MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onsseleq Structured version   Visualization version   GIF version

Theorem onsseleq 6306
Description: Relationship between subset and membership of an ordinal number. (Contributed by NM, 15-Sep-1995.)
Assertion
Ref Expression
onsseleq ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))

Proof of Theorem onsseleq
StepHypRef Expression
1 eloni 6275 . 2 (𝐴 ∈ On → Ord 𝐴)
2 eloni 6275 . 2 (𝐵 ∈ On → Ord 𝐵)
3 ordsseleq 6294 . 2 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
41, 2, 3syl2an 596 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1542  wcel 2110  wss 3892  Ord word 6264  Oncon0 6265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-tr 5197  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-ord 6268  df-on 6269
This theorem is referenced by:  onsseli  6380  on0eqel  6383  onmindif2  7651  omword  8386  oeword  8406  oewordi  8407  dffi3  9168  cantnflem1d  9424  cantnflem1  9425  r1ord3g  9538  alephdom  9838  cardaleph  9846  cfsmolem  10027  ttukeylem5  10270  alephreg  10339  inar1  10532  gruina  10575  om2uzlt2i  13669  nolt02o  33894  nogt01o  33895  nosupbnd2lem1  33914  noinfbnd2lem1  33929  madebday  34076  ontric3g  41108
  Copyright terms: Public domain W3C validator