Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onsseleq | Structured version Visualization version GIF version |
Description: Relationship between subset and membership of an ordinal number. (Contributed by NM, 15-Sep-1995.) |
Ref | Expression |
---|---|
onsseleq | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6275 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 6275 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
3 | ordsseleq 6294 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 Ord word 6264 Oncon0 6265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-tr 5197 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-ord 6268 df-on 6269 |
This theorem is referenced by: onsseli 6380 on0eqel 6383 onmindif2 7651 omword 8386 oeword 8406 oewordi 8407 dffi3 9168 cantnflem1d 9424 cantnflem1 9425 r1ord3g 9538 alephdom 9838 cardaleph 9846 cfsmolem 10027 ttukeylem5 10270 alephreg 10339 inar1 10532 gruina 10575 om2uzlt2i 13669 nolt02o 33894 nogt01o 33895 nosupbnd2lem1 33914 noinfbnd2lem1 33929 madebday 34076 ontric3g 41108 |
Copyright terms: Public domain | W3C validator |