![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adddi | Structured version Visualization version GIF version |
Description: Alias for ax-distr 10401, for naming consistency with adddii 10451. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
adddi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-distr 10401 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 (class class class)co 6975 ℂcc 10332 + caddc 10337 · cmul 10339 |
This theorem was proved from axioms: ax-distr 10401 |
This theorem is referenced by: adddir 10429 adddii 10451 adddid 10463 muladd11 10609 mul02lem1 10615 mul02 10617 muladd 10872 nnmulcl 11463 xadddilem 12502 expmul 13288 bernneq 13404 sqoddm1div8 13418 sqreulem 14579 isermulc2 14874 fsummulc2 14998 fsumcube 15273 efexp 15313 efi4p 15349 sinadd 15376 cosadd 15377 cos2tsin 15391 cos01bnd 15398 absefib 15410 efieq1re 15411 demoivreALT 15413 odd2np1 15549 opoe 15571 opeo 15573 gcdmultiple 15755 pythagtriplem12 16018 cncrng 20284 cnlmod 23463 plydivlem4 24604 sinperlem 24785 cxpsqrt 25003 chtub 25506 bcp1ctr 25573 2lgslem3d1 25697 cncvcOLD 28153 hhph 28750 2zrngALT 43613 |
Copyright terms: Public domain | W3C validator |