Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neicvgf1o Structured version   Visualization version   GIF version

Theorem neicvgf1o 44103
Description: If neighborhood and convergent functions are related by operator 𝐻, it is a one-to-one onto relation. (Contributed by RP, 11-Jun-2021.)
Hypotheses
Ref Expression
neicvg.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
neicvg.p 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
neicvg.d 𝐷 = (𝑃𝐵)
neicvg.f 𝐹 = (𝒫 𝐵𝑂𝐵)
neicvg.g 𝐺 = (𝐵𝑂𝒫 𝐵)
neicvg.h 𝐻 = (𝐹 ∘ (𝐷𝐺))
neicvg.r (𝜑𝑁𝐻𝑀)
Assertion
Ref Expression
neicvgf1o (𝜑𝐻:(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑘,𝑙,𝑚   𝐵,𝑛,𝑜,𝑝   𝜑,𝑖,𝑗,𝑘,𝑙   𝜑,𝑛,𝑜,𝑝
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑃(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐺(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝐻(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑀(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑛,𝑜,𝑝,𝑙)

Proof of Theorem neicvgf1o
StepHypRef Expression
1 neicvg.o . . . 4 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 neicvg.d . . . . . 6 𝐷 = (𝑃𝐵)
3 neicvg.h . . . . . 6 𝐻 = (𝐹 ∘ (𝐷𝐺))
4 neicvg.r . . . . . 6 (𝜑𝑁𝐻𝑀)
52, 3, 4neicvgbex 44101 . . . . 5 (𝜑𝐵 ∈ V)
65pwexd 5384 . . . 4 (𝜑 → 𝒫 𝐵 ∈ V)
7 neicvg.f . . . 4 𝐹 = (𝒫 𝐵𝑂𝐵)
81, 6, 5, 7fsovf1od 44005 . . 3 (𝜑𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
9 neicvg.p . . . . 5 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛𝑜))))))
109, 2, 5dssmapf1od 44010 . . . 4 (𝜑𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
11 neicvg.g . . . . 5 𝐺 = (𝐵𝑂𝒫 𝐵)
121, 5, 6, 11fsovf1od 44005 . . . 4 (𝜑𝐺:(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
13 f1oco 6871 . . . 4 ((𝐷:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵) ∧ 𝐺:(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵)) → (𝐷𝐺):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
1410, 12, 13syl2anc 584 . . 3 (𝜑 → (𝐷𝐺):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵))
15 f1oco 6871 . . 3 ((𝐹:(𝒫 𝐵m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ∧ (𝐷𝐺):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝐵m 𝒫 𝐵)) → (𝐹 ∘ (𝐷𝐺)):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
168, 14, 15syl2anc 584 . 2 (𝜑 → (𝐹 ∘ (𝐷𝐺)):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
17 f1oeq1 6836 . . 3 (𝐻 = (𝐹 ∘ (𝐷𝐺)) → (𝐻:(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ↔ (𝐹 ∘ (𝐷𝐺)):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵)))
183, 17ax-mp 5 . 2 (𝐻:(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵) ↔ (𝐹 ∘ (𝐷𝐺)):(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
1916, 18sylibr 234 1 (𝜑𝐻:(𝒫 𝒫 𝐵m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1536  wcel 2105  {crab 3432  Vcvv 3477  cdif 3959  𝒫 cpw 4604   class class class wbr 5147  cmpt 5230  ccom 5692  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  cmpo 7432  m cmap 8864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-map 8866
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator