Step | Hyp | Ref
| Expression |
1 | | ssid 3773 |
. 2
⊢ 𝐴 ⊆ 𝐴 |
2 | | tfrlem1.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ On) |
3 | | sseq1 3775 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝑦 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) |
4 | | raleq 3287 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥) ↔ ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) |
5 | 3, 4 | imbi12d 333 |
. . . . 5
⊢ (𝑦 = 𝑧 → ((𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
6 | 5 | imbi2d 329 |
. . . 4
⊢ (𝑦 = 𝑧 → ((𝜑 → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))) ↔ (𝜑 → (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))))) |
7 | | sseq1 3775 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (𝑦 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
8 | | raleq 3287 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
9 | 7, 8 | imbi12d 333 |
. . . . 5
⊢ (𝑦 = 𝐴 → ((𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝐴 ⊆ 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
10 | 9 | imbi2d 329 |
. . . 4
⊢ (𝑦 = 𝐴 → ((𝜑 → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))) ↔ (𝜑 → (𝐴 ⊆ 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))))) |
11 | | r19.21v 3109 |
. . . . 5
⊢
(∀𝑧 ∈
𝑦 (𝜑 → (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ↔ (𝜑 → ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
12 | | tfrlem1.2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) |
13 | 12 | ad4antr 712 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) |
14 | 13 | simpld 482 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → Fun 𝐹) |
15 | | funfn 6061 |
. . . . . . . . . . . . . . 15
⊢ (Fun
𝐹 ↔ 𝐹 Fn dom 𝐹) |
16 | 14, 15 | sylib 208 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝐹 Fn dom 𝐹) |
17 | | eloni 5876 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ On → Ord 𝑦) |
18 | 17 | ad3antlr 710 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) → Ord 𝑦) |
19 | | ordelss 5882 |
. . . . . . . . . . . . . . . . 17
⊢ ((Ord
𝑦 ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ 𝑦) |
20 | 18, 19 | sylan 569 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ 𝑦) |
21 | | simplr 752 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑦 ⊆ 𝐴) |
22 | 20, 21 | sstrd 3762 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ 𝐴) |
23 | 13 | simprd 483 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝐴 ⊆ dom 𝐹) |
24 | 22, 23 | sstrd 3762 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ dom 𝐹) |
25 | | fnssres 6144 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Fn dom 𝐹 ∧ 𝑤 ⊆ dom 𝐹) → (𝐹 ↾ 𝑤) Fn 𝑤) |
26 | 16, 24, 25 | syl2anc 573 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐹 ↾ 𝑤) Fn 𝑤) |
27 | | tfrlem1.3 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (Fun 𝐺 ∧ 𝐴 ⊆ dom 𝐺)) |
28 | 27 | ad4antr 712 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (Fun 𝐺 ∧ 𝐴 ⊆ dom 𝐺)) |
29 | 28 | simpld 482 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → Fun 𝐺) |
30 | | funfn 6061 |
. . . . . . . . . . . . . . 15
⊢ (Fun
𝐺 ↔ 𝐺 Fn dom 𝐺) |
31 | 29, 30 | sylib 208 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝐺 Fn dom 𝐺) |
32 | 28 | simprd 483 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝐴 ⊆ dom 𝐺) |
33 | 22, 32 | sstrd 3762 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ dom 𝐺) |
34 | | fnssres 6144 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 Fn dom 𝐺 ∧ 𝑤 ⊆ dom 𝐺) → (𝐺 ↾ 𝑤) Fn 𝑤) |
35 | 31, 33, 34 | syl2anc 573 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐺 ↾ 𝑤) Fn 𝑤) |
36 | | fveq2 6332 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑢 → (𝐹‘𝑥) = (𝐹‘𝑢)) |
37 | | fveq2 6332 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑢 → (𝐺‘𝑥) = (𝐺‘𝑢)) |
38 | 36, 37 | eqeq12d 2786 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑢 → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ (𝐹‘𝑢) = (𝐺‘𝑢))) |
39 | 22 | adantr 466 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → 𝑤 ⊆ 𝐴) |
40 | | sseq1 3775 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑤 → (𝑧 ⊆ 𝐴 ↔ 𝑤 ⊆ 𝐴)) |
41 | | raleq 3287 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑤 → (∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥) ↔ ∀𝑥 ∈ 𝑤 (𝐹‘𝑥) = (𝐺‘𝑥))) |
42 | 40, 41 | imbi12d 333 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑤 → ((𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝑤 ⊆ 𝐴 → ∀𝑥 ∈ 𝑤 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
43 | | simp-4r 770 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) |
44 | | simplr 752 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → 𝑤 ∈ 𝑦) |
45 | 42, 43, 44 | rspcdva 3466 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → (𝑤 ⊆ 𝐴 → ∀𝑥 ∈ 𝑤 (𝐹‘𝑥) = (𝐺‘𝑥))) |
46 | 39, 45 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ∀𝑥 ∈ 𝑤 (𝐹‘𝑥) = (𝐺‘𝑥)) |
47 | | simpr 471 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → 𝑢 ∈ 𝑤) |
48 | 38, 46, 47 | rspcdva 3466 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → (𝐹‘𝑢) = (𝐺‘𝑢)) |
49 | | fvres 6348 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ 𝑤 → ((𝐹 ↾ 𝑤)‘𝑢) = (𝐹‘𝑢)) |
50 | 49 | adantl 467 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ((𝐹 ↾ 𝑤)‘𝑢) = (𝐹‘𝑢)) |
51 | | fvres 6348 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ 𝑤 → ((𝐺 ↾ 𝑤)‘𝑢) = (𝐺‘𝑢)) |
52 | 51 | adantl 467 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ((𝐺 ↾ 𝑤)‘𝑢) = (𝐺‘𝑢)) |
53 | 48, 50, 52 | 3eqtr4d 2815 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ((𝐹 ↾ 𝑤)‘𝑢) = ((𝐺 ↾ 𝑤)‘𝑢)) |
54 | 26, 35, 53 | eqfnfvd 6457 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐹 ↾ 𝑤) = (𝐺 ↾ 𝑤)) |
55 | 54 | fveq2d 6336 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐵‘(𝐹 ↾ 𝑤)) = (𝐵‘(𝐺 ↾ 𝑤))) |
56 | | fveq2 6332 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
57 | | reseq2 5529 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (𝐹 ↾ 𝑥) = (𝐹 ↾ 𝑤)) |
58 | 57 | fveq2d 6336 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝐵‘(𝐹 ↾ 𝑥)) = (𝐵‘(𝐹 ↾ 𝑤))) |
59 | 56, 58 | eqeq12d 2786 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) = (𝐵‘(𝐹 ↾ 𝑥)) ↔ (𝐹‘𝑤) = (𝐵‘(𝐹 ↾ 𝑤)))) |
60 | | tfrlem1.4 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐵‘(𝐹 ↾ 𝑥))) |
61 | 60 | ad4antr 712 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐵‘(𝐹 ↾ 𝑥))) |
62 | | simpr 471 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ 𝐴) |
63 | 62 | sselda 3752 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ∈ 𝐴) |
64 | 59, 61, 63 | rspcdva 3466 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐹‘𝑤) = (𝐵‘(𝐹 ↾ 𝑤))) |
65 | | fveq2 6332 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝐺‘𝑥) = (𝐺‘𝑤)) |
66 | | reseq2 5529 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (𝐺 ↾ 𝑥) = (𝐺 ↾ 𝑤)) |
67 | 66 | fveq2d 6336 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝐵‘(𝐺 ↾ 𝑥)) = (𝐵‘(𝐺 ↾ 𝑤))) |
68 | 65, 67 | eqeq12d 2786 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → ((𝐺‘𝑥) = (𝐵‘(𝐺 ↾ 𝑥)) ↔ (𝐺‘𝑤) = (𝐵‘(𝐺 ↾ 𝑤)))) |
69 | | tfrlem1.5 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) = (𝐵‘(𝐺 ↾ 𝑥))) |
70 | 69 | ad4antr 712 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) = (𝐵‘(𝐺 ↾ 𝑥))) |
71 | 68, 70, 63 | rspcdva 3466 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐺‘𝑤) = (𝐵‘(𝐺 ↾ 𝑤))) |
72 | 55, 64, 71 | 3eqtr4d 2815 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐹‘𝑤) = (𝐺‘𝑤)) |
73 | 72 | ralrimiva 3115 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) → ∀𝑤 ∈ 𝑦 (𝐹‘𝑤) = (𝐺‘𝑤)) |
74 | 56, 65 | eqeq12d 2786 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ (𝐹‘𝑤) = (𝐺‘𝑤))) |
75 | 74 | cbvralv 3320 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝑦 (𝐹‘𝑥) = (𝐺‘𝑥) ↔ ∀𝑤 ∈ 𝑦 (𝐹‘𝑤) = (𝐺‘𝑤)) |
76 | 73, 75 | sylibr 224 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥)) |
77 | 76 | exp31 406 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ On) → (∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)) → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
78 | 77 | expcom 398 |
. . . . . 6
⊢ (𝑦 ∈ On → (𝜑 → (∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)) → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))))) |
79 | 78 | a2d 29 |
. . . . 5
⊢ (𝑦 ∈ On → ((𝜑 → ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) → (𝜑 → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))))) |
80 | 11, 79 | syl5bi 232 |
. . . 4
⊢ (𝑦 ∈ On → (∀𝑧 ∈ 𝑦 (𝜑 → (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) → (𝜑 → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))))) |
81 | 6, 10, 80 | tfis3 7204 |
. . 3
⊢ (𝐴 ∈ On → (𝜑 → (𝐴 ⊆ 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
82 | 2, 81 | mpcom 38 |
. 2
⊢ (𝜑 → (𝐴 ⊆ 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
83 | 1, 82 | mpi 20 |
1
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |