| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onsseleq | Structured version Visualization version GIF version | ||
| Description: Relationship between subset and membership of an ordinal number. (Contributed by NM, 15-Sep-1995.) |
| Ref | Expression |
|---|---|
| onsseleq | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni 6342 | . 2 ⊢ (𝐴 ∈ On → Ord 𝐴) | |
| 2 | eloni 6342 | . 2 ⊢ (𝐵 ∈ On → Ord 𝐵) | |
| 3 | ordsseleq 6361 | . 2 ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 Ord word 6331 Oncon0 6332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 |
| This theorem is referenced by: onsseli 6455 on0eqel 6458 onmindif2 7783 omword 8534 oeword 8554 oewordi 8555 dffi3 9382 cantnflem1d 9641 cantnflem1 9642 r1ord3g 9732 alephdom 10034 cardaleph 10042 cfsmolem 10223 ttukeylem5 10466 alephreg 10535 inar1 10728 gruina 10771 om2uzlt2i 13916 nolt02o 27607 nogt01o 27608 nosupbnd2lem1 27627 noinfbnd2lem1 27642 madebday 27811 om2noseqlt2 28194 oege2 43296 ontric3g 43511 |
| Copyright terms: Public domain | W3C validator |