|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rfovcnvfvd | Structured version Visualization version GIF version | ||
| Description: Value of the converse of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, evaluated at function 𝐺. (Contributed by RP, 27-Apr-2021.) | 
| Ref | Expression | 
|---|---|
| rfovd.rf | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) | 
| rfovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| rfovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) | 
| rfovcnvf1od.f | ⊢ 𝐹 = (𝐴𝑂𝐵) | 
| rfovcnvfv.g | ⊢ (𝜑 → 𝐺 ∈ (𝒫 𝐵 ↑m 𝐴)) | 
| Ref | Expression | 
|---|---|
| rfovcnvfvd | ⊢ (𝜑 → (◡𝐹‘𝐺) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rfovd.rf | . . 3 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) | |
| 2 | rfovd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | rfovd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 4 | rfovcnvf1od.f | . . 3 ⊢ 𝐹 = (𝐴𝑂𝐵) | |
| 5 | 1, 2, 3, 4 | rfovcnvd 44018 | . 2 ⊢ (𝜑 → ◡𝐹 = (𝑔 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥))})) | 
| 6 | fveq1 6905 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑥) = (𝐺‘𝑥)) | |
| 7 | 6 | eleq2d 2827 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑦 ∈ (𝑔‘𝑥) ↔ 𝑦 ∈ (𝐺‘𝑥))) | 
| 8 | 7 | anbi2d 630 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥)))) | 
| 9 | 8 | opabbidv 5209 | . . 3 ⊢ (𝑔 = 𝐺 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) | 
| 10 | 9 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑔 = 𝐺) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) | 
| 11 | rfovcnvfv.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝒫 𝐵 ↑m 𝐴)) | |
| 12 | simprl 771 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))) → 𝑥 ∈ 𝐴) | |
| 13 | elmapi 8889 | . . . . . . . 8 ⊢ (𝐺 ∈ (𝒫 𝐵 ↑m 𝐴) → 𝐺:𝐴⟶𝒫 𝐵) | |
| 14 | 13 | ffvelcdmda 7104 | . . . . . . 7 ⊢ ((𝐺 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝒫 𝐵) | 
| 15 | 11, 14 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝒫 𝐵) | 
| 16 | 15 | elpwid 4609 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ⊆ 𝐵) | 
| 17 | 16 | sseld 3982 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (𝐺‘𝑥) → 𝑦 ∈ 𝐵)) | 
| 18 | 17 | impr 454 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))) → 𝑦 ∈ 𝐵) | 
| 19 | 2, 3, 12, 18 | opabex2 8082 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))} ∈ V) | 
| 20 | 5, 10, 11, 19 | fvmptd 7023 | 1 ⊢ (𝜑 → (◡𝐹‘𝐺) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3436 Vcvv 3480 𝒫 cpw 4600 class class class wbr 5143 {copab 5205 ↦ cmpt 5225 × cxp 5683 ◡ccnv 5684 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 ↑m cmap 8866 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-map 8868 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |