Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsseleq Structured version   Visualization version   GIF version

Theorem onsseleq 6210
 Description: Relationship between subset and membership of an ordinal number. (Contributed by NM, 15-Sep-1995.)
Assertion
Ref Expression
onsseleq ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))

Proof of Theorem onsseleq
StepHypRef Expression
1 eloni 6179 . 2 (𝐴 ∈ On → Ord 𝐴)
2 eloni 6179 . 2 (𝐵 ∈ On → Ord 𝐵)
3 ordsseleq 6198 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
41, 2, 3syl2an 598 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2114   ⊆ wss 3908  Ord word 6168  Oncon0 6169 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-tr 5149  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-ord 6172  df-on 6173 This theorem is referenced by:  onsseli  6283  on0eqel  6286  onmindif2  7512  omword  8183  oeword  8203  oewordi  8204  dffi3  8883  cantnflem1d  9139  cantnflem1  9140  r1ord3g  9196  alephdom  9496  cardaleph  9504  cfsmolem  9681  ttukeylem5  9924  alephreg  9993  inar1  10186  gruina  10229  om2uzlt2i  13314  nolt02o  33273  nosupbnd2lem1  33289  ontric3g  40164
 Copyright terms: Public domain W3C validator