| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adddi | Structured version Visualization version GIF version | ||
| Description: Alias for ax-distr 11070, for naming consistency with adddii 11121. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| adddi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-distr 11070 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 + caddc 11006 · cmul 11008 |
| This theorem was proved from axioms: ax-distr 11070 |
| This theorem is referenced by: adddir 11100 adddii 11121 adddid 11133 muladd11 11280 mul02lem1 11286 mul02 11288 muladd 11546 nnmulcl 12146 xadddilem 13190 expmul 14011 bernneq 14133 sqoddm1div8 14147 sqreulem 15264 isermulc2 15562 fsummulc2 15688 fsumcube 15964 efexp 16007 efi4p 16043 sinadd 16070 cosadd 16071 cos2tsin 16085 cos01bnd 16092 absefib 16104 efieq1re 16105 demoivreALT 16107 odd2np1 16249 opoe 16271 opeo 16273 pythagtriplem12 16735 cncrng 21323 cncrngOLD 21324 cnlmod 25065 plydivlem4 26229 sinperlem 26414 cxpsqrt 26637 chtub 27148 bcp1ctr 27215 2lgslem3d1 27339 cncvcOLD 30558 hhph 31153 2zrngALT 48284 |
| Copyright terms: Public domain | W3C validator |