![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rfovcnvfvd | Structured version Visualization version GIF version |
Description: Value of the converse of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, evaluated at function 𝐺. (Contributed by RP, 27-Apr-2021.) |
Ref | Expression |
---|---|
rfovd.rf | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) |
rfovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
rfovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
rfovcnvf1od.f | ⊢ 𝐹 = (𝐴𝑂𝐵) |
rfovcnvfv.g | ⊢ (𝜑 → 𝐺 ∈ (𝒫 𝐵 ↑𝑚 𝐴)) |
Ref | Expression |
---|---|
rfovcnvfvd | ⊢ (𝜑 → (◡𝐹‘𝐺) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rfovd.rf | . . 3 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) | |
2 | rfovd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | rfovd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
4 | rfovcnvf1od.f | . . 3 ⊢ 𝐹 = (𝐴𝑂𝐵) | |
5 | 1, 2, 3, 4 | rfovcnvd 39659 | . 2 ⊢ (𝜑 → ◡𝐹 = (𝑔 ∈ (𝒫 𝐵 ↑𝑚 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥))})) |
6 | fveq1 6492 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑥) = (𝐺‘𝑥)) | |
7 | 6 | eleq2d 2845 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑦 ∈ (𝑔‘𝑥) ↔ 𝑦 ∈ (𝐺‘𝑥))) |
8 | 7 | anbi2d 619 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥)))) |
9 | 8 | opabbidv 4989 | . . 3 ⊢ (𝑔 = 𝐺 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) |
10 | 9 | adantl 474 | . 2 ⊢ ((𝜑 ∧ 𝑔 = 𝐺) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) |
11 | rfovcnvfv.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝒫 𝐵 ↑𝑚 𝐴)) | |
12 | simprl 758 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))) → 𝑥 ∈ 𝐴) | |
13 | elmapi 8220 | . . . . . . . 8 ⊢ (𝐺 ∈ (𝒫 𝐵 ↑𝑚 𝐴) → 𝐺:𝐴⟶𝒫 𝐵) | |
14 | 13 | ffvelrnda 6670 | . . . . . . 7 ⊢ ((𝐺 ∈ (𝒫 𝐵 ↑𝑚 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝒫 𝐵) |
15 | 11, 14 | sylan 572 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝒫 𝐵) |
16 | 15 | elpwid 4428 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ⊆ 𝐵) |
17 | 16 | sseld 3853 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (𝐺‘𝑥) → 𝑦 ∈ 𝐵)) |
18 | 17 | impr 447 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))) → 𝑦 ∈ 𝐵) |
19 | 2, 3, 12, 18 | opabex2 7556 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))} ∈ V) |
20 | 5, 10, 11, 19 | fvmptd 6595 | 1 ⊢ (𝜑 → (◡𝐹‘𝐺) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2048 {crab 3086 Vcvv 3409 𝒫 cpw 4416 class class class wbr 4923 {copab 4985 ↦ cmpt 5002 × cxp 5398 ◡ccnv 5399 ‘cfv 6182 (class class class)co 6970 ∈ cmpo 6972 ↑𝑚 cmap 8198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-oprab 6974 df-mpo 6975 df-1st 7494 df-2nd 7495 df-map 8200 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |