| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgf1o | Structured version Visualization version GIF version | ||
| Description: If neighborhood and convergent functions are related by operator 𝐻, it is a one-to-one onto relation. (Contributed by RP, 11-Jun-2021.) |
| Ref | Expression |
|---|---|
| neicvg.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
| neicvg.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
| neicvg.d | ⊢ 𝐷 = (𝑃‘𝐵) |
| neicvg.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
| neicvg.g | ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) |
| neicvg.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
| neicvg.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
| Ref | Expression |
|---|---|
| neicvgf1o | ⊢ (𝜑 → 𝐻:(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neicvg.o | . . . 4 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
| 2 | neicvg.d | . . . . . 6 ⊢ 𝐷 = (𝑃‘𝐵) | |
| 3 | neicvg.h | . . . . . 6 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
| 4 | neicvg.r | . . . . . 6 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
| 5 | 2, 3, 4 | neicvgbex 44125 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ V) |
| 6 | 5 | pwexd 5379 | . . . 4 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
| 7 | neicvg.f | . . . 4 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
| 8 | 1, 6, 5, 7 | fsovf1od 44029 | . . 3 ⊢ (𝜑 → 𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 9 | neicvg.p | . . . . 5 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
| 10 | 9, 2, 5 | dssmapf1od 44034 | . . . 4 ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 11 | neicvg.g | . . . . 5 ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) | |
| 12 | 1, 5, 6, 11 | fsovf1od 44029 | . . . 4 ⊢ (𝜑 → 𝐺:(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 13 | f1oco 6871 | . . . 4 ⊢ ((𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵) ∧ 𝐺:(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) → (𝐷 ∘ 𝐺):(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) | |
| 14 | 10, 12, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐷 ∘ 𝐺):(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 15 | f1oco 6871 | . . 3 ⊢ ((𝐹:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ∧ (𝐷 ∘ 𝐺):(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) → (𝐹 ∘ (𝐷 ∘ 𝐺)):(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) | |
| 16 | 8, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 ∘ (𝐷 ∘ 𝐺)):(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 17 | f1oeq1 6836 | . . 3 ⊢ (𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) → (𝐻:(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ↔ (𝐹 ∘ (𝐷 ∘ 𝐺)):(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵))) | |
| 18 | 3, 17 | ax-mp 5 | . 2 ⊢ (𝐻:(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵) ↔ (𝐹 ∘ (𝐷 ∘ 𝐺)):(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
| 19 | 16, 18 | sylibr 234 | 1 ⊢ (𝜑 → 𝐻:(𝒫 𝒫 𝐵 ↑m 𝐵)–1-1-onto→(𝒫 𝒫 𝐵 ↑m 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {crab 3436 Vcvv 3480 ∖ cdif 3948 𝒫 cpw 4600 class class class wbr 5143 ↦ cmpt 5225 ∘ ccom 5689 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 ↑m cmap 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-map 8868 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |