![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rfovcnvfvd | Structured version Visualization version GIF version |
Description: Value of the converse of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, evaluated at function 𝐺. (Contributed by RP, 27-Apr-2021.) |
Ref | Expression |
---|---|
rfovd.rf | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) |
rfovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
rfovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
rfovcnvf1od.f | ⊢ 𝐹 = (𝐴𝑂𝐵) |
rfovcnvfv.g | ⊢ (𝜑 → 𝐺 ∈ (𝒫 𝐵 ↑m 𝐴)) |
Ref | Expression |
---|---|
rfovcnvfvd | ⊢ (𝜑 → (◡𝐹‘𝐺) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rfovd.rf | . . 3 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) | |
2 | rfovd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | rfovd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
4 | rfovcnvf1od.f | . . 3 ⊢ 𝐹 = (𝐴𝑂𝐵) | |
5 | 1, 2, 3, 4 | rfovcnvd 42742 | . 2 ⊢ (𝜑 → ◡𝐹 = (𝑔 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥))})) |
6 | fveq1 6888 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑥) = (𝐺‘𝑥)) | |
7 | 6 | eleq2d 2820 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑦 ∈ (𝑔‘𝑥) ↔ 𝑦 ∈ (𝐺‘𝑥))) |
8 | 7 | anbi2d 630 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥)))) |
9 | 8 | opabbidv 5214 | . . 3 ⊢ (𝑔 = 𝐺 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) |
10 | 9 | adantl 483 | . 2 ⊢ ((𝜑 ∧ 𝑔 = 𝐺) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) |
11 | rfovcnvfv.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝒫 𝐵 ↑m 𝐴)) | |
12 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))) → 𝑥 ∈ 𝐴) | |
13 | elmapi 8840 | . . . . . . . 8 ⊢ (𝐺 ∈ (𝒫 𝐵 ↑m 𝐴) → 𝐺:𝐴⟶𝒫 𝐵) | |
14 | 13 | ffvelcdmda 7084 | . . . . . . 7 ⊢ ((𝐺 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝒫 𝐵) |
15 | 11, 14 | sylan 581 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝒫 𝐵) |
16 | 15 | elpwid 4611 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ⊆ 𝐵) |
17 | 16 | sseld 3981 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (𝐺‘𝑥) → 𝑦 ∈ 𝐵)) |
18 | 17 | impr 456 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))) → 𝑦 ∈ 𝐵) |
19 | 2, 3, 12, 18 | opabex2 8040 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))} ∈ V) |
20 | 5, 10, 11, 19 | fvmptd 7003 | 1 ⊢ (𝜑 → (◡𝐹‘𝐺) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3433 Vcvv 3475 𝒫 cpw 4602 class class class wbr 5148 {copab 5210 ↦ cmpt 5231 × cxp 5674 ◡ccnv 5675 ‘cfv 6541 (class class class)co 7406 ∈ cmpo 7408 ↑m cmap 8817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7409 df-oprab 7410 df-mpo 7411 df-1st 7972 df-2nd 7973 df-map 8819 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |