| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgrcomplex | Structured version Visualization version GIF version | ||
| Description: The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| neicvgbex.d | ⊢ 𝐷 = (𝑃‘𝐵) |
| neicvgbex.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
| neicvgbex.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
| Ref | Expression |
|---|---|
| neicvgrcomplex | ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neicvgbex.d | . . 3 ⊢ 𝐷 = (𝑃‘𝐵) | |
| 2 | neicvgbex.h | . . 3 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
| 3 | neicvgbex.r | . . 3 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
| 4 | 1, 2, 3 | neicvgbex 44153 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
| 5 | difssd 4084 | . 2 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ⊆ 𝐵) | |
| 6 | 4, 5 | sselpwd 5264 | 1 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∖ cdif 3894 𝒫 cpw 4547 class class class wbr 5089 ∘ ccom 5618 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: neicvgel2 44161 |
| Copyright terms: Public domain | W3C validator |