| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgrcomplex | Structured version Visualization version GIF version | ||
| Description: The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| neicvgbex.d | ⊢ 𝐷 = (𝑃‘𝐵) |
| neicvgbex.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
| neicvgbex.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
| Ref | Expression |
|---|---|
| neicvgrcomplex | ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neicvgbex.d | . . 3 ⊢ 𝐷 = (𝑃‘𝐵) | |
| 2 | neicvgbex.h | . . 3 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
| 3 | neicvgbex.r | . . 3 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
| 4 | 1, 2, 3 | neicvgbex 44087 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
| 5 | difssd 4117 | . 2 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ⊆ 𝐵) | |
| 6 | 4, 5 | sselpwd 5308 | 1 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∖ cdif 3928 𝒫 cpw 4580 class class class wbr 5123 ∘ ccom 5669 ‘cfv 6541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-iota 6494 df-fv 6549 |
| This theorem is referenced by: neicvgel2 44095 |
| Copyright terms: Public domain | W3C validator |