| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ssid 4006 | . 2
⊢ 𝐴 ⊆ 𝐴 | 
| 2 |  | tfrlem1.1 | . . 3
⊢ (𝜑 → 𝐴 ∈ On) | 
| 3 |  | sseq1 4009 | . . . . . 6
⊢ (𝑦 = 𝑧 → (𝑦 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) | 
| 4 |  | raleq 3323 | . . . . . 6
⊢ (𝑦 = 𝑧 → (∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥) ↔ ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) | 
| 5 | 3, 4 | imbi12d 344 | . . . . 5
⊢ (𝑦 = 𝑧 → ((𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)))) | 
| 6 | 5 | imbi2d 340 | . . . 4
⊢ (𝑦 = 𝑧 → ((𝜑 → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))) ↔ (𝜑 → (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))))) | 
| 7 |  | sseq1 4009 | . . . . . 6
⊢ (𝑦 = 𝐴 → (𝑦 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) | 
| 8 |  | raleq 3323 | . . . . . 6
⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | 
| 9 | 7, 8 | imbi12d 344 | . . . . 5
⊢ (𝑦 = 𝐴 → ((𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝐴 ⊆ 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) | 
| 10 | 9 | imbi2d 340 | . . . 4
⊢ (𝑦 = 𝐴 → ((𝜑 → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))) ↔ (𝜑 → (𝐴 ⊆ 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))))) | 
| 11 |  | r19.21v 3180 | . . . . 5
⊢
(∀𝑧 ∈
𝑦 (𝜑 → (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ↔ (𝜑 → ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)))) | 
| 12 |  | tfrlem1.2 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) | 
| 13 | 12 | ad4antr 732 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) | 
| 14 | 13 | simpld 494 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → Fun 𝐹) | 
| 15 | 14 | funfnd 6597 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝐹 Fn dom 𝐹) | 
| 16 |  | eloni 6394 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ On → Ord 𝑦) | 
| 17 | 16 | ad3antlr 731 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) → Ord 𝑦) | 
| 18 |  | ordelss 6400 | . . . . . . . . . . . . . . . . 17
⊢ ((Ord
𝑦 ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ 𝑦) | 
| 19 | 17, 18 | sylan 580 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ 𝑦) | 
| 20 |  | simplr 769 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑦 ⊆ 𝐴) | 
| 21 | 19, 20 | sstrd 3994 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ 𝐴) | 
| 22 | 13 | simprd 495 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝐴 ⊆ dom 𝐹) | 
| 23 | 21, 22 | sstrd 3994 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ dom 𝐹) | 
| 24 |  | fnssres 6691 | . . . . . . . . . . . . . 14
⊢ ((𝐹 Fn dom 𝐹 ∧ 𝑤 ⊆ dom 𝐹) → (𝐹 ↾ 𝑤) Fn 𝑤) | 
| 25 | 15, 23, 24 | syl2anc 584 | . . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐹 ↾ 𝑤) Fn 𝑤) | 
| 26 |  | tfrlem1.3 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (Fun 𝐺 ∧ 𝐴 ⊆ dom 𝐺)) | 
| 27 | 26 | ad4antr 732 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (Fun 𝐺 ∧ 𝐴 ⊆ dom 𝐺)) | 
| 28 | 27 | simpld 494 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → Fun 𝐺) | 
| 29 | 28 | funfnd 6597 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝐺 Fn dom 𝐺) | 
| 30 | 27 | simprd 495 | . . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝐴 ⊆ dom 𝐺) | 
| 31 | 21, 30 | sstrd 3994 | . . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ dom 𝐺) | 
| 32 |  | fnssres 6691 | . . . . . . . . . . . . . 14
⊢ ((𝐺 Fn dom 𝐺 ∧ 𝑤 ⊆ dom 𝐺) → (𝐺 ↾ 𝑤) Fn 𝑤) | 
| 33 | 29, 31, 32 | syl2anc 584 | . . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐺 ↾ 𝑤) Fn 𝑤) | 
| 34 |  | fveq2 6906 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑢 → (𝐹‘𝑥) = (𝐹‘𝑢)) | 
| 35 |  | fveq2 6906 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑢 → (𝐺‘𝑥) = (𝐺‘𝑢)) | 
| 36 | 34, 35 | eqeq12d 2753 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑢 → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ (𝐹‘𝑢) = (𝐺‘𝑢))) | 
| 37 | 21 | adantr 480 | . . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → 𝑤 ⊆ 𝐴) | 
| 38 |  | sseq1 4009 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑤 → (𝑧 ⊆ 𝐴 ↔ 𝑤 ⊆ 𝐴)) | 
| 39 |  | raleq 3323 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑤 → (∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥) ↔ ∀𝑥 ∈ 𝑤 (𝐹‘𝑥) = (𝐺‘𝑥))) | 
| 40 | 38, 39 | imbi12d 344 | . . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑤 → ((𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝑤 ⊆ 𝐴 → ∀𝑥 ∈ 𝑤 (𝐹‘𝑥) = (𝐺‘𝑥)))) | 
| 41 |  | simp-4r 784 | . . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) | 
| 42 |  | simplr 769 | . . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → 𝑤 ∈ 𝑦) | 
| 43 | 40, 41, 42 | rspcdva 3623 | . . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → (𝑤 ⊆ 𝐴 → ∀𝑥 ∈ 𝑤 (𝐹‘𝑥) = (𝐺‘𝑥))) | 
| 44 | 37, 43 | mpd 15 | . . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ∀𝑥 ∈ 𝑤 (𝐹‘𝑥) = (𝐺‘𝑥)) | 
| 45 |  | simpr 484 | . . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → 𝑢 ∈ 𝑤) | 
| 46 | 36, 44, 45 | rspcdva 3623 | . . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → (𝐹‘𝑢) = (𝐺‘𝑢)) | 
| 47 |  | fvres 6925 | . . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ 𝑤 → ((𝐹 ↾ 𝑤)‘𝑢) = (𝐹‘𝑢)) | 
| 48 | 47 | adantl 481 | . . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ((𝐹 ↾ 𝑤)‘𝑢) = (𝐹‘𝑢)) | 
| 49 |  | fvres 6925 | . . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ 𝑤 → ((𝐺 ↾ 𝑤)‘𝑢) = (𝐺‘𝑢)) | 
| 50 | 49 | adantl 481 | . . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ((𝐺 ↾ 𝑤)‘𝑢) = (𝐺‘𝑢)) | 
| 51 | 46, 48, 50 | 3eqtr4d 2787 | . . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ((𝐹 ↾ 𝑤)‘𝑢) = ((𝐺 ↾ 𝑤)‘𝑢)) | 
| 52 | 25, 33, 51 | eqfnfvd 7054 | . . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐹 ↾ 𝑤) = (𝐺 ↾ 𝑤)) | 
| 53 | 52 | fveq2d 6910 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐵‘(𝐹 ↾ 𝑤)) = (𝐵‘(𝐺 ↾ 𝑤))) | 
| 54 |  | fveq2 6906 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) | 
| 55 |  | reseq2 5992 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (𝐹 ↾ 𝑥) = (𝐹 ↾ 𝑤)) | 
| 56 | 55 | fveq2d 6910 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝐵‘(𝐹 ↾ 𝑥)) = (𝐵‘(𝐹 ↾ 𝑤))) | 
| 57 | 54, 56 | eqeq12d 2753 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) = (𝐵‘(𝐹 ↾ 𝑥)) ↔ (𝐹‘𝑤) = (𝐵‘(𝐹 ↾ 𝑤)))) | 
| 58 |  | tfrlem1.4 | . . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐵‘(𝐹 ↾ 𝑥))) | 
| 59 | 58 | ad4antr 732 | . . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐵‘(𝐹 ↾ 𝑥))) | 
| 60 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ 𝐴) | 
| 61 | 60 | sselda 3983 | . . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ∈ 𝐴) | 
| 62 | 57, 59, 61 | rspcdva 3623 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐹‘𝑤) = (𝐵‘(𝐹 ↾ 𝑤))) | 
| 63 |  | fveq2 6906 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝐺‘𝑥) = (𝐺‘𝑤)) | 
| 64 |  | reseq2 5992 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (𝐺 ↾ 𝑥) = (𝐺 ↾ 𝑤)) | 
| 65 | 64 | fveq2d 6910 | . . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝐵‘(𝐺 ↾ 𝑥)) = (𝐵‘(𝐺 ↾ 𝑤))) | 
| 66 | 63, 65 | eqeq12d 2753 | . . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → ((𝐺‘𝑥) = (𝐵‘(𝐺 ↾ 𝑥)) ↔ (𝐺‘𝑤) = (𝐵‘(𝐺 ↾ 𝑤)))) | 
| 67 |  | tfrlem1.5 | . . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) = (𝐵‘(𝐺 ↾ 𝑥))) | 
| 68 | 67 | ad4antr 732 | . . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) = (𝐵‘(𝐺 ↾ 𝑥))) | 
| 69 | 66, 68, 61 | rspcdva 3623 | . . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐺‘𝑤) = (𝐵‘(𝐺 ↾ 𝑤))) | 
| 70 | 53, 62, 69 | 3eqtr4d 2787 | . . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐹‘𝑤) = (𝐺‘𝑤)) | 
| 71 | 70 | ralrimiva 3146 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) → ∀𝑤 ∈ 𝑦 (𝐹‘𝑤) = (𝐺‘𝑤)) | 
| 72 | 54, 63 | eqeq12d 2753 | . . . . . . . . . 10
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ (𝐹‘𝑤) = (𝐺‘𝑤))) | 
| 73 | 72 | cbvralvw 3237 | . . . . . . . . 9
⊢
(∀𝑥 ∈
𝑦 (𝐹‘𝑥) = (𝐺‘𝑥) ↔ ∀𝑤 ∈ 𝑦 (𝐹‘𝑤) = (𝐺‘𝑤)) | 
| 74 | 71, 73 | sylibr 234 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥)) | 
| 75 | 74 | exp31 419 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ On) → (∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)) → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥)))) | 
| 76 | 75 | expcom 413 | . . . . . 6
⊢ (𝑦 ∈ On → (𝜑 → (∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)) → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))))) | 
| 77 | 76 | a2d 29 | . . . . 5
⊢ (𝑦 ∈ On → ((𝜑 → ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) → (𝜑 → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))))) | 
| 78 | 11, 77 | biimtrid 242 | . . . 4
⊢ (𝑦 ∈ On → (∀𝑧 ∈ 𝑦 (𝜑 → (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) → (𝜑 → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))))) | 
| 79 | 6, 10, 78 | tfis3 7879 | . . 3
⊢ (𝐴 ∈ On → (𝜑 → (𝐴 ⊆ 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) | 
| 80 | 2, 79 | mpcom 38 | . 2
⊢ (𝜑 → (𝐴 ⊆ 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) | 
| 81 | 1, 80 | mpi 20 | 1
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |