![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgrcomplex | Structured version Visualization version GIF version |
Description: The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.) |
Ref | Expression |
---|---|
neicvgbex.d | ⊢ 𝐷 = (𝑃‘𝐵) |
neicvgbex.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
neicvgbex.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
Ref | Expression |
---|---|
neicvgrcomplex | ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neicvgbex.d | . . 3 ⊢ 𝐷 = (𝑃‘𝐵) | |
2 | neicvgbex.h | . . 3 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
3 | neicvgbex.r | . . 3 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
4 | 1, 2, 3 | neicvgbex 44118 | . 2 ⊢ (𝜑 → 𝐵 ∈ V) |
5 | difssd 4150 | . 2 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ⊆ 𝐵) | |
6 | 4, 5 | sselpwd 5337 | 1 ⊢ (𝜑 → (𝐵 ∖ 𝑆) ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3481 ∖ cdif 3963 𝒫 cpw 4608 class class class wbr 5151 ∘ ccom 5697 ‘cfv 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-iota 6522 df-fv 6577 |
This theorem is referenced by: neicvgel2 44126 |
Copyright terms: Public domain | W3C validator |