| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adddi | Structured version Visualization version GIF version | ||
| Description: Alias for ax-distr 11196, for naming consistency with adddii 11247. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| adddi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-distr 11196 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 + caddc 11132 · cmul 11134 |
| This theorem was proved from axioms: ax-distr 11196 |
| This theorem is referenced by: adddir 11226 adddii 11247 adddid 11259 muladd11 11405 mul02lem1 11411 mul02 11413 muladd 11669 nnmulcl 12264 xadddilem 13310 expmul 14125 bernneq 14247 sqoddm1div8 14261 sqreulem 15378 isermulc2 15674 fsummulc2 15800 fsumcube 16076 efexp 16119 efi4p 16155 sinadd 16182 cosadd 16183 cos2tsin 16197 cos01bnd 16204 absefib 16216 efieq1re 16217 demoivreALT 16219 odd2np1 16360 opoe 16382 opeo 16384 pythagtriplem12 16846 cncrng 21351 cncrngOLD 21352 cnlmod 25091 plydivlem4 26256 sinperlem 26441 cxpsqrt 26664 chtub 27175 bcp1ctr 27242 2lgslem3d1 27366 cncvcOLD 30564 hhph 31159 2zrngALT 48229 |
| Copyright terms: Public domain | W3C validator |