Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > adddi | Structured version Visualization version GIF version |
Description: Alias for ax-distr 10938, for naming consistency with adddii 10987. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
adddi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-distr 10938 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 + caddc 10874 · cmul 10876 |
This theorem was proved from axioms: ax-distr 10938 |
This theorem is referenced by: adddir 10966 adddii 10987 adddid 10999 muladd11 11145 mul02lem1 11151 mul02 11153 muladd 11407 nnmulcl 11997 xadddilem 13028 expmul 13828 bernneq 13944 sqoddm1div8 13958 sqreulem 15071 isermulc2 15369 fsummulc2 15496 fsumcube 15770 efexp 15810 efi4p 15846 sinadd 15873 cosadd 15874 cos2tsin 15888 cos01bnd 15895 absefib 15907 efieq1re 15908 demoivreALT 15910 odd2np1 16050 opoe 16072 opeo 16074 gcdmultipleOLD 16260 pythagtriplem12 16527 cncrng 20619 cnlmod 24303 plydivlem4 25456 sinperlem 25637 cxpsqrt 25858 chtub 26360 bcp1ctr 26427 2lgslem3d1 26551 cncvcOLD 28945 hhph 29540 2zrngALT 45506 |
Copyright terms: Public domain | W3C validator |