| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rfovcnvfvd | Structured version Visualization version GIF version | ||
| Description: Value of the converse of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, evaluated at function 𝐺. (Contributed by RP, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| rfovd.rf | ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) |
| rfovd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| rfovd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| rfovcnvf1od.f | ⊢ 𝐹 = (𝐴𝑂𝐵) |
| rfovcnvfv.g | ⊢ (𝜑 → 𝐺 ∈ (𝒫 𝐵 ↑m 𝐴)) |
| Ref | Expression |
|---|---|
| rfovcnvfvd | ⊢ (𝜑 → (◡𝐹‘𝐺) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rfovd.rf | . . 3 ⊢ 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥 ∈ 𝑎 ↦ {𝑦 ∈ 𝑏 ∣ 𝑥𝑟𝑦}))) | |
| 2 | rfovd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | rfovd.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 4 | rfovcnvf1od.f | . . 3 ⊢ 𝐹 = (𝐴𝑂𝐵) | |
| 5 | 1, 2, 3, 4 | rfovcnvd 44112 | . 2 ⊢ (𝜑 → ◡𝐹 = (𝑔 ∈ (𝒫 𝐵 ↑m 𝐴) ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥))})) |
| 6 | fveq1 6830 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔‘𝑥) = (𝐺‘𝑥)) | |
| 7 | 6 | eleq2d 2819 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑦 ∈ (𝑔‘𝑥) ↔ 𝑦 ∈ (𝐺‘𝑥))) |
| 8 | 7 | anbi2d 630 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥)))) |
| 9 | 8 | opabbidv 5161 | . . 3 ⊢ (𝑔 = 𝐺 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) |
| 10 | 9 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑔 = 𝐺) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝑔‘𝑥))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) |
| 11 | rfovcnvfv.g | . 2 ⊢ (𝜑 → 𝐺 ∈ (𝒫 𝐵 ↑m 𝐴)) | |
| 12 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))) → 𝑥 ∈ 𝐴) | |
| 13 | elmapi 8782 | . . . . . . . 8 ⊢ (𝐺 ∈ (𝒫 𝐵 ↑m 𝐴) → 𝐺:𝐴⟶𝒫 𝐵) | |
| 14 | 13 | ffvelcdmda 7026 | . . . . . . 7 ⊢ ((𝐺 ∈ (𝒫 𝐵 ↑m 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝒫 𝐵) |
| 15 | 11, 14 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ∈ 𝒫 𝐵) |
| 16 | 15 | elpwid 4560 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐺‘𝑥) ⊆ 𝐵) |
| 17 | 16 | sseld 3930 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ (𝐺‘𝑥) → 𝑦 ∈ 𝐵)) |
| 18 | 17 | impr 454 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))) → 𝑦 ∈ 𝐵) |
| 19 | 2, 3, 12, 18 | opabex2 7998 | . 2 ⊢ (𝜑 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))} ∈ V) |
| 20 | 5, 10, 11, 19 | fvmptd 6945 | 1 ⊢ (𝜑 → (◡𝐹‘𝐺) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ (𝐺‘𝑥))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3397 Vcvv 3438 𝒫 cpw 4551 class class class wbr 5095 {copab 5157 ↦ cmpt 5176 × cxp 5619 ◡ccnv 5620 ‘cfv 6489 (class class class)co 7355 ∈ cmpo 7357 ↑m cmap 8759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-map 8761 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |