| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsseleq | Structured version Visualization version GIF version | ||
| Description: Relationship between subset and membership of an ordinal number. (Contributed by NM, 15-Sep-1995.) |
| Ref | Expression |
|---|---|
| onsseleq | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6373 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | eloni 6373 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 3 | ordsseleq 6392 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 Ord word 6362 Oncon0 6363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-tr 5240 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-ord 6366 df-on 6367 |
| This theorem is referenced by: onsseli 6485 on0eqel 6488 onmindif2 7809 omword 8590 oeword 8610 oewordi 8611 dffi3 9453 cantnflem1d 9710 cantnflem1 9711 r1ord3g 9801 alephdom 10103 cardaleph 10111 cfsmolem 10292 ttukeylem5 10535 alephreg 10604 inar1 10797 gruina 10840 om2uzlt2i 13974 nolt02o 27677 nogt01o 27678 nosupbnd2lem1 27697 noinfbnd2lem1 27712 madebday 27875 om2noseqlt2 28243 oege2 43297 ontric3g 43512 |
| Copyright terms: Public domain | W3C validator |