1.d (𝜑𝐷 ∈ ℂ)
quart1.p (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
quart1.q (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
quart1.r (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
quart1.x (𝜑𝑋 ∈ ℂ)
quart1.y (𝜑𝑌 = (𝑋 + (𝐴 / 4)))
Assertion
Ref Expression
quart1lem (𝜑𝐷 = ((((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2))) + ((𝑄 · (𝐴 / 4)) + 𝑅)))

Proof of Theorem quart1lem
StepHypRef Expression
1 quart1.c . . . . . . . . 9 (𝜑𝐶 ∈ ℂ)
2 quart1.a . . . . . . . . . . 11 (𝜑𝐴 ∈ ℂ)
3 quart1.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
42, 3mulcld 11045 . . . . . . . . . 10 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
54halfcld 12268 . . . . . . . . 9 (𝜑 → ((𝐴 · 𝐵) / 2) ∈ ℂ)
61, 5subcld 11382 . . . . . . . 8 (𝜑 → (𝐶 − ((𝐴 · 𝐵) / 2)) ∈ ℂ)
7 3nn0 12301 . . . . . . . . . 10 3 ∈ ℕ0
8 expcl 13850 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
92, 7, 8sylancl 587 . . . . . . . . 9 (𝜑 → (𝐴↑3) ∈ ℂ)
10 8cn 12120 . . . . . . . . . 10 8 ∈ ℂ
1110a1i 11 . . . . . . . . 9 (𝜑 → 8 ∈ ℂ)
12 8nn 12118 . . . . . . . . . . 11 8 ∈ ℕ
1312nnne0i 12063 . . . . . . . . . 10 8 ≠ 0
1413a1i 11 . . . . . . . . 9 (𝜑 → 8 ≠ 0)
159, 11, 14divcld 11801 . . . . . . . 8 (𝜑 → ((𝐴↑3) / 8) ∈ ℂ)
16 4cn 12108 . . . . . . . . . 10 4 ∈ ℂ
1716a1i 11 . . . . . . . . 9 (𝜑 → 4 ∈ ℂ)
18 4ne0 12131 . . . . . . . . . 10 4 ≠ 0
1918a1i 11 . . . . . . . . 9 (𝜑 → 4 ≠ 0)
202, 17, 19divcld 11801 . . . . . . . 8 (𝜑 → (𝐴 / 4) ∈ ℂ)
216, 15, 20adddird 11050 . . . . . . 7 (𝜑 → (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) · (𝐴 / 4)) = (((𝐶 − ((𝐴 · 𝐵) / 2)) · (𝐴 / 4)) + (((𝐴↑3) / 8) · (𝐴 / 4))))
22 quart1.q . . . . . . . 8 (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
2322oveq1d 7322 . . . . . . 7 (𝜑 → (𝑄 · (𝐴 / 4)) = (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) · (𝐴 / 4)))
241, 2, 17, 19divassd 11836 . . . . . . . . . 10 (𝜑 → ((𝐶 · 𝐴) / 4) = (𝐶 · (𝐴 / 4)))
252sqvald 13911 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))
2625oveq1d 7322 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴↑2) · 𝐵) = ((𝐴 · 𝐴) · 𝐵))
272, 2, 3mul32d 11235 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 · 𝐴) · 𝐵) = ((𝐴 · 𝐵) · 𝐴))
2826, 27eqtrd 2776 . . . . . . . . . . . . 13 (𝜑 → ((𝐴↑2) · 𝐵) = ((𝐴 · 𝐵) · 𝐴))
2928oveq1d 7322 . . . . . . . . . . . 12 (𝜑 → (((𝐴↑2) · 𝐵) / 8) = (((𝐴 · 𝐵) · 𝐴) / 8))
30 2cn 12098 . . . . . . . . . . . . . 14 2 ∈ ℂ
31 4t2e8 12191 . . . . . . . . . . . . . 14 (4 · 2) = 8
3216, 30, 31mulcomli 11034 . . . . . . . . . . . . 13 (2 · 4) = 8
3332oveq2i 7318 . . . . . . . . . . . 12 (((𝐴 · 𝐵) · 𝐴) / (2 · 4)) = (((𝐴 · 𝐵) · 𝐴) / 8)
3429, 33eqtr4di 2794 . . . . . . . . . . 11 (𝜑 → (((𝐴↑2) · 𝐵) / 8) = (((𝐴 · 𝐵) · 𝐴) / (2 · 4)))
3530a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ∈ ℂ)
36 2ne0 12127 . . . . . . . . . . . . 13 2 ≠ 0
3736a1i 11 . . . . . . . . . . . 12 (𝜑 → 2 ≠ 0)
384, 35, 2, 17, 37, 19divmuldivd 11842 . . . . . . . . . . 11 (𝜑 → (((𝐴 · 𝐵) / 2) · (𝐴 / 4)) = (((𝐴 · 𝐵) · 𝐴) / (2 · 4)))
3934, 38eqtr4d 2779 . . . . . . . . . 10 (𝜑 → (((𝐴↑2) · 𝐵) / 8) = (((𝐴 · 𝐵) / 2) · (𝐴 / 4)))
4024, 39oveq12d 7325 . . . . . . . . 9 (𝜑 → (((𝐶 · 𝐴) / 4) − (((𝐴↑2) · 𝐵) / 8)) = ((𝐶 · (𝐴 / 4)) − (((𝐴 · 𝐵) / 2) · (𝐴 / 4))))
411, 5, 20subdird 11482 . . . . . . . . 9 (𝜑 → ((𝐶 − ((𝐴 · 𝐵) / 2)) · (𝐴 / 4)) = ((𝐶 · (𝐴 / 4)) − (((𝐴 · 𝐵) / 2) · (𝐴 / 4))))
4240, 41eqtr4d 2779 . . . . . . . 8 (𝜑 → (((𝐶 · 𝐴) / 4) − (((𝐴↑2) · 𝐵) / 8)) = ((𝐶 − ((𝐴 · 𝐵) / 2)) · (𝐴 / 4)))
43 df-4 12088 . . . . . . . . . . . . . 14 4 = (3 + 1)
4443oveq2i 7318 . . . . . . . . . . . . 13 (𝐴↑4) = (𝐴↑(3 + 1))
45 expp1 13839 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑(3 + 1)) = ((𝐴↑3) · 𝐴))
462, 7, 45sylancl 587 . . . . . . . . . . . . 13 (𝜑 → (𝐴↑(3 + 1)) = ((𝐴↑3) · 𝐴))
4744, 46eqtrid 2788 . . . . . . . . . . . 12 (𝜑 → (𝐴↑4) = ((𝐴↑3) · 𝐴))
4847oveq1d 7322 . . . . . . . . . . 11 (𝜑 → ((𝐴↑4) / 8) = (((𝐴↑3) · 𝐴) / 8))
499, 2, 11, 14div23d 11838 . . . . . . . . . . 11 (𝜑 → (((𝐴↑3) · 𝐴) / 8) = (((𝐴↑3) / 8) · 𝐴))
5048, 49eqtrd 2776 . . . . . . . . . 10 (𝜑 → ((𝐴↑4) / 8) = (((𝐴↑3) / 8) · 𝐴))
5150oveq1d 7322 . . . . . . . . 9 (𝜑 → (((𝐴↑4) / 8) / 4) = ((((𝐴↑3) / 8) · 𝐴) / 4))
5215, 2, 17, 19divassd 11836 . . . . . . . . 9 (𝜑 → ((((𝐴↑3) / 8) · 𝐴) / 4) = (((𝐴↑3) / 8) · (𝐴 / 4)))
5351, 52eqtrd 2776 . . . . . . . 8 (𝜑 → (((𝐴↑4) / 8) / 4) = (((𝐴↑3) / 8) · (𝐴 / 4)))
5442, 53oveq12d 7325 . . . . . . 7 (𝜑 → ((((𝐶 · 𝐴) / 4) − (((𝐴↑2) · 𝐵) / 8)) + (((𝐴↑4) / 8) / 4)) = (((𝐶 − ((𝐴 · 𝐵) / 2)) · (𝐴 / 4)) + (((𝐴↑3) / 8) · (𝐴 / 4))))
5521, 23, 543eqtr4d 2786 . . . . . 6 (𝜑 → (𝑄 · (𝐴 / 4)) = ((((𝐶 · 𝐴) / 4) − (((𝐴↑2) · 𝐵) / 8)) + (((𝐴↑4) / 8) / 4)))
561, 2mulcld 11045 . . . . . . . 8 (𝜑 → (𝐶 · 𝐴) ∈ ℂ)
5756, 17, 19divcld 11801 . . . . . . 7 (𝜑 → ((𝐶 · 𝐴) / 4) ∈ ℂ)
582sqcld 13912 . . . . . . . . 9 (𝜑 → (𝐴↑2) ∈ ℂ)
5958, 3mulcld 11045 . . . . . . . 8 (𝜑 → ((𝐴↑2) · 𝐵) ∈ ℂ)
6059, 11, 14divcld 11801 . . . . . . 7 (𝜑 → (((𝐴↑2) · 𝐵) / 8) ∈ ℂ)
61 4nn0 12302 . . . . . . . . . 10 4 ∈ ℕ0
62 expcl 13850 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℂ)
632, 61, 62sylancl 587 . . . . . . . . 9 (𝜑 → (𝐴↑4) ∈ ℂ)
6463, 11, 14divcld 11801 . . . . . . . 8 (𝜑 → ((𝐴↑4) / 8) ∈ ℂ)
6564, 17, 19divcld 11801 . . . . . . 7 (𝜑 → (((𝐴↑4) / 8) / 4) ∈ ℂ)
6657, 60, 65subadd23d 11404 . . . . . 6 (𝜑 → ((((𝐶 · 𝐴) / 4) − (((𝐴↑2) · 𝐵) / 8)) + (((𝐴↑4) / 8) / 4)) = (((𝐶 · 𝐴) / 4) + ((((𝐴↑4) / 8) / 4) − (((𝐴↑2) · 𝐵) / 8))))
6765, 60subcld 11382 . . . . . . 7 (𝜑 → ((((𝐴↑4) / 8) / 4) − (((𝐴↑2) · 𝐵) / 8)) ∈ ℂ)
6857, 67addcomd 11227 . . . . . 6 (𝜑 → (((𝐶 · 𝐴) / 4) + ((((𝐴↑4) / 8) / 4) − (((𝐴↑2) · 𝐵) / 8))) = (((((𝐴↑4) / 8) / 4) − (((𝐴↑2) · 𝐵) / 8)) + ((𝐶 · 𝐴) / 4)))
6955, 66, 683eqtrd 2780 . . . . 5 (𝜑 → (𝑄 · (𝐴 / 4)) = (((((𝐴↑4) / 8) / 4) − (((𝐴↑2) · 𝐵) / 8)) + ((𝐶 · 𝐴) / 4)))
70 quart1.r . . . . . 6 (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
71 quart1.d . . . . . . 7 (𝜑𝐷 ∈ ℂ)
72 1nn0 12299 . . . . . . . . . . . 12 1 ∈ ℕ0
73 6nn 12112 . . . . . . . . . . . 12 6 ∈ ℕ
7472, 73decnncl 12507 . . . . . . . . . . 11 16 ∈ ℕ
7574nncni 12033 . . . . . . . . . 10 16 ∈ ℂ
7675a1i 11 . . . . . . . . 9 (𝜑16 ∈ ℂ)
7774nnne0i 12063 . . . . . . . . . 10 16 ≠ 0
7877a1i 11 . . . . . . . . 9 (𝜑16 ≠ 0)
7959, 76, 78divcld 11801 . . . . . . . 8 (𝜑 → (((𝐴↑2) · 𝐵) / 16) ∈ ℂ)
80 3cn 12104 . . . . . . . . . 10 3 ∈ ℂ
81 2nn0 12300 . . . . . . . . . . . . 13 2 ∈ ℕ0
82 5nn0 12303 . . . . . . . . . . . . 13 5 ∈ ℕ0
8381, 82deccl 12502 . . . . . . . . . . . 12 25 ∈ ℕ0
8483, 73decnncl 12507 . . . . . . . . . . 11 256 ∈ ℕ
8584nncni 12033 . . . . . . . . . 10 256 ∈ ℂ
8684nnne0i 12063 . . . . . . . . . 10 256 ≠ 0
8780, 85, 86divcli 11767 . . . . . . . . 9 (3 / 256) ∈ ℂ
88 mulcl 11005 . . . . . . . . 9 (((3 / 256) ∈ ℂ ∧ (𝐴↑4) ∈ ℂ) → ((3 / 256) · (𝐴↑4)) ∈ ℂ)
8987, 63, 88sylancr 588 . . . . . . . 8 (𝜑 → ((3 / 256) · (𝐴↑4)) ∈ ℂ)
9079, 89subcld 11382 . . . . . . 7 (𝜑 → ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4))) ∈ ℂ)
9171, 90, 57addsubd 11403 . . . . . 6 (𝜑 → ((𝐷 + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))) − ((𝐶 · 𝐴) / 4)) = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
9270, 91eqtr4d 2779 . . . . 5 (𝜑𝑅 = ((𝐷 + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))) − ((𝐶 · 𝐴) / 4)))
9369, 92oveq12d 7325 . . . 4 (𝜑 → ((𝑄 · (𝐴 / 4)) + 𝑅) = ((((((𝐴↑4) / 8) / 4) − (((𝐴↑2) · 𝐵) / 8)) + ((𝐶 · 𝐴) / 4)) + ((𝐷 + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))) − ((𝐶 · 𝐴) / 4))))
9471, 90addcld 11044 . . . . 5 (𝜑 → (𝐷 + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))) ∈ ℂ)
9567, 57, 94ppncand 11422 . . . 4 (𝜑 → ((((((𝐴↑4) / 8) / 4) − (((𝐴↑2) · 𝐵) / 8)) + ((𝐶 · 𝐴) / 4)) + ((𝐷 + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))) − ((𝐶 · 𝐴) / 4))) = (((((𝐴↑4) / 8) / 4) − (((𝐴↑2) · 𝐵) / 8)) + (𝐷 + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4))))))
9667, 71, 90add12d 11251 . . . . 5 (𝜑 → (((((𝐴↑4) / 8) / 4) − (((𝐴↑2) · 𝐵) / 8)) + (𝐷 + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4))))) = (𝐷 + (((((𝐴↑4) / 8) / 4) − (((𝐴↑2) · 𝐵) / 8)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4))))))
9760, 89addcld 11044 . . . . . . . 8 (𝜑 → ((((𝐴↑2) · 𝐵) / 8) + ((3 / 256) · (𝐴↑4))) ∈ ℂ)
9865, 79addcld 11044 . . . . . . . 8 (𝜑 → ((((𝐴↑4) / 8) / 4) + (((𝐴↑2) · 𝐵) / 16)) ∈ ℂ)
9997, 98negsubdi2d 11398 . . . . . . 7 (𝜑 → -(((((𝐴↑2) · 𝐵) / 8) + ((3 / 256) · (𝐴↑4))) − ((((𝐴↑4) / 8) / 4) + (((𝐴↑2) · 𝐵) / 16))) = (((((𝐴↑4) / 8) / 4) + (((𝐴↑2) · 𝐵) / 16)) − ((((𝐴↑2) · 𝐵) / 8) + ((3 / 256) · (𝐴↑4)))))
10065, 79addcomd 11227 . . . . . . . . . 10 (𝜑 → ((((𝐴↑4) / 8) / 4) + (((𝐴↑2) · 𝐵) / 16)) = ((((𝐴↑2) · 𝐵) / 16) + (((𝐴↑4) / 8) / 4)))
101100oveq2d 7323 . . . . . . . . 9 (𝜑 → (((((𝐴↑2) · 𝐵) / 8) + ((3 / 256) · (𝐴↑4))) − ((((𝐴↑4) / 8) / 4) + (((𝐴↑2) · 𝐵) / 16))) = (((((𝐴↑2) · 𝐵) / 8) + ((3 / 256) · (𝐴↑4))) − ((((𝐴↑2) · 𝐵) / 16) + (((𝐴↑4) / 8) / 4))))
10260, 89, 79, 65addsub4d 11429 . . . . . . . . 9 (𝜑 → (((((𝐴↑2) · 𝐵) / 8) + ((3 / 256) · (𝐴↑4))) − ((((𝐴↑2) · 𝐵) / 16) + (((𝐴↑4) / 8) / 4))) = (((((𝐴↑2) · 𝐵) / 8) − (((𝐴↑2) · 𝐵) / 16)) + (((3 / 256) · (𝐴↑4)) − (((𝐴↑4) / 8) / 4))))
10380a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → 3 ∈ ℂ)
10485a1i 11 . . . . . . . . . . . . . . . 16 (𝜑256 ∈ ℂ)
10586a1i 11 . . . . . . . . . . . . . . . 16 (𝜑256 ≠ 0)
106103, 63, 104, 105divassd 11836 . . . . . . . . . . . . . . 15 (𝜑 → ((3 · (𝐴↑4)) / 256) = (3 · ((𝐴↑4) / 256)))
107103, 63, 104, 105div23d 11838 . . . . . . . . . . . . . . 15 (𝜑 → ((3 · (𝐴↑4)) / 256) = ((3 / 256) · (𝐴↑4)))
108 1p2e3 12166 . . . . . . . . . . . . . . . . . 18 (1 + 2) = 3
109108oveq1i 7317 . . . . . . . . . . . . . . . . 17 ((1 + 2) · ((𝐴↑4) / 256)) = (3 · ((𝐴↑4) / 256))
110 1cnd 11020 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℂ)
11163, 104, 105divcld 11801 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐴↑4) / 256) ∈ ℂ)
112110, 35, 111adddird 11050 . . . . . . . . . . . . . . . . 17 (𝜑 → ((1 + 2) · ((𝐴↑4) / 256)) = ((1 · ((𝐴↑4) / 256)) + (2 · ((𝐴↑4) / 256))))
113109, 112eqtr3id 2790 . . . . . . . . . . . . . . . 16 (𝜑 → (3 · ((𝐴↑4) / 256)) = ((1 · ((𝐴↑4) / 256)) + (2 · ((𝐴↑4) / 256))))
114111mulid2d 11043 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 · ((𝐴↑4) / 256)) = ((𝐴↑4) / 256))
115114oveq1d 7322 . . . . . . . . . . . . . . . 16 (𝜑 → ((1 · ((𝐴↑4) / 256)) + (2 · ((𝐴↑4) / 256))) = (((𝐴↑4) / 256) + (2 · ((𝐴↑4) / 256))))
116113, 115eqtrd 2776 . . . . . . . . . . . . . . 15 (𝜑 → (3 · ((𝐴↑4) / 256)) = (((𝐴↑4) / 256) + (2 · ((𝐴↑4) / 256))))
117106, 107, 1163eqtr3d 2784 . . . . . . . . . . . . . 14 (𝜑 → ((3 / 256) · (𝐴↑4)) = (((𝐴↑4) / 256) + (2 · ((𝐴↑4) / 256))))
11843oveq1i 7317 . . . . . . . . . . . . . . . 16 (4 · ((((𝐴↑4) / 8) / 4) / 4)) = ((3 + 1) · ((((𝐴↑4) / 8) / 4) / 4))
11965, 17, 19divcld 11801 . . . . . . . . . . . . . . . . 17 (𝜑 → ((((𝐴↑4) / 8) / 4) / 4) ∈ ℂ)
120103, 110, 119adddird 11050 . . . . . . . . . . . . . . . 16 (𝜑 → ((3 + 1) · ((((𝐴↑4) / 8) / 4) / 4)) = ((3 · ((((𝐴↑4) / 8) / 4) / 4)) + (1 · ((((𝐴↑4) / 8) / 4) / 4))))
121118, 120eqtrid 2788 . . . . . . . . . . . . . . 15 (𝜑 → (4 · ((((𝐴↑4) / 8) / 4) / 4)) = ((3 · ((((𝐴↑4) / 8) / 4) / 4)) + (1 · ((((𝐴↑4) / 8) / 4) / 4))))
12265, 17, 19divcan2d 11803 . . . . . . . . . . . . . . 15 (𝜑 → (4 · ((((𝐴↑4) / 8) / 4) / 4)) = (((𝐴↑4) / 8) / 4))
123119mulid2d 11043 . . . . . . . . . . . . . . . . 17 (𝜑 → (1 · ((((𝐴↑4) / 8) / 4) / 4)) = ((((𝐴↑4) / 8) / 4) / 4))
12464, 17, 17, 19, 19divdiv1d 11832 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((((𝐴↑4) / 8) / 4) / 4) = (((𝐴↑4) / 8) / (4 · 4)))
125 4t4e16 12586 . . . . . . . . . . . . . . . . . . 19 (4 · 4) = 16
126125oveq2i 7318 . . . . . . . . . . . . . . . . . 18 (((𝐴↑4) / 8) / (4 · 4)) = (((𝐴↑4) / 8) / 16)
127124, 126eqtrdi 2792 . . . . . . . . . . . . . . . . 17 (𝜑 → ((((𝐴↑4) / 8) / 4) / 4) = (((𝐴↑4) / 8) / 16))
12863, 11, 76, 14, 78divdiv1d 11832 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((𝐴↑4) / 8) / 16) = ((𝐴↑4) / (8 · 16)))
12910, 75mulcli 11032 . . . . . . . . . . . . . . . . . . . . 21 (8 · 16) ∈ ℂ
130129a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (8 · 16) ∈ ℂ)
13110, 75, 13, 77mulne0i 11668 . . . . . . . . . . . . . . . . . . . . 21 (8 · 16) ≠ 0
132131a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (8 · 16) ≠ 0)
13363, 130, 132divcld 11801 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐴↑4) / (8 · 16)) ∈ ℂ)
134133, 35, 37divcan2d 11803 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 · (((𝐴↑4) / (8 · 16)) / 2)) = ((𝐴↑4) / (8 · 16)))
13563, 130, 35, 132, 37divdiv1d 11832 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (((𝐴↑4) / (8 · 16)) / 2) = ((𝐴↑4) / ((8 · 16) · 2)))
13610, 75, 30mul32i 11221 . . . . . . . . . . . . . . . . . . . . . 22 ((8 · 16) · 2) = ((8 · 2) · 16)
137 2exp4 16835 . . . . . . . . . . . . . . . . . . . . . . . 24 (2↑4) = 16
138 8t2e16 12602 . . . . . . . . . . . . . . . . . . . . . . . 24 (8 · 2) = 16
139137, 138eqtr4i 2767 . . . . . . . . . . . . . . . . . . . . . . 23 (2↑4) = (8 · 2)
140139, 137oveq12i 7319 . . . . . . . . . . . . . . . . . . . . . 22 ((2↑4) · (2↑4)) = ((8 · 2) · 16)
141 4p4e8 12178 . . . . . . . . . . . . . . . . . . . . . . . 24 (4 + 4) = 8
142141oveq2i 7318 . . . . . . . . . . . . . . . . . . . . . . 23 (2↑(4 + 4)) = (2↑8)
143 expadd 13875 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℂ ∧ 4 ∈ ℕ0 ∧ 4 ∈ ℕ0) → (2↑(4 + 4)) = ((2↑4) · (2↑4)))
14430, 61, 61, 143mp3an 1461 . . . . . . . . . . . . . . . . . . . . . . 23 (2↑(4 + 4)) = ((2↑4) · (2↑4))
145 2exp8 16839 . . . . . . . . . . . . . . . . . . . . . . 23 (2↑8) = 256
146142, 144, 1453eqtr3i 2772 . . . . . . . . . . . . . . . . . . . . . 22 ((2↑4) · (2↑4)) = 256
147136, 140, 1463eqtr2i 2770 . . . . . . . . . . . . . . . . . . . . 21 ((8 · 16) · 2) = 256
148147oveq2i 7318 . . . . . . . . . . . . . . . . . . . 20 ((𝐴↑4) / ((8 · 16) · 2)) = ((𝐴↑4) / 256)
149135, 148eqtrdi 2792 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((𝐴↑4) / (8 · 16)) / 2) = ((𝐴↑4) / 256))
150149oveq2d 7323 . . . . . . . . . . . . . . . . . 18 (𝜑 → (2 · (((𝐴↑4) / (8 · 16)) / 2)) = (2 · ((𝐴↑4) / 256)))
151128, 134, 1503eqtr2d 2782 . . . . . . . . . . . . . . . . 17 (𝜑 → (((𝐴↑4) / 8) / 16) = (2 · ((𝐴↑4) / 256)))
152123, 127, 1513eqtrd 2780 . . . . . . . . . . . . . . . 16 (𝜑 → (1 · ((((𝐴↑4) / 8) / 4) / 4)) = (2 · ((𝐴↑4) / 256)))
153152oveq2d 7323 . . . . . . . . . . . . . . 15 (𝜑 → ((3 · ((((𝐴↑4) / 8) / 4) / 4)) + (1 · ((((𝐴↑4) / 8) / 4) / 4))) = ((3 · ((((𝐴↑4) / 8) / 4) / 4)) + (2 · ((𝐴↑4) / 256))))
154121, 122, 1533eqtr3d 2784 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴↑4) / 8) / 4) = ((3 · ((((𝐴↑4) / 8) / 4) / 4)) + (2 · ((𝐴↑4) / 256))))
155117, 154oveq12d 7325 . . . . . . . . . . . . 13 (𝜑 → (((3 / 256) · (𝐴↑4)) − (((𝐴↑4) / 8) / 4)) = ((((𝐴↑4) / 256) + (2 · ((𝐴↑4) / 256))) − ((3 · ((((𝐴↑4) / 8) / 4) / 4)) + (2 · ((𝐴↑4) / 256)))))
156 mulcl 11005 . . . . . . . . . . . . . . 15 ((3 ∈ ℂ ∧ ((((𝐴↑4) / 8) / 4) / 4) ∈ ℂ) → (3 · ((((𝐴↑4) / 8) / 4) / 4)) ∈ ℂ)
15780, 119, 156sylancr 588 . . . . . . . . . . . . . 14 (𝜑 → (3 · ((((𝐴↑4) / 8) / 4) / 4)) ∈ ℂ)
158 mulcl 11005 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ ((𝐴↑4) / 256) ∈ ℂ) → (2 · ((𝐴↑4) / 256)) ∈ ℂ)
15930, 111, 158sylancr 588 . . . . . . . . . . . . . 14 (𝜑 → (2 · ((𝐴↑4) / 256)) ∈ ℂ)
160111, 157, 159pnpcan2d 11420 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴↑4) / 256) + (2 · ((𝐴↑4) / 256))) − ((3 · ((((𝐴↑4) / 8) / 4) / 4)) + (2 · ((𝐴↑4) / 256)))) = (((𝐴↑4) / 256) − (3 · ((((𝐴↑4) / 8) / 4) / 4))))
161155, 160eqtrd 2776 . . . . . . . . . . . 12 (𝜑 → (((3 / 256) · (𝐴↑4)) − (((𝐴↑4) / 8) / 4)) = (((𝐴↑4) / 256) − (3 · ((((𝐴↑4) / 8) / 4) / 4))))
162161oveq2d 7323 . . . . . . . . . . 11 (𝜑 → ((((𝐴↑2) · 𝐵) / 16) + (((3 / 256) · (𝐴↑4)) − (((𝐴↑4) / 8) / 4))) = ((((𝐴↑2) · 𝐵) / 16) + (((𝐴↑4) / 256) − (3 · ((((𝐴↑4) / 8) / 4) / 4)))))
16379, 111, 157addsub12d 11405 . . . . . . . . . . 11 (𝜑 → ((((𝐴↑2) · 𝐵) / 16) + (((𝐴↑4) / 256) − (3 · ((((𝐴↑4) / 8) / 4) / 4)))) = (((𝐴↑4) / 256) + ((((𝐴↑2) · 𝐵) / 16) − (3 · ((((𝐴↑4) / 8) / 4) / 4)))))
164162, 163eqtrd 2776 . . . . . . . . . 10 (𝜑 → ((((𝐴↑2) · 𝐵) / 16) + (((3 / 256) · (𝐴↑4)) − (((𝐴↑4) / 8) / 4))) = (((𝐴↑4) / 256) + ((((𝐴↑2) · 𝐵) / 16) − (3 · ((((𝐴↑4) / 8) / 4) / 4)))))
16559, 11, 35, 14, 37divdiv1d 11832 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝐴↑2) · 𝐵) / 8) / 2) = (((𝐴↑2) · 𝐵) / (8 · 2)))
166138oveq2i 7318 . . . . . . . . . . . . . . 15 (((𝐴↑2) · 𝐵) / (8 · 2)) = (((𝐴↑2) · 𝐵) / 16)
167165, 166eqtrdi 2792 . . . . . . . . . . . . . 14 (𝜑 → ((((𝐴↑2) · 𝐵) / 8) / 2) = (((𝐴↑2) · 𝐵) / 16))
168167oveq2d 7323 . . . . . . . . . . . . 13 (𝜑 → (2 · ((((𝐴↑2) · 𝐵) / 8) / 2)) = (2 · (((𝐴↑2) · 𝐵) / 16)))
16960, 35, 37divcan2d 11803 . . . . . . . . . . . . 13 (𝜑 → (2 · ((((𝐴↑2) · 𝐵) / 8) / 2)) = (((𝐴↑2) · 𝐵) / 8))
170792timesd 12266 . . . . . . . . . . . . 13 (𝜑 → (2 · (((𝐴↑2) · 𝐵) / 16)) = ((((𝐴↑2) · 𝐵) / 16) + (((𝐴↑2) · 𝐵) / 16)))
171168, 169, 1703eqtr3d 2784 . . . . . . . . . . . 12 (𝜑 → (((𝐴↑2) · 𝐵) / 8) = ((((𝐴↑2) · 𝐵) / 16) + (((𝐴↑2) · 𝐵) / 16)))
17279, 79, 171mvrladdd 11438 . . . . . . . . . . 11 (𝜑 → ((((𝐴↑2) · 𝐵) / 8) − (((𝐴↑2) · 𝐵) / 16)) = (((𝐴↑2) · 𝐵) / 16))
173172oveq1d 7322 . . . . . . . . . 10 (𝜑 → (((((𝐴↑2) · 𝐵) / 8) − (((𝐴↑2) · 𝐵) / 16)) + (((3 / 256) · (𝐴↑4)) − (((𝐴↑4) / 8) / 4))) = ((((𝐴↑2) · 𝐵) / 16) + (((3 / 256) · (𝐴↑4)) − (((𝐴↑4) / 8) / 4))))
174 quart1.p . . . . . . . . . . . . 13 (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
175174oveq1d 7322 . . . . . . . . . . . 12 (𝜑 → (𝑃 · ((𝐴 / 4)↑2)) = ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐴 / 4)↑2)))
17680, 10, 13divcli 11767 . . . . . . . . . . . . . 14 (3 / 8) ∈ ℂ
177 mulcl 11005 . . . . . . . . . . . . . 14 (((3 / 8) ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((3 / 8) · (𝐴↑2)) ∈ ℂ)
178176, 58, 177sylancr 588 . . . . . . . . . . . . 13 (𝜑 → ((3 / 8) · (𝐴↑2)) ∈ ℂ)
17920sqcld 13912 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 / 4)↑2) ∈ ℂ)
1803, 178, 179subdird 11482 . . . . . . . . . . . 12 (𝜑 → ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐴 / 4)↑2)) = ((𝐵 · ((𝐴 / 4)↑2)) − (((3 / 8) · (𝐴↑2)) · ((𝐴 / 4)↑2))))
1812, 17, 19sqdivd 13927 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐴 / 4)↑2) = ((𝐴↑2) / (4↑2)))
18216sqvali 13947 . . . . . . . . . . . . . . . . . 18 (4↑2) = (4 · 4)
183182, 125eqtri 2764 . . . . . . . . . . . . . . . . 17 (4↑2) = 16
184183oveq2i 7318 . . . . . . . . . . . . . . . 16 ((𝐴↑2) / (4↑2)) = ((𝐴↑2) / 16)
185181, 184eqtrdi 2792 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐴 / 4)↑2) = ((𝐴↑2) / 16))
186185oveq2d 7323 . . . . . . . . . . . . . 14 (𝜑 → (𝐵 · ((𝐴 / 4)↑2)) = (𝐵 · ((𝐴↑2) / 16)))
1873, 58, 76, 78divassd 11836 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵 · (𝐴↑2)) / 16) = (𝐵 · ((𝐴↑2) / 16)))
1883, 58mulcomd 11046 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 · (𝐴↑2)) = ((𝐴↑2) · 𝐵))
189188oveq1d 7322 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵 · (𝐴↑2)) / 16) = (((𝐴↑2) · 𝐵) / 16))
190186, 187, 1893eqtr2d 2782 . . . . . . . . . . . . 13 (𝜑 → (𝐵 · ((𝐴 / 4)↑2)) = (((𝐴↑2) · 𝐵) / 16))
191176a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → (3 / 8) ∈ ℂ)
192191, 58, 58mulassd 11048 . . . . . . . . . . . . . . . . 17 (𝜑 → (((3 / 8) · (𝐴↑2)) · (𝐴↑2)) = ((3 / 8) · ((𝐴↑2) · (𝐴↑2))))
193103, 63, 11, 14div23d 11838 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((3 · (𝐴↑4)) / 8) = ((3 / 8) · (𝐴↑4)))
194 2p2e4 12158 . . . . . . . . . . . . . . . . . . . . 21 (2 + 2) = 4
195194oveq2i 7318 . . . . . . . . . . . . . . . . . . . 20 (𝐴↑(2 + 2)) = (𝐴↑4)
19681a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ∈ ℕ0)
1972, 196, 196expaddd 13916 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴↑(2 + 2)) = ((𝐴↑2) · (𝐴↑2)))
198195, 197eqtr3id 2790 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴↑4) = ((𝐴↑2) · (𝐴↑2)))
199198oveq2d 7323 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((3 / 8) · (𝐴↑4)) = ((3 / 8) · ((𝐴↑2) · (𝐴↑2))))
200193, 199eqtrd 2776 . . . . . . . . . . . . . . . . 17 (𝜑 → ((3 · (𝐴↑4)) / 8) = ((3 / 8) · ((𝐴↑2) · (𝐴↑2))))
201103, 63, 11, 14divassd 11836 . . . . . . . . . . . . . . . . 17 (𝜑 → ((3 · (𝐴↑4)) / 8) = (3 · ((𝐴↑4) / 8)))
202192, 200, 2013eqtr2d 2782 . . . . . . . . . . . . . . . 16 (𝜑 → (((3 / 8) · (𝐴↑2)) · (𝐴↑2)) = (3 · ((𝐴↑4) / 8)))
203202oveq1d 7322 . . . . . . . . . . . . . . 15 (𝜑 → ((((3 / 8) · (𝐴↑2)) · (𝐴↑2)) / (4↑2)) = ((3 · ((𝐴↑4) / 8)) / (4↑2)))
204183, 76eqeltrid 2841 . . . . . . . . . . . . . . . 16 (𝜑 → (4↑2) ∈ ℂ)
205183, 77eqnetri 3012 . . . . . . . . . . . . . . . . 17 (4↑2) ≠ 0
206205a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → (4↑2) ≠ 0)
207178, 58, 204, 206divassd 11836 . . . . . . . . . . . . . . 15 (𝜑 → ((((3 / 8) · (𝐴↑2)) · (𝐴↑2)) / (4↑2)) = (((3 / 8) · (𝐴↑2)) · ((𝐴↑2) / (4↑2))))
208103, 64, 204, 206divassd 11836 . . . . . . . . . . . . . . 15 (𝜑 → ((3 · ((𝐴↑4) / 8)) / (4↑2)) = (3 · (((𝐴↑4) / 8) / (4↑2))))
209203, 207, 2083eqtr3d 2784 . . . . . . . . . . . . . 14 (𝜑 → (((3 / 8) · (𝐴↑2)) · ((𝐴↑2) / (4↑2))) = (3 · (((𝐴↑4) / 8) / (4↑2))))
210181oveq2d 7323 . . . . . . . . . . . . . 14 (𝜑 → (((3 / 8) · (𝐴↑2)) · ((𝐴 / 4)↑2)) = (((3 / 8) · (𝐴↑2)) · ((𝐴↑2) / (4↑2))))
211183oveq2i 7318 . . . . . . . . . . . . . . . 16 (((𝐴↑4) / 8) / (4↑2)) = (((𝐴↑4) / 8) / 16)
212127, 211eqtr4di 2794 . . . . . . . . . . . . . . 15 (𝜑 → ((((𝐴↑4) / 8) / 4) / 4) = (((𝐴↑4) / 8) / (4↑2)))
213212oveq2d 7323 . . . . . . . . . . . . . 14 (𝜑 → (3 · ((((𝐴↑4) / 8) / 4) / 4)) = (3 · (((𝐴↑4) / 8) / (4↑2))))
214209, 210, 2133eqtr4d 2786 . . . . . . . . . . . . 13 (𝜑 → (((3 / 8) · (𝐴↑2)) · ((𝐴 / 4)↑2)) = (3 · ((((𝐴↑4) / 8) / 4) / 4)))
215190, 214oveq12d 7325 . . . . . . . . . . . 12 (𝜑 → ((𝐵 · ((𝐴 / 4)↑2)) − (((3 / 8) · (𝐴↑2)) · ((𝐴 / 4)↑2))) = ((((𝐴↑2) · 𝐵) / 16) − (3 · ((((𝐴↑4) / 8) / 4) / 4))))
216175, 180, 2153eqtrd 2780 . . . . . . . . . . 11 (𝜑 → (𝑃 · ((𝐴 / 4)↑2)) = ((((𝐴↑2) · 𝐵) / 16) − (3 · ((((𝐴↑4) / 8) / 4) / 4))))
217216oveq2d 7323 . . . . . . . . . 10 (𝜑 → (((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2))) = (((𝐴↑4) / 256) + ((((𝐴↑2) · 𝐵) / 16) − (3 · ((((𝐴↑4) / 8) / 4) / 4)))))
218164, 173, 2173eqtr4d 2786 . . . . . . . . 9 (𝜑 → (((((𝐴↑2) · 𝐵) / 8) − (((𝐴↑2) · 𝐵) / 16)) + (((3 / 256) · (𝐴↑4)) − (((𝐴↑4) / 8) / 4))) = (((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2))))
219101, 102, 2183eqtrd 2780 . . . . . . . 8 (𝜑 → (((((𝐴↑2) · 𝐵) / 8) + ((3 / 256) · (𝐴↑4))) − ((((𝐴↑4) / 8) / 4) + (((𝐴↑2) · 𝐵) / 16))) = (((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2))))
220219negeqd 11265 . . . . . . 7 (𝜑 → -(((((𝐴↑2) · 𝐵) / 8) + ((3 / 256) · (𝐴↑4))) − ((((𝐴↑4) / 8) / 4) + (((𝐴↑2) · 𝐵) / 16))) = -(((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2))))
22165, 79, 60, 89addsub4d 11429 . . . . . . 7 (𝜑 → (((((𝐴↑4) / 8) / 4) + (((𝐴↑2) · 𝐵) / 16)) − ((((𝐴↑2) · 𝐵) / 8) + ((3 / 256) · (𝐴↑4)))) = (((((𝐴↑4) / 8) / 4) − (((𝐴↑2) · 𝐵) / 8)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
22299, 220, 2213eqtr3rd 2785 . . . . . 6 (𝜑 → (((((𝐴↑4) / 8) / 4) − (((𝐴↑2) · 𝐵) / 8)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))) = -(((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2))))
223222oveq2d 7323 . . . . 5 (𝜑 → (𝐷 + (((((𝐴↑4) / 8) / 4) − (((𝐴↑2) · 𝐵) / 8)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4))))) = (𝐷 + -(((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2)))))
2243, 178subcld 11382 . . . . . . . . 9 (𝜑 → (𝐵 − ((3 / 8) · (𝐴↑2))) ∈ ℂ)
225174, 224eqeltrd 2837 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
226225, 179mulcld 11045 . . . . . . 7 (𝜑 → (𝑃 · ((𝐴 / 4)↑2)) ∈ ℂ)
227111, 226addcld 11044 . . . . . 6 (𝜑 → (((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2))) ∈ ℂ)
22871, 227negsubd 11388 . . . . 5 (𝜑 → (𝐷 + -(((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2)))) = (𝐷 − (((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2)))))
22996, 223, 2283eqtrd 2780 . . . 4 (𝜑 → (((((𝐴↑4) / 8) / 4) − (((𝐴↑2) · 𝐵) / 8)) + (𝐷 + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4))))) = (𝐷 − (((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2)))))
23093, 95, 2293eqtrd 2780 . . 3 (𝜑 → ((𝑄 · (𝐴 / 4)) + 𝑅) = (𝐷 − (((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2)))))
231230oveq2d 7323 . 2 (𝜑 → ((((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2))) + ((𝑄 · (𝐴 / 4)) + 𝑅)) = ((((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2))) + (𝐷 − (((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2))))))
232227, 71pncan3d 11385 . 2 (𝜑 → ((((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2))) + (𝐷 − (((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2))))) = 𝐷)
233231, 232eqtr2d 2777 1 (𝜑𝐷 = ((((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2))) + ((𝑄 · (𝐴 / 4)) + 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  wne 2941  (class class class)co 7307  cc 10919  0cc0 10921  1c1 10922   + caddc 10924   · cmul 10926  cmin 11255  -cneg 11256   / cdiv 11682  2c2 12078  3c3 12079  4c4 12080  5c5 12081  6c6 12082  8c8 12084  0cn0 12283  cdc 12487  cexp 13832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10977  ax-resscn 10978  ax-1cn 10979  ax-icn 10980  ax-addcl 10981  ax-addrcl 10982  ax-mulcl 10983  ax-mulrcl 10984  ax-mulcom 10985  ax-addass 10986  ax-mulass 10987  ax-distr 10988  ax-i2m1 10989  ax-1ne0 10990  ax-1rid 10991  ax-rnegex 10992  ax-rrecex 10993  ax-cnre 10994  ax-pre-lttri 10995  ax-pre-lttrn 10996  ax-pre-ltadd 10997  ax-pre-mulgt0 10998
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3304  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11061  df-mnf 11062  df-xr 11063  df-ltxr 11064  df-le 11065  df-sub 11257  df-neg 11258  df-div 11683  df-nn 12024  df-2 12086  df-3 12087  df-4 12088  df-5 12089  df-6 12090  df-7 12091  df-8 12092  df-9 12093  df-n0 12284  df-z 12370  df-dec 12488  df-uz 12633  df-seq 13772  df-exp 13833
This theorem is referenced by:  quart1  26055
  Copyright terms: Public domain W3C validator