MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem1 Structured version   Visualization version   GIF version

Theorem tfrlem1 8322
Description: A technical lemma for transfinite recursion. Compare Lemma 1 of [TakeutiZaring] p. 47. (Contributed by NM, 23-Mar-1995.) (Revised by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlem1.1 (𝜑𝐴 ∈ On)
tfrlem1.2 (𝜑 → (Fun 𝐹𝐴 ⊆ dom 𝐹))
tfrlem1.3 (𝜑 → (Fun 𝐺𝐴 ⊆ dom 𝐺))
tfrlem1.4 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐵‘(𝐹𝑥)))
tfrlem1.5 (𝜑 → ∀𝑥𝐴 (𝐺𝑥) = (𝐵‘(𝐺𝑥)))
Assertion
Ref Expression
tfrlem1 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem tfrlem1
Dummy variables 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3966 . 2 𝐴𝐴
2 tfrlem1.1 . . 3 (𝜑𝐴 ∈ On)
3 sseq1 3969 . . . . . 6 (𝑦 = 𝑧 → (𝑦𝐴𝑧𝐴))
4 raleq 3309 . . . . . 6 (𝑦 = 𝑧 → (∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)))
53, 4imbi12d 344 . . . . 5 (𝑦 = 𝑧 → ((𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))))
65imbi2d 340 . . . 4 (𝑦 = 𝑧 → ((𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))) ↔ (𝜑 → (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)))))
7 sseq1 3969 . . . . . 6 (𝑦 = 𝐴 → (𝑦𝐴𝐴𝐴))
8 raleq 3309 . . . . . 6 (𝑦 = 𝐴 → (∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
97, 8imbi12d 344 . . . . 5 (𝑦 = 𝐴 → ((𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
109imbi2d 340 . . . 4 (𝑦 = 𝐴 → ((𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))) ↔ (𝜑 → (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))))
11 r19.21v 3176 . . . . 5 (∀𝑧𝑦 (𝜑 → (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ↔ (𝜑 → ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))))
12 tfrlem1.2 . . . . . . . . . . . . . . . . 17 (𝜑 → (Fun 𝐹𝐴 ⊆ dom 𝐹))
1312ad4antr 730 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (Fun 𝐹𝐴 ⊆ dom 𝐹))
1413simpld 495 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → Fun 𝐹)
1514funfnd 6532 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐹 Fn dom 𝐹)
16 eloni 6327 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ On → Ord 𝑦)
1716ad3antlr 729 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → Ord 𝑦)
18 ordelss 6333 . . . . . . . . . . . . . . . . 17 ((Ord 𝑦𝑤𝑦) → 𝑤𝑦)
1917, 18sylan 580 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤𝑦)
20 simplr 767 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑦𝐴)
2119, 20sstrd 3954 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤𝐴)
2213simprd 496 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐴 ⊆ dom 𝐹)
2321, 22sstrd 3954 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤 ⊆ dom 𝐹)
24 fnssres 6624 . . . . . . . . . . . . . 14 ((𝐹 Fn dom 𝐹𝑤 ⊆ dom 𝐹) → (𝐹𝑤) Fn 𝑤)
2515, 23, 24syl2anc 584 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) Fn 𝑤)
26 tfrlem1.3 . . . . . . . . . . . . . . . . 17 (𝜑 → (Fun 𝐺𝐴 ⊆ dom 𝐺))
2726ad4antr 730 . . . . . . . . . . . . . . . 16 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (Fun 𝐺𝐴 ⊆ dom 𝐺))
2827simpld 495 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → Fun 𝐺)
2928funfnd 6532 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐺 Fn dom 𝐺)
3027simprd 496 . . . . . . . . . . . . . . 15 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝐴 ⊆ dom 𝐺)
3121, 30sstrd 3954 . . . . . . . . . . . . . 14 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤 ⊆ dom 𝐺)
32 fnssres 6624 . . . . . . . . . . . . . 14 ((𝐺 Fn dom 𝐺𝑤 ⊆ dom 𝐺) → (𝐺𝑤) Fn 𝑤)
3329, 31, 32syl2anc 584 . . . . . . . . . . . . 13 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐺𝑤) Fn 𝑤)
34 fveq2 6842 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → (𝐹𝑥) = (𝐹𝑢))
35 fveq2 6842 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑢 → (𝐺𝑥) = (𝐺𝑢))
3634, 35eqeq12d 2752 . . . . . . . . . . . . . . 15 (𝑥 = 𝑢 → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝑢) = (𝐺𝑢)))
3721adantr 481 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → 𝑤𝐴)
38 sseq1 3969 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
39 raleq 3309 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑤 → (∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥)))
4038, 39imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤 → ((𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)) ↔ (𝑤𝐴 → ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥))))
41 simp-4r 782 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)))
42 simplr 767 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → 𝑤𝑦)
4340, 41, 42rspcdva 3582 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → (𝑤𝐴 → ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥)))
4437, 43mpd 15 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ∀𝑥𝑤 (𝐹𝑥) = (𝐺𝑥))
45 simpr 485 . . . . . . . . . . . . . . 15 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → 𝑢𝑤)
4636, 44, 45rspcdva 3582 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → (𝐹𝑢) = (𝐺𝑢))
47 fvres 6861 . . . . . . . . . . . . . . 15 (𝑢𝑤 → ((𝐹𝑤)‘𝑢) = (𝐹𝑢))
4847adantl 482 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ((𝐹𝑤)‘𝑢) = (𝐹𝑢))
49 fvres 6861 . . . . . . . . . . . . . . 15 (𝑢𝑤 → ((𝐺𝑤)‘𝑢) = (𝐺𝑢))
5049adantl 482 . . . . . . . . . . . . . 14 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ((𝐺𝑤)‘𝑢) = (𝐺𝑢))
5146, 48, 503eqtr4d 2786 . . . . . . . . . . . . 13 ((((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) ∧ 𝑢𝑤) → ((𝐹𝑤)‘𝑢) = ((𝐺𝑤)‘𝑢))
5225, 33, 51eqfnfvd 6985 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) = (𝐺𝑤))
5352fveq2d 6846 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐵‘(𝐹𝑤)) = (𝐵‘(𝐺𝑤)))
54 fveq2 6842 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
55 reseq2 5932 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
5655fveq2d 6846 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝐵‘(𝐹𝑥)) = (𝐵‘(𝐹𝑤)))
5754, 56eqeq12d 2752 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ((𝐹𝑥) = (𝐵‘(𝐹𝑥)) ↔ (𝐹𝑤) = (𝐵‘(𝐹𝑤))))
58 tfrlem1.4 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐵‘(𝐹𝑥)))
5958ad4antr 730 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → ∀𝑥𝐴 (𝐹𝑥) = (𝐵‘(𝐹𝑥)))
60 simpr 485 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → 𝑦𝐴)
6160sselda 3944 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → 𝑤𝐴)
6257, 59, 61rspcdva 3582 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) = (𝐵‘(𝐹𝑤)))
63 fveq2 6842 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝐺𝑥) = (𝐺𝑤))
64 reseq2 5932 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝐺𝑥) = (𝐺𝑤))
6564fveq2d 6846 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝐵‘(𝐺𝑥)) = (𝐵‘(𝐺𝑤)))
6663, 65eqeq12d 2752 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ((𝐺𝑥) = (𝐵‘(𝐺𝑥)) ↔ (𝐺𝑤) = (𝐵‘(𝐺𝑤))))
67 tfrlem1.5 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝐴 (𝐺𝑥) = (𝐵‘(𝐺𝑥)))
6867ad4antr 730 . . . . . . . . . . . 12 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → ∀𝑥𝐴 (𝐺𝑥) = (𝐵‘(𝐺𝑥)))
6966, 68, 61rspcdva 3582 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐺𝑤) = (𝐵‘(𝐺𝑤)))
7053, 62, 693eqtr4d 2786 . . . . . . . . . 10 (((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) ∧ 𝑤𝑦) → (𝐹𝑤) = (𝐺𝑤))
7170ralrimiva 3143 . . . . . . . . 9 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → ∀𝑤𝑦 (𝐹𝑤) = (𝐺𝑤))
7254, 63eqeq12d 2752 . . . . . . . . . 10 (𝑥 = 𝑤 → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝑤) = (𝐺𝑤)))
7372cbvralvw 3225 . . . . . . . . 9 (∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥) ↔ ∀𝑤𝑦 (𝐹𝑤) = (𝐺𝑤))
7471, 73sylibr 233 . . . . . . . 8 ((((𝜑𝑦 ∈ On) ∧ ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) ∧ 𝑦𝐴) → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))
7574exp31 420 . . . . . . 7 ((𝜑𝑦 ∈ On) → (∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)) → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥))))
7675expcom 414 . . . . . 6 (𝑦 ∈ On → (𝜑 → (∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥)) → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)))))
7776a2d 29 . . . . 5 (𝑦 ∈ On → ((𝜑 → ∀𝑧𝑦 (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) → (𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)))))
7811, 77biimtrid 241 . . . 4 (𝑦 ∈ On → (∀𝑧𝑦 (𝜑 → (𝑧𝐴 → ∀𝑥𝑧 (𝐹𝑥) = (𝐺𝑥))) → (𝜑 → (𝑦𝐴 → ∀𝑥𝑦 (𝐹𝑥) = (𝐺𝑥)))))
796, 10, 78tfis3 7794 . . 3 (𝐴 ∈ On → (𝜑 → (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
802, 79mpcom 38 . 2 (𝜑 → (𝐴𝐴 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
811, 80mpi 20 1 (𝜑 → ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3064  wss 3910  dom cdm 5633  cres 5635  Ord word 6316  Oncon0 6317  Fun wfun 6490   Fn wfn 6491  cfv 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-iota 6448  df-fun 6498  df-fn 6499  df-fv 6504
This theorem is referenced by:  tfrlem5  8326
  Copyright terms: Public domain W3C validator