![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onsseleq | Structured version Visualization version GIF version |
Description: Relationship between subset and membership of an ordinal number. (Contributed by NM, 15-Sep-1995.) |
Ref | Expression |
---|---|
onsseleq | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eloni 6396 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
2 | eloni 6396 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
3 | ordsseleq 6415 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 Ord word 6385 Oncon0 6386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 |
This theorem is referenced by: onsseli 6507 on0eqel 6510 onmindif2 7827 omword 8607 oeword 8627 oewordi 8628 dffi3 9469 cantnflem1d 9726 cantnflem1 9727 r1ord3g 9817 alephdom 10119 cardaleph 10127 cfsmolem 10308 ttukeylem5 10551 alephreg 10620 inar1 10813 gruina 10856 om2uzlt2i 13989 nolt02o 27755 nogt01o 27756 nosupbnd2lem1 27775 noinfbnd2lem1 27790 madebday 27953 om2noseqlt2 28321 oege2 43297 ontric3g 43512 |
Copyright terms: Public domain | W3C validator |