MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsseleq Structured version   Visualization version   GIF version

Theorem onsseleq 6361
Description: Relationship between subset and membership of an ordinal number. (Contributed by NM, 15-Sep-1995.)
Assertion
Ref Expression
onsseleq ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))

Proof of Theorem onsseleq
StepHypRef Expression
1 eloni 6330 . 2 (𝐴 ∈ On → Ord 𝐴)
2 eloni 6330 . 2 (𝐵 ∈ On → Ord 𝐵)
3 ordsseleq 6349 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
41, 2, 3syl2an 596 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wss 3911  Ord word 6319  Oncon0 6320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324
This theorem is referenced by:  onsseli  6443  on0eqel  6446  onmindif2  7763  omword  8511  oeword  8531  oewordi  8532  dffi3  9358  cantnflem1d  9617  cantnflem1  9618  r1ord3g  9708  alephdom  10010  cardaleph  10018  cfsmolem  10199  ttukeylem5  10442  alephreg  10511  inar1  10704  gruina  10747  om2uzlt2i  13892  nolt02o  27583  nogt01o  27584  nosupbnd2lem1  27603  noinfbnd2lem1  27618  madebday  27787  om2noseqlt2  28170  oege2  43269  ontric3g  43484
  Copyright terms: Public domain W3C validator