MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsseleq Structured version   Visualization version   GIF version

Theorem onsseleq 6404
Description: Relationship between subset and membership of an ordinal number. (Contributed by NM, 15-Sep-1995.)
Assertion
Ref Expression
onsseleq ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))

Proof of Theorem onsseleq
StepHypRef Expression
1 eloni 6373 . 2 (𝐴 ∈ On → Ord 𝐴)
2 eloni 6373 . 2 (𝐵 ∈ On → Ord 𝐵)
3 ordsseleq 6392 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
41, 2, 3syl2an 596 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  wss 3931  Ord word 6362  Oncon0 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-tr 5240  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-ord 6366  df-on 6367
This theorem is referenced by:  onsseli  6485  on0eqel  6488  onmindif2  7809  omword  8590  oeword  8610  oewordi  8611  dffi3  9453  cantnflem1d  9710  cantnflem1  9711  r1ord3g  9801  alephdom  10103  cardaleph  10111  cfsmolem  10292  ttukeylem5  10535  alephreg  10604  inar1  10797  gruina  10840  om2uzlt2i  13974  nolt02o  27677  nogt01o  27678  nosupbnd2lem1  27697  noinfbnd2lem1  27712  madebday  27875  om2noseqlt2  28243  oege2  43297  ontric3g  43512
  Copyright terms: Public domain W3C validator