Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgrcomplex Structured version   Visualization version   GIF version

Theorem neicvgrcomplex 41676
Description: The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.)
Hypotheses
Ref Expression
neicvgbex.d 𝐷 = (𝑃𝐵)
neicvgbex.h 𝐻 = (𝐹 ∘ (𝐷𝐺))
neicvgbex.r (𝜑𝑁𝐻𝑀)
Assertion
Ref Expression
neicvgrcomplex (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)

Proof of Theorem neicvgrcomplex
StepHypRef Expression
1 neicvgbex.d . . 3 𝐷 = (𝑃𝐵)
2 neicvgbex.h . . 3 𝐻 = (𝐹 ∘ (𝐷𝐺))
3 neicvgbex.r . . 3 (𝜑𝑁𝐻𝑀)
41, 2, 3neicvgbex 41675 . 2 (𝜑𝐵 ∈ V)
5 difssd 4071 . 2 (𝜑 → (𝐵𝑆) ⊆ 𝐵)
64, 5sselpwd 5253 1 (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  Vcvv 3430  cdif 3888  𝒫 cpw 4538   class class class wbr 5078  ccom 5592  cfv 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-iota 6388  df-fv 6438
This theorem is referenced by:  neicvgel2  41683
  Copyright terms: Public domain W3C validator