Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgf1o Structured version   Visualization version   GIF version

Theorem neicvgf1o 43168
Description: If neighborhood and convergent functions are related by operator 𝐻, it is a one-to-one onto relation. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
neicvg.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
neicvg.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
neicvg.d 𝐷 = (𝑃𝐵)
neicvg.f 𝐹 = (𝒫 𝐵𝑂𝐵)
neicvg.g 𝐺 = (𝐵𝑂𝒫 𝐵)
neicvg.h 𝐻 = (𝐹 ∘ (𝐷𝐺))
neicvg.r (𝜑𝑁𝐻𝑀)
Assertion
Ref Expression
neicvgf1o (𝜑𝐻:(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐺(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑀(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)

Proof of Theorem neicvgf1o
StepHypRef Expression
1 neicvg.o . . . 4 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 neicvg.d . . . . . 6 𝐷 = (𝑃𝐵)
3 neicvg.h . . . . . 6 𝐻 = (𝐹 ∘ (𝐷𝐺))
4 neicvg.r . . . . . 6 (𝜑𝑁𝐻𝑀)
52, 3, 4neicvgbex 43166 . . . . 5 (𝜑𝐵 ∈ V)
65pwexd 5377 . . . 4 (𝜑 → 𝒫 𝐵 ∈ V)
7 neicvg.f . . . 4 𝐹 = (𝒫 𝐵𝑂𝐵)
81, 6, 5, 7fsovf1od 43070 . . 3 (𝜑𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
9 neicvg.p . . . . 5 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
109, 2, 5dssmapf1od 43075 . . . 4 (𝜑𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
11 neicvg.g . . . . 5 𝐺 = (𝐵𝑂𝒫 𝐵)
121, 5, 6, 11fsovf1od 43070 . . . 4 (𝜑𝐺:(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
13 f1oco 6856 . . . 4 ((𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵) ∧ 𝐺:(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵)) → (𝐷𝐺):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
1410, 12, 13syl2anc 583 . . 3 (𝜑 → (𝐷𝐺):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
15 f1oco 6856 . . 3 ((𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ∧ (𝐷𝐺):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵)) → (𝐹 ∘ (𝐷𝐺)):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
168, 14, 15syl2anc 583 . 2 (𝜑 → (𝐹 ∘ (𝐷𝐺)):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
17 f1oeq1 6821 . . 3 (𝐻 = (𝐹 ∘ (𝐷𝐺)) → (𝐻:(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ↔ (𝐹 ∘ (𝐷𝐺)):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵)))
183, 17ax-mp 5 . 2 (𝐻:(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ↔ (𝐹 ∘ (𝐷𝐺)):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
1916, 18sylibr 233 1 (𝜑𝐻:(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  {crab 3431  Vcvv 3473  cdif 3945  𝒫 cpw 4602   class class class wbr 5148  cmpt 5231  ccom 5680  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7412  cmpo 7414  m cmap 8824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-map 8826
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator