Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgrcomplex Structured version   Visualization version   GIF version

Theorem neicvgrcomplex 44154
Description: The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.)
Hypotheses
Ref Expression
neicvgbex.d 𝐷 = (𝑃𝐵)
neicvgbex.h 𝐻 = (𝐹 ∘ (𝐷𝐺))
neicvgbex.r (𝜑𝑁𝐻𝑀)
Assertion
Ref Expression
neicvgrcomplex (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)

Proof of Theorem neicvgrcomplex
StepHypRef Expression
1 neicvgbex.d . . 3 𝐷 = (𝑃𝐵)
2 neicvgbex.h . . 3 𝐻 = (𝐹 ∘ (𝐷𝐺))
3 neicvgbex.r . . 3 (𝜑𝑁𝐻𝑀)
41, 2, 3neicvgbex 44153 . 2 (𝜑𝐵 ∈ V)
5 difssd 4084 . 2 (𝜑 → (𝐵𝑆) ⊆ 𝐵)
64, 5sselpwd 5264 1 (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  𝒫 cpw 4547   class class class wbr 5089  ccom 5618  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-iota 6437  df-fv 6489
This theorem is referenced by:  neicvgel2  44161
  Copyright terms: Public domain W3C validator