| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adddi | Structured version Visualization version GIF version | ||
| Description: Alias for ax-distr 11095, for naming consistency with adddii 11146. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| adddi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-distr 11095 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 + caddc 11031 · cmul 11033 |
| This theorem was proved from axioms: ax-distr 11095 |
| This theorem is referenced by: adddir 11125 adddii 11146 adddid 11158 muladd11 11304 mul02lem1 11310 mul02 11312 muladd 11570 nnmulcl 12170 xadddilem 13214 expmul 14032 bernneq 14154 sqoddm1div8 14168 sqreulem 15285 isermulc2 15583 fsummulc2 15709 fsumcube 15985 efexp 16028 efi4p 16064 sinadd 16091 cosadd 16092 cos2tsin 16106 cos01bnd 16113 absefib 16125 efieq1re 16126 demoivreALT 16128 odd2np1 16270 opoe 16292 opeo 16294 pythagtriplem12 16756 cncrng 21313 cncrngOLD 21314 cnlmod 25056 plydivlem4 26220 sinperlem 26405 cxpsqrt 26628 chtub 27139 bcp1ctr 27206 2lgslem3d1 27330 cncvcOLD 30545 hhph 31140 2zrngALT 48239 |
| Copyright terms: Public domain | W3C validator |