Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > adddi | Structured version Visualization version GIF version |
Description: Alias for ax-distr 10869, for naming consistency with adddii 10918. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
adddi | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-distr 10869 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 + caddc 10805 · cmul 10807 |
This theorem was proved from axioms: ax-distr 10869 |
This theorem is referenced by: adddir 10897 adddii 10918 adddid 10930 muladd11 11075 mul02lem1 11081 mul02 11083 muladd 11337 nnmulcl 11927 xadddilem 12957 expmul 13756 bernneq 13872 sqoddm1div8 13886 sqreulem 14999 isermulc2 15297 fsummulc2 15424 fsumcube 15698 efexp 15738 efi4p 15774 sinadd 15801 cosadd 15802 cos2tsin 15816 cos01bnd 15823 absefib 15835 efieq1re 15836 demoivreALT 15838 odd2np1 15978 opoe 16000 opeo 16002 gcdmultipleOLD 16188 pythagtriplem12 16455 cncrng 20531 cnlmod 24209 plydivlem4 25361 sinperlem 25542 cxpsqrt 25763 chtub 26265 bcp1ctr 26332 2lgslem3d1 26456 cncvcOLD 28846 hhph 29441 2zrngALT 45394 |
Copyright terms: Public domain | W3C validator |