Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onnevOLD | Structured version Visualization version GIF version |
Description: Obsolete version of onnev 6387 as of 27-May-2024. (Contributed by NM, 16-Jun-2007.) (Proof shortened by Mario Carneiro, 10-Jan-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
onnevOLD | ⊢ On ≠ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsn0non 6385 | . 2 ⊢ ¬ {{∅}} ∈ On | |
2 | snex 5354 | . . . 4 ⊢ {{∅}} ∈ V | |
3 | id 22 | . . . 4 ⊢ (On = V → On = V) | |
4 | 2, 3 | eleqtrrid 2846 | . . 3 ⊢ (On = V → {{∅}} ∈ On) |
5 | 4 | necon3bi 2970 | . 2 ⊢ (¬ {{∅}} ∈ On → On ≠ V) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ On ≠ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ∅c0 4256 {csn 4561 Oncon0 6266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |