Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgrcomplex Structured version   Visualization version   GIF version

Theorem neicvgrcomplex 44088
Description: The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.)
Hypotheses
Ref Expression
neicvgbex.d 𝐷 = (𝑃𝐵)
neicvgbex.h 𝐻 = (𝐹 ∘ (𝐷𝐺))
neicvgbex.r (𝜑𝑁𝐻𝑀)
Assertion
Ref Expression
neicvgrcomplex (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)

Proof of Theorem neicvgrcomplex
StepHypRef Expression
1 neicvgbex.d . . 3 𝐷 = (𝑃𝐵)
2 neicvgbex.h . . 3 𝐻 = (𝐹 ∘ (𝐷𝐺))
3 neicvgbex.r . . 3 (𝜑𝑁𝐻𝑀)
41, 2, 3neicvgbex 44087 . 2 (𝜑𝐵 ∈ V)
5 difssd 4117 . 2 (𝜑 → (𝐵𝑆) ⊆ 𝐵)
64, 5sselpwd 5308 1 (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3463  cdif 3928  𝒫 cpw 4580   class class class wbr 5123  ccom 5669  cfv 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-iota 6494  df-fv 6549
This theorem is referenced by:  neicvgel2  44095
  Copyright terms: Public domain W3C validator