| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adddi | Structured version Visualization version GIF version | ||
| Description: Alias for ax-distr 11142, for naming consistency with adddii 11193. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| adddi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-distr 11142 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 + caddc 11078 · cmul 11080 |
| This theorem was proved from axioms: ax-distr 11142 |
| This theorem is referenced by: adddir 11172 adddii 11193 adddid 11205 muladd11 11351 mul02lem1 11357 mul02 11359 muladd 11617 nnmulcl 12217 xadddilem 13261 expmul 14079 bernneq 14201 sqoddm1div8 14215 sqreulem 15333 isermulc2 15631 fsummulc2 15757 fsumcube 16033 efexp 16076 efi4p 16112 sinadd 16139 cosadd 16140 cos2tsin 16154 cos01bnd 16161 absefib 16173 efieq1re 16174 demoivreALT 16176 odd2np1 16318 opoe 16340 opeo 16342 pythagtriplem12 16804 cncrng 21307 cncrngOLD 21308 cnlmod 25047 plydivlem4 26211 sinperlem 26396 cxpsqrt 26619 chtub 27130 bcp1ctr 27197 2lgslem3d1 27321 cncvcOLD 30519 hhph 31114 2zrngALT 48246 |
| Copyright terms: Public domain | W3C validator |