Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfovcnvfvd Structured version   Visualization version   GIF version

Theorem rfovcnvfvd 41244
Description: Value of the converse of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, evaluated at function 𝐺. (Contributed by RP, 27-Apr-2021.)
Hypotheses
Ref Expression
rfovd.rf 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
rfovd.a (𝜑𝐴𝑉)
rfovd.b (𝜑𝐵𝑊)
rfovcnvf1od.f 𝐹 = (𝐴𝑂𝐵)
rfovcnvfv.g (𝜑𝐺 ∈ (𝒫 𝐵m 𝐴))
Assertion
Ref Expression
rfovcnvfvd (𝜑 → (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑟,𝑥,𝑦   𝐵,𝑎,𝑏,𝑟,𝑥,𝑦   𝑥,𝐺,𝑦   𝑊,𝑎,𝑥   𝜑,𝑎,𝑏,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑟,𝑎,𝑏)   𝐺(𝑟,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑊(𝑦,𝑟,𝑏)

Proof of Theorem rfovcnvfvd
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 rfovd.rf . . 3 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
2 rfovd.a . . 3 (𝜑𝐴𝑉)
3 rfovd.b . . 3 (𝜑𝐵𝑊)
4 rfovcnvf1od.f . . 3 𝐹 = (𝐴𝑂𝐵)
51, 2, 3, 4rfovcnvd 41242 . 2 (𝜑𝐹 = (𝑔 ∈ (𝒫 𝐵m 𝐴) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑔𝑥))}))
6 fveq1 6705 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
76eleq2d 2819 . . . . 5 (𝑔 = 𝐺 → (𝑦 ∈ (𝑔𝑥) ↔ 𝑦 ∈ (𝐺𝑥)))
87anbi2d 632 . . . 4 (𝑔 = 𝐺 → ((𝑥𝐴𝑦 ∈ (𝑔𝑥)) ↔ (𝑥𝐴𝑦 ∈ (𝐺𝑥))))
98opabbidv 5109 . . 3 (𝑔 = 𝐺 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑔𝑥))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
109adantl 485 . 2 ((𝜑𝑔 = 𝐺) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑔𝑥))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
11 rfovcnvfv.g . 2 (𝜑𝐺 ∈ (𝒫 𝐵m 𝐴))
12 simprl 771 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ (𝐺𝑥))) → 𝑥𝐴)
13 elmapi 8519 . . . . . . . 8 (𝐺 ∈ (𝒫 𝐵m 𝐴) → 𝐺:𝐴⟶𝒫 𝐵)
1413ffvelrnda 6893 . . . . . . 7 ((𝐺 ∈ (𝒫 𝐵m 𝐴) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ 𝒫 𝐵)
1511, 14sylan 583 . . . . . 6 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ 𝒫 𝐵)
1615elpwid 4514 . . . . 5 ((𝜑𝑥𝐴) → (𝐺𝑥) ⊆ 𝐵)
1716sseld 3890 . . . 4 ((𝜑𝑥𝐴) → (𝑦 ∈ (𝐺𝑥) → 𝑦𝐵))
1817impr 458 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ (𝐺𝑥))) → 𝑦𝐵)
192, 3, 12, 18opabex2 7816 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))} ∈ V)
205, 10, 11, 19fvmptd 6814 1 (𝜑 → (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  {crab 3058  Vcvv 3401  𝒫 cpw 4503   class class class wbr 5043  {copab 5105  cmpt 5124   × cxp 5538  ccnv 5539  cfv 6369  (class class class)co 7202  cmpo 7204  m cmap 8497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-ov 7205  df-oprab 7206  df-mpo 7207  df-1st 7750  df-2nd 7751  df-map 8499
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator