Step | Hyp | Ref
| Expression |
1 | | ssid 3943 |
. 2
⊢ 𝐴 ⊆ 𝐴 |
2 | | tfrlem1.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ On) |
3 | | sseq1 3946 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝑦 ⊆ 𝐴 ↔ 𝑧 ⊆ 𝐴)) |
4 | | raleq 3342 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥) ↔ ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) |
5 | 3, 4 | imbi12d 345 |
. . . . 5
⊢ (𝑦 = 𝑧 → ((𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
6 | 5 | imbi2d 341 |
. . . 4
⊢ (𝑦 = 𝑧 → ((𝜑 → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))) ↔ (𝜑 → (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))))) |
7 | | sseq1 3946 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (𝑦 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) |
8 | | raleq 3342 |
. . . . . 6
⊢ (𝑦 = 𝐴 → (∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥) ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
9 | 7, 8 | imbi12d 345 |
. . . . 5
⊢ (𝑦 = 𝐴 → ((𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝐴 ⊆ 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
10 | 9 | imbi2d 341 |
. . . 4
⊢ (𝑦 = 𝐴 → ((𝜑 → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))) ↔ (𝜑 → (𝐴 ⊆ 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))))) |
11 | | r19.21v 3113 |
. . . . 5
⊢
(∀𝑧 ∈
𝑦 (𝜑 → (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ↔ (𝜑 → ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
12 | | tfrlem1.2 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) |
13 | 12 | ad4antr 729 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹)) |
14 | 13 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → Fun 𝐹) |
15 | 14 | funfnd 6465 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝐹 Fn dom 𝐹) |
16 | | eloni 6276 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ On → Ord 𝑦) |
17 | 16 | ad3antlr 728 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) → Ord 𝑦) |
18 | | ordelss 6282 |
. . . . . . . . . . . . . . . . 17
⊢ ((Ord
𝑦 ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ 𝑦) |
19 | 17, 18 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ 𝑦) |
20 | | simplr 766 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑦 ⊆ 𝐴) |
21 | 19, 20 | sstrd 3931 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ 𝐴) |
22 | 13 | simprd 496 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝐴 ⊆ dom 𝐹) |
23 | 21, 22 | sstrd 3931 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ dom 𝐹) |
24 | | fnssres 6555 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Fn dom 𝐹 ∧ 𝑤 ⊆ dom 𝐹) → (𝐹 ↾ 𝑤) Fn 𝑤) |
25 | 15, 23, 24 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐹 ↾ 𝑤) Fn 𝑤) |
26 | | tfrlem1.3 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (Fun 𝐺 ∧ 𝐴 ⊆ dom 𝐺)) |
27 | 26 | ad4antr 729 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (Fun 𝐺 ∧ 𝐴 ⊆ dom 𝐺)) |
28 | 27 | simpld 495 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → Fun 𝐺) |
29 | 28 | funfnd 6465 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝐺 Fn dom 𝐺) |
30 | 27 | simprd 496 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝐴 ⊆ dom 𝐺) |
31 | 21, 30 | sstrd 3931 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ⊆ dom 𝐺) |
32 | | fnssres 6555 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 Fn dom 𝐺 ∧ 𝑤 ⊆ dom 𝐺) → (𝐺 ↾ 𝑤) Fn 𝑤) |
33 | 29, 31, 32 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐺 ↾ 𝑤) Fn 𝑤) |
34 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑢 → (𝐹‘𝑥) = (𝐹‘𝑢)) |
35 | | fveq2 6774 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑢 → (𝐺‘𝑥) = (𝐺‘𝑢)) |
36 | 34, 35 | eqeq12d 2754 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑢 → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ (𝐹‘𝑢) = (𝐺‘𝑢))) |
37 | 21 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → 𝑤 ⊆ 𝐴) |
38 | | sseq1 3946 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑤 → (𝑧 ⊆ 𝐴 ↔ 𝑤 ⊆ 𝐴)) |
39 | | raleq 3342 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑤 → (∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥) ↔ ∀𝑥 ∈ 𝑤 (𝐹‘𝑥) = (𝐺‘𝑥))) |
40 | 38, 39 | imbi12d 345 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑤 → ((𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)) ↔ (𝑤 ⊆ 𝐴 → ∀𝑥 ∈ 𝑤 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
41 | | simp-4r 781 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) |
42 | | simplr 766 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → 𝑤 ∈ 𝑦) |
43 | 40, 41, 42 | rspcdva 3562 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → (𝑤 ⊆ 𝐴 → ∀𝑥 ∈ 𝑤 (𝐹‘𝑥) = (𝐺‘𝑥))) |
44 | 37, 43 | mpd 15 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ∀𝑥 ∈ 𝑤 (𝐹‘𝑥) = (𝐺‘𝑥)) |
45 | | simpr 485 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → 𝑢 ∈ 𝑤) |
46 | 36, 44, 45 | rspcdva 3562 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → (𝐹‘𝑢) = (𝐺‘𝑢)) |
47 | | fvres 6793 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ 𝑤 → ((𝐹 ↾ 𝑤)‘𝑢) = (𝐹‘𝑢)) |
48 | 47 | adantl 482 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ((𝐹 ↾ 𝑤)‘𝑢) = (𝐹‘𝑢)) |
49 | | fvres 6793 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ 𝑤 → ((𝐺 ↾ 𝑤)‘𝑢) = (𝐺‘𝑢)) |
50 | 49 | adantl 482 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ((𝐺 ↾ 𝑤)‘𝑢) = (𝐺‘𝑢)) |
51 | 46, 48, 50 | 3eqtr4d 2788 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) ∧ 𝑢 ∈ 𝑤) → ((𝐹 ↾ 𝑤)‘𝑢) = ((𝐺 ↾ 𝑤)‘𝑢)) |
52 | 25, 33, 51 | eqfnfvd 6912 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐹 ↾ 𝑤) = (𝐺 ↾ 𝑤)) |
53 | 52 | fveq2d 6778 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐵‘(𝐹 ↾ 𝑤)) = (𝐵‘(𝐺 ↾ 𝑤))) |
54 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝐹‘𝑥) = (𝐹‘𝑤)) |
55 | | reseq2 5886 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (𝐹 ↾ 𝑥) = (𝐹 ↾ 𝑤)) |
56 | 55 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝐵‘(𝐹 ↾ 𝑥)) = (𝐵‘(𝐹 ↾ 𝑤))) |
57 | 54, 56 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) = (𝐵‘(𝐹 ↾ 𝑥)) ↔ (𝐹‘𝑤) = (𝐵‘(𝐹 ↾ 𝑤)))) |
58 | | tfrlem1.4 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐵‘(𝐹 ↾ 𝑥))) |
59 | 58 | ad4antr 729 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐵‘(𝐹 ↾ 𝑥))) |
60 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) → 𝑦 ⊆ 𝐴) |
61 | 60 | sselda 3921 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → 𝑤 ∈ 𝐴) |
62 | 57, 59, 61 | rspcdva 3562 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐹‘𝑤) = (𝐵‘(𝐹 ↾ 𝑤))) |
63 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝐺‘𝑥) = (𝐺‘𝑤)) |
64 | | reseq2 5886 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑤 → (𝐺 ↾ 𝑥) = (𝐺 ↾ 𝑤)) |
65 | 64 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑤 → (𝐵‘(𝐺 ↾ 𝑥)) = (𝐵‘(𝐺 ↾ 𝑤))) |
66 | 63, 65 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → ((𝐺‘𝑥) = (𝐵‘(𝐺 ↾ 𝑥)) ↔ (𝐺‘𝑤) = (𝐵‘(𝐺 ↾ 𝑤)))) |
67 | | tfrlem1.5 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) = (𝐵‘(𝐺 ↾ 𝑥))) |
68 | 67 | ad4antr 729 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → ∀𝑥 ∈ 𝐴 (𝐺‘𝑥) = (𝐵‘(𝐺 ↾ 𝑥))) |
69 | 66, 68, 61 | rspcdva 3562 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐺‘𝑤) = (𝐵‘(𝐺 ↾ 𝑤))) |
70 | 53, 62, 69 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) ∧ 𝑤 ∈ 𝑦) → (𝐹‘𝑤) = (𝐺‘𝑤)) |
71 | 70 | ralrimiva 3103 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) → ∀𝑤 ∈ 𝑦 (𝐹‘𝑤) = (𝐺‘𝑤)) |
72 | 54, 63 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → ((𝐹‘𝑥) = (𝐺‘𝑥) ↔ (𝐹‘𝑤) = (𝐺‘𝑤))) |
73 | 72 | cbvralvw 3383 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝑦 (𝐹‘𝑥) = (𝐺‘𝑥) ↔ ∀𝑤 ∈ 𝑦 (𝐹‘𝑤) = (𝐺‘𝑤)) |
74 | 71, 73 | sylibr 233 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑦 ∈ On) ∧ ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) ∧ 𝑦 ⊆ 𝐴) → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥)) |
75 | 74 | exp31 420 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ On) → (∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)) → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
76 | 75 | expcom 414 |
. . . . . 6
⊢ (𝑦 ∈ On → (𝜑 → (∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥)) → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))))) |
77 | 76 | a2d 29 |
. . . . 5
⊢ (𝑦 ∈ On → ((𝜑 → ∀𝑧 ∈ 𝑦 (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) → (𝜑 → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))))) |
78 | 11, 77 | syl5bi 241 |
. . . 4
⊢ (𝑦 ∈ On → (∀𝑧 ∈ 𝑦 (𝜑 → (𝑧 ⊆ 𝐴 → ∀𝑥 ∈ 𝑧 (𝐹‘𝑥) = (𝐺‘𝑥))) → (𝜑 → (𝑦 ⊆ 𝐴 → ∀𝑥 ∈ 𝑦 (𝐹‘𝑥) = (𝐺‘𝑥))))) |
79 | 6, 10, 78 | tfis3 7704 |
. . 3
⊢ (𝐴 ∈ On → (𝜑 → (𝐴 ⊆ 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)))) |
80 | 2, 79 | mpcom 38 |
. 2
⊢ (𝜑 → (𝐴 ⊆ 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥))) |
81 | 1, 80 | mpi 20 |
1
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘𝑥)) |