Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onsseleq | Structured version Visualization version GIF version |
Description: Relationship between subset and membership of an ordinal number. (Contributed by NM, 15-Sep-1995.) |
Ref | Expression |
---|---|
onsseleq | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6276 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 6276 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
3 | ordsseleq 6295 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 Ord word 6265 Oncon0 6266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 |
This theorem is referenced by: onsseli 6381 on0eqel 6384 onmindif2 7657 omword 8401 oeword 8421 oewordi 8422 dffi3 9190 cantnflem1d 9446 cantnflem1 9447 r1ord3g 9537 alephdom 9837 cardaleph 9845 cfsmolem 10026 ttukeylem5 10269 alephreg 10338 inar1 10531 gruina 10574 om2uzlt2i 13671 nolt02o 33898 nogt01o 33899 nosupbnd2lem1 33918 noinfbnd2lem1 33933 madebday 34080 ontric3g 41129 |
Copyright terms: Public domain | W3C validator |