Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfovcnvfvd Structured version   Visualization version   GIF version

Theorem rfovcnvfvd 39661
Description: Value of the converse of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, evaluated at function 𝐺. (Contributed by RP, 27-Apr-2021.)
Hypotheses
Ref Expression
rfovd.rf 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
rfovd.a (𝜑𝐴𝑉)
rfovd.b (𝜑𝐵𝑊)
rfovcnvf1od.f 𝐹 = (𝐴𝑂𝐵)
rfovcnvfv.g (𝜑𝐺 ∈ (𝒫 𝐵𝑚 𝐴))
Assertion
Ref Expression
rfovcnvfvd (𝜑 → (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑟,𝑥,𝑦   𝐵,𝑎,𝑏,𝑟,𝑥,𝑦   𝑥,𝐺,𝑦   𝑊,𝑎,𝑥   𝜑,𝑎,𝑏,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑟,𝑎,𝑏)   𝐺(𝑟,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑊(𝑦,𝑟,𝑏)

Proof of Theorem rfovcnvfvd
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 rfovd.rf . . 3 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
2 rfovd.a . . 3 (𝜑𝐴𝑉)
3 rfovd.b . . 3 (𝜑𝐵𝑊)
4 rfovcnvf1od.f . . 3 𝐹 = (𝐴𝑂𝐵)
51, 2, 3, 4rfovcnvd 39659 . 2 (𝜑𝐹 = (𝑔 ∈ (𝒫 𝐵𝑚 𝐴) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑔𝑥))}))
6 fveq1 6492 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
76eleq2d 2845 . . . . 5 (𝑔 = 𝐺 → (𝑦 ∈ (𝑔𝑥) ↔ 𝑦 ∈ (𝐺𝑥)))
87anbi2d 619 . . . 4 (𝑔 = 𝐺 → ((𝑥𝐴𝑦 ∈ (𝑔𝑥)) ↔ (𝑥𝐴𝑦 ∈ (𝐺𝑥))))
98opabbidv 4989 . . 3 (𝑔 = 𝐺 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑔𝑥))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
109adantl 474 . 2 ((𝜑𝑔 = 𝐺) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑔𝑥))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
11 rfovcnvfv.g . 2 (𝜑𝐺 ∈ (𝒫 𝐵𝑚 𝐴))
12 simprl 758 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ (𝐺𝑥))) → 𝑥𝐴)
13 elmapi 8220 . . . . . . . 8 (𝐺 ∈ (𝒫 𝐵𝑚 𝐴) → 𝐺:𝐴⟶𝒫 𝐵)
1413ffvelrnda 6670 . . . . . . 7 ((𝐺 ∈ (𝒫 𝐵𝑚 𝐴) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ 𝒫 𝐵)
1511, 14sylan 572 . . . . . 6 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ 𝒫 𝐵)
1615elpwid 4428 . . . . 5 ((𝜑𝑥𝐴) → (𝐺𝑥) ⊆ 𝐵)
1716sseld 3853 . . . 4 ((𝜑𝑥𝐴) → (𝑦 ∈ (𝐺𝑥) → 𝑦𝐵))
1817impr 447 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ (𝐺𝑥))) → 𝑦𝐵)
192, 3, 12, 18opabex2 7556 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))} ∈ V)
205, 10, 11, 19fvmptd 6595 1 (𝜑 → (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2048  {crab 3086  Vcvv 3409  𝒫 cpw 4416   class class class wbr 4923  {copab 4985  cmpt 5002   × cxp 5398  ccnv 5399  cfv 6182  (class class class)co 6970  cmpo 6972  𝑚 cmap 8198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-ov 6973  df-oprab 6974  df-mpo 6975  df-1st 7494  df-2nd 7495  df-map 8200
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator