![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adddi | Structured version Visualization version GIF version |
Description: Alias for ax-distr 11251, for naming consistency with adddii 11302. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
adddi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-distr 11251 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 + caddc 11187 · cmul 11189 |
This theorem was proved from axioms: ax-distr 11251 |
This theorem is referenced by: adddir 11281 adddii 11302 adddid 11314 muladd11 11460 mul02lem1 11466 mul02 11468 muladd 11722 nnmulcl 12317 xadddilem 13356 expmul 14158 bernneq 14278 sqoddm1div8 14292 sqreulem 15408 isermulc2 15706 fsummulc2 15832 fsumcube 16108 efexp 16149 efi4p 16185 sinadd 16212 cosadd 16213 cos2tsin 16227 cos01bnd 16234 absefib 16246 efieq1re 16247 demoivreALT 16249 odd2np1 16389 opoe 16411 opeo 16413 pythagtriplem12 16873 cncrng 21424 cncrngOLD 21425 cnlmod 25192 plydivlem4 26356 sinperlem 26540 cxpsqrt 26763 chtub 27274 bcp1ctr 27341 2lgslem3d1 27465 cncvcOLD 30615 hhph 31210 2zrngALT 47977 |
Copyright terms: Public domain | W3C validator |