| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adddi | Structured version Visualization version GIF version | ||
| Description: Alias for ax-distr 11135, for naming consistency with adddii 11186. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| adddi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-distr 11135 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 + caddc 11071 · cmul 11073 |
| This theorem was proved from axioms: ax-distr 11135 |
| This theorem is referenced by: adddir 11165 adddii 11186 adddid 11198 muladd11 11344 mul02lem1 11350 mul02 11352 muladd 11610 nnmulcl 12210 xadddilem 13254 expmul 14072 bernneq 14194 sqoddm1div8 14208 sqreulem 15326 isermulc2 15624 fsummulc2 15750 fsumcube 16026 efexp 16069 efi4p 16105 sinadd 16132 cosadd 16133 cos2tsin 16147 cos01bnd 16154 absefib 16166 efieq1re 16167 demoivreALT 16169 odd2np1 16311 opoe 16333 opeo 16335 pythagtriplem12 16797 cncrng 21300 cncrngOLD 21301 cnlmod 25040 plydivlem4 26204 sinperlem 26389 cxpsqrt 26612 chtub 27123 bcp1ctr 27190 2lgslem3d1 27314 cncvcOLD 30512 hhph 31107 2zrngALT 48242 |
| Copyright terms: Public domain | W3C validator |