Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrneircomplex Structured version   Visualization version   GIF version

Theorem ntrneircomplex 41684
Description: The relative complement of the class 𝑆 exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.)
Hypotheses
Ref Expression
ntrnei.o 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
ntrnei.f 𝐹 = (𝒫 𝐵𝑂𝐵)
ntrnei.r (𝜑𝐼𝐹𝑁)
Assertion
Ref Expression
ntrneircomplex (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
Distinct variable groups:   𝑖,𝑗,𝑘   𝑖,𝑙,𝑗   𝑖,𝑚,𝑗
Allowed substitution hints:   𝜑(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑆(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐹(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐼(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑁(𝑖,𝑗,𝑘,𝑚,𝑙)   𝑂(𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem ntrneircomplex
StepHypRef Expression
1 ntrnei.o . . 3 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗m 𝑖) ↦ (𝑙𝑗 ↦ {𝑚𝑖𝑙 ∈ (𝑘𝑚)})))
2 ntrnei.f . . 3 𝐹 = (𝒫 𝐵𝑂𝐵)
3 ntrnei.r . . 3 (𝜑𝐼𝐹𝑁)
41, 2, 3ntrneibex 41683 . 2 (𝜑𝐵 ∈ V)
5 difssd 4067 . 2 (𝜑 → (𝐵𝑆) ⊆ 𝐵)
64, 5sselpwd 5250 1 (𝜑 → (𝐵𝑆) ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cdif 3884  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cmpo 7277  m cmap 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-xp 5595  df-rel 5596  df-dm 5599  df-iota 6391  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator