![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgf1o | Structured version Visualization version GIF version |
Description: If neighborhood and convergent functions are related by operator 𝐻, it is a one-to-one onto relation. (Contributed by RP, 11-Jun-2021.) |
Ref | Expression |
---|---|
neicvg.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
neicvg.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
neicvg.d | ⊢ 𝐷 = (𝑃‘𝐵) |
neicvg.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
neicvg.g | ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) |
neicvg.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
neicvg.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
Ref | Expression |
---|---|
neicvgf1o | ⊢ (𝜑 → 𝐻:(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neicvg.o | . . . 4 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
2 | neicvg.d | . . . . . 6 ⊢ 𝐷 = (𝑃‘𝐵) | |
3 | neicvg.h | . . . . . 6 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
4 | neicvg.r | . . . . . 6 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
5 | 2, 3, 4 | neicvgbex 43573 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
6 | 5 | pwexd 5383 | . . . 4 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
7 | neicvg.f | . . . 4 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
8 | 1, 6, 5, 7 | fsovf1od 43477 | . . 3 ⊢ (𝜑 → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
9 | neicvg.p | . . . . 5 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
10 | 9, 2, 5 | dssmapf1od 43482 | . . . 4 ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
11 | neicvg.g | . . . . 5 ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) | |
12 | 1, 5, 6, 11 | fsovf1od 43477 | . . . 4 ⊢ (𝜑 → 𝐺:(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
13 | f1oco 6867 | . . . 4 ⊢ ((𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐺:(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) → (𝐷 ∘ 𝐺):(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) | |
14 | 10, 12, 13 | syl2anc 582 | . . 3 ⊢ (𝜑 → (𝐷 ∘ 𝐺):(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
15 | f1oco 6867 | . . 3 ⊢ ((𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ∧ (𝐷 ∘ 𝐺):(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) → (𝐹 ∘ (𝐷 ∘ 𝐺)):(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) | |
16 | 8, 14, 15 | syl2anc 582 | . 2 ⊢ (𝜑 → (𝐹 ∘ (𝐷 ∘ 𝐺)):(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
17 | f1oeq1 6832 | . . 3 ⊢ (𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) → (𝐻:(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ↔ (𝐹 ∘ (𝐷 ∘ 𝐺)):(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵))) | |
18 | 3, 17 | ax-mp 5 | . 2 ⊢ (𝐻:(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ↔ (𝐹 ∘ (𝐷 ∘ 𝐺)):(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
19 | 16, 18 | sylibr 233 | 1 ⊢ (𝜑 → 𝐻:(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 {crab 3430 Vcvv 3473 ∖ cdif 3946 𝒫 cpw 4606 class class class wbr 5152 ↦ cmpt 5235 ∘ ccom 5686 –1-1-onto→wf1o 6552 ‘cfv 6553 (class class class)co 7426 ∈ cmpo 7428 ↑m cmap 8851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 7999 df-2nd 8000 df-map 8853 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |