![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > adddi | Structured version Visualization version GIF version |
Description: Alias for ax-distr 11177, for naming consistency with adddii 11226. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
adddi | โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ (๐ด ยท (๐ต + ๐ถ)) = ((๐ด ยท ๐ต) + (๐ด ยท ๐ถ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-distr 11177 | 1 โข ((๐ด โ โ โง ๐ต โ โ โง ๐ถ โ โ) โ (๐ด ยท (๐ต + ๐ถ)) = ((๐ด ยท ๐ต) + (๐ด ยท ๐ถ))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง w3a 1088 = wceq 1542 โ wcel 2107 (class class class)co 7409 โcc 11108 + caddc 11113 ยท cmul 11115 |
This theorem was proved from axioms: ax-distr 11177 |
This theorem is referenced by: adddir 11205 adddii 11226 adddid 11238 muladd11 11384 mul02lem1 11390 mul02 11392 muladd 11646 nnmulcl 12236 xadddilem 13273 expmul 14073 bernneq 14192 sqoddm1div8 14206 sqreulem 15306 isermulc2 15604 fsummulc2 15730 fsumcube 16004 efexp 16044 efi4p 16080 sinadd 16107 cosadd 16108 cos2tsin 16122 cos01bnd 16129 absefib 16141 efieq1re 16142 demoivreALT 16144 odd2np1 16284 opoe 16306 opeo 16308 pythagtriplem12 16759 cncrng 20966 cnlmod 24656 plydivlem4 25809 sinperlem 25990 cxpsqrt 26211 chtub 26715 bcp1ctr 26782 2lgslem3d1 26906 cncvcOLD 29836 hhph 30431 2zrngALT 46846 |
Copyright terms: Public domain | W3C validator |