| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rfovcnvfvd | Structured version Visualization version GIF version | ||
| Description: Value of the converse of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, evaluated at function 𝐺. (Contributed by RP, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| rfovd.rf | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) |
| rfovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| rfovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| rfovcnvf1od.f | ⊢ 𝐹 = (𝐴𝑂𝐵) |
| rfovcnvfv.g | ⊢ (𝜑 → 𝐺 ∈ (𝒫 𝐵 ↑m 𝐴)) |
| Ref | Expression |
|---|---|
| rfovcnvfvd | ⊢ (𝜑 → (◡𝐹‘𝐺) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rfovd.rf | . . 3 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) | |
| 2 | rfovd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | rfovd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 4 | rfovcnvf1od.f | . . 3 ⊢ 𝐹 = (𝐴𝑂𝐵) | |
| 5 | 1, 2, 3, 4 | rfovcnvd 43994 | . 2 ⊢ (𝜑 → ◡𝐹 = (𝑔 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥))})) |
| 6 | fveq1 6857 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑥) = (𝐺‘𝑥)) | |
| 7 | 6 | eleq2d 2814 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑦 ∈ (𝑔‘𝑥) ↔ 𝑦 ∈ (𝐺‘𝑥))) |
| 8 | 7 | anbi2d 630 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥)))) |
| 9 | 8 | opabbidv 5173 | . . 3 ⊢ (𝑔 = 𝐺 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) |
| 10 | 9 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑔 = 𝐺) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) |
| 11 | rfovcnvfv.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝒫 𝐵 ↑m 𝐴)) | |
| 12 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))) → 𝑥 ∈ 𝐴) | |
| 13 | elmapi 8822 | . . . . . . . 8 ⊢ (𝐺 ∈ (𝒫 𝐵 ↑m 𝐴) → 𝐺:𝐴⟶𝒫 𝐵) | |
| 14 | 13 | ffvelcdmda 7056 | . . . . . . 7 ⊢ ((𝐺 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝒫 𝐵) |
| 15 | 11, 14 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝒫 𝐵) |
| 16 | 15 | elpwid 4572 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ⊆ 𝐵) |
| 17 | 16 | sseld 3945 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (𝐺‘𝑥) → 𝑦 ∈ 𝐵)) |
| 18 | 17 | impr 454 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))) → 𝑦 ∈ 𝐵) |
| 19 | 2, 3, 12, 18 | opabex2 8036 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))} ∈ V) |
| 20 | 5, 10, 11, 19 | fvmptd 6975 | 1 ⊢ (𝜑 → (◡𝐹‘𝐺) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 Vcvv 3447 𝒫 cpw 4563 class class class wbr 5107 {copab 5169 ↦ cmpt 5188 × cxp 5636 ◡ccnv 5637 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |