![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adddi | Structured version Visualization version GIF version |
Description: Alias for ax-distr 11176, for naming consistency with adddii 11225. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
adddi | โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ (๐ด ยท (๐ต + ๐ถ)) = ((๐ด ยท ๐ต) + (๐ด ยท ๐ถ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-distr 11176 | 1 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ (๐ด ยท (๐ต + ๐ถ)) = ((๐ด ยท ๐ต) + (๐ด ยท ๐ถ))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง w3a 1087 = wceq 1541 โ wcel 2106 (class class class)co 7408 โcc 11107 + caddc 11112 ยท cmul 11114 |
This theorem was proved from axioms: ax-distr 11176 |
This theorem is referenced by: adddir 11204 adddii 11225 adddid 11237 muladd11 11383 mul02lem1 11389 mul02 11391 muladd 11645 nnmulcl 12235 xadddilem 13272 expmul 14072 bernneq 14191 sqoddm1div8 14205 sqreulem 15305 isermulc2 15603 fsummulc2 15729 fsumcube 16003 efexp 16043 efi4p 16079 sinadd 16106 cosadd 16107 cos2tsin 16121 cos01bnd 16128 absefib 16140 efieq1re 16141 demoivreALT 16143 odd2np1 16283 opoe 16305 opeo 16307 pythagtriplem12 16758 cncrng 20965 cnlmod 24655 plydivlem4 25808 sinperlem 25989 cxpsqrt 26210 chtub 26712 bcp1ctr 26779 2lgslem3d1 26903 cncvcOLD 29831 hhph 30426 2zrngALT 46836 |
Copyright terms: Public domain | W3C validator |