MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muladd11r Structured version   Visualization version   GIF version

Theorem muladd11r 11348
Description: A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.)
Assertion
Ref Expression
muladd11r ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 1) · (𝐵 + 1)) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1))

Proof of Theorem muladd11r
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
2 1cnd 11129 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 1 ∈ ℂ)
31, 2addcomd 11337 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴))
4 simpr 484 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
54, 2addcomd 11337 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 1) = (1 + 𝐵))
63, 5oveq12d 7371 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 1) · (𝐵 + 1)) = ((1 + 𝐴) · (1 + 𝐵)))
7 muladd11 11305 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵))))
8 mulcl 11112 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
94, 8addcld 11153 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + (𝐴 · 𝐵)) ∈ ℂ)
102, 1, 9addassd 11156 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵))) = (1 + (𝐴 + (𝐵 + (𝐴 · 𝐵)))))
111, 9addcld 11153 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 + (𝐴 · 𝐵))) ∈ ℂ)
122, 11addcomd 11337 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 + (𝐴 + (𝐵 + (𝐴 · 𝐵)))) = ((𝐴 + (𝐵 + (𝐴 · 𝐵))) + 1))
131, 4, 8addassd 11156 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴 · 𝐵)) = (𝐴 + (𝐵 + (𝐴 · 𝐵))))
14 addcl 11110 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
1514, 8addcomd 11337 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴 · 𝐵)) = ((𝐴 · 𝐵) + (𝐴 + 𝐵)))
1613, 15eqtr3d 2766 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 + (𝐴 · 𝐵))) = ((𝐴 · 𝐵) + (𝐴 + 𝐵)))
1716oveq1d 7368 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (𝐵 + (𝐴 · 𝐵))) + 1) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1))
1810, 12, 173eqtrd 2768 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵))) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1))
196, 7, 183eqtrd 2768 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 1) · (𝐵 + 1)) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  (class class class)co 7353  cc 11026  1c1 11029   + caddc 11031   · cmul 11033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-ltxr 11173
This theorem is referenced by:  fmtnofac2lem  47572
  Copyright terms: Public domain W3C validator