Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfovcnvfvd Structured version   Visualization version   GIF version

Theorem rfovcnvfvd 43990
Description: Value of the converse of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, evaluated at function 𝐺. (Contributed by RP, 27-Apr-2021.)
Hypotheses
Ref Expression
rfovd.rf 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
rfovd.a (𝜑𝐴𝑉)
rfovd.b (𝜑𝐵𝑊)
rfovcnvf1od.f 𝐹 = (𝐴𝑂𝐵)
rfovcnvfv.g (𝜑𝐺 ∈ (𝒫 𝐵m 𝐴))
Assertion
Ref Expression
rfovcnvfvd (𝜑 → (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑟,𝑥,𝑦   𝐵,𝑎,𝑏,𝑟,𝑥,𝑦   𝑥,𝐺,𝑦   𝑊,𝑎,𝑥   𝜑,𝑎,𝑏,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑟,𝑎,𝑏)   𝐺(𝑟,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑊(𝑦,𝑟,𝑏)

Proof of Theorem rfovcnvfvd
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 rfovd.rf . . 3 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
2 rfovd.a . . 3 (𝜑𝐴𝑉)
3 rfovd.b . . 3 (𝜑𝐵𝑊)
4 rfovcnvf1od.f . . 3 𝐹 = (𝐴𝑂𝐵)
51, 2, 3, 4rfovcnvd 43988 . 2 (𝜑𝐹 = (𝑔 ∈ (𝒫 𝐵m 𝐴) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑔𝑥))}))
6 fveq1 6839 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
76eleq2d 2814 . . . . 5 (𝑔 = 𝐺 → (𝑦 ∈ (𝑔𝑥) ↔ 𝑦 ∈ (𝐺𝑥)))
87anbi2d 630 . . . 4 (𝑔 = 𝐺 → ((𝑥𝐴𝑦 ∈ (𝑔𝑥)) ↔ (𝑥𝐴𝑦 ∈ (𝐺𝑥))))
98opabbidv 5168 . . 3 (𝑔 = 𝐺 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑔𝑥))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
109adantl 481 . 2 ((𝜑𝑔 = 𝐺) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑔𝑥))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
11 rfovcnvfv.g . 2 (𝜑𝐺 ∈ (𝒫 𝐵m 𝐴))
12 simprl 770 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ (𝐺𝑥))) → 𝑥𝐴)
13 elmapi 8799 . . . . . . . 8 (𝐺 ∈ (𝒫 𝐵m 𝐴) → 𝐺:𝐴⟶𝒫 𝐵)
1413ffvelcdmda 7038 . . . . . . 7 ((𝐺 ∈ (𝒫 𝐵m 𝐴) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ 𝒫 𝐵)
1511, 14sylan 580 . . . . . 6 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ 𝒫 𝐵)
1615elpwid 4568 . . . . 5 ((𝜑𝑥𝐴) → (𝐺𝑥) ⊆ 𝐵)
1716sseld 3942 . . . 4 ((𝜑𝑥𝐴) → (𝑦 ∈ (𝐺𝑥) → 𝑦𝐵))
1817impr 454 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ (𝐺𝑥))) → 𝑦𝐵)
192, 3, 12, 18opabex2 8015 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))} ∈ V)
205, 10, 11, 19fvmptd 6957 1 (𝜑 → (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  𝒫 cpw 4559   class class class wbr 5102  {copab 5164  cmpt 5183   × cxp 5629  ccnv 5630  cfv 6499  (class class class)co 7369  cmpo 7371  m cmap 8776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator