MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muladd11r Structured version   Visualization version   GIF version

Theorem muladd11r 10931
Description: A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.)
Assertion
Ref Expression
muladd11r ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 1) · (𝐵 + 1)) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1))

Proof of Theorem muladd11r
StepHypRef Expression
1 simpl 486 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ)
2 1cnd 10714 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 1 ∈ ℂ)
31, 2addcomd 10920 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 1) = (1 + 𝐴))
4 simpr 488 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
54, 2addcomd 10920 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 1) = (1 + 𝐵))
63, 5oveq12d 7188 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 1) · (𝐵 + 1)) = ((1 + 𝐴) · (1 + 𝐵)))
7 muladd11 10888 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵))))
8 mulcl 10699 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
94, 8addcld 10738 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + (𝐴 · 𝐵)) ∈ ℂ)
102, 1, 9addassd 10741 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵))) = (1 + (𝐴 + (𝐵 + (𝐴 · 𝐵)))))
111, 9addcld 10738 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 + (𝐴 · 𝐵))) ∈ ℂ)
122, 11addcomd 10920 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (1 + (𝐴 + (𝐵 + (𝐴 · 𝐵)))) = ((𝐴 + (𝐵 + (𝐴 · 𝐵))) + 1))
131, 4, 8addassd 10741 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴 · 𝐵)) = (𝐴 + (𝐵 + (𝐴 · 𝐵))))
14 addcl 10697 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
1514, 8addcomd 10920 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) + (𝐴 · 𝐵)) = ((𝐴 · 𝐵) + (𝐴 + 𝐵)))
1613, 15eqtr3d 2775 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 + (𝐴 · 𝐵))) = ((𝐴 · 𝐵) + (𝐴 + 𝐵)))
1716oveq1d 7185 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (𝐵 + (𝐴 · 𝐵))) + 1) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1))
1810, 12, 173eqtrd 2777 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵))) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1))
196, 7, 183eqtrd 2777 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 1) · (𝐵 + 1)) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  (class class class)co 7170  cc 10613  1c1 10616   + caddc 10618   · cmul 10620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-po 5442  df-so 5443  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-ov 7173  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-ltxr 10758
This theorem is referenced by:  fmtnofac2lem  44554
  Copyright terms: Public domain W3C validator