| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > adddi | Structured version Visualization version GIF version | ||
| Description: Alias for ax-distr 11080, for naming consistency with adddii 11131. (Contributed by NM, 10-Mar-2008.) |
| Ref | Expression |
|---|---|
| adddi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-distr 11080 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 + caddc 11016 · cmul 11018 |
| This theorem was proved from axioms: ax-distr 11080 |
| This theorem is referenced by: adddir 11110 adddii 11131 adddid 11143 muladd11 11290 mul02lem1 11296 mul02 11298 muladd 11556 nnmulcl 12156 xadddilem 13195 expmul 14016 bernneq 14138 sqoddm1div8 14152 sqreulem 15269 isermulc2 15567 fsummulc2 15693 fsumcube 15969 efexp 16012 efi4p 16048 sinadd 16075 cosadd 16076 cos2tsin 16090 cos01bnd 16097 absefib 16109 efieq1re 16110 demoivreALT 16112 odd2np1 16254 opoe 16276 opeo 16278 pythagtriplem12 16740 cncrng 21327 cncrngOLD 21328 cnlmod 25068 plydivlem4 26232 sinperlem 26417 cxpsqrt 26640 chtub 27151 bcp1ctr 27218 2lgslem3d1 27342 cncvcOLD 30565 hhph 31160 2zrngALT 48378 |
| Copyright terms: Public domain | W3C validator |