Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfovcnvfvd Structured version   Visualization version   GIF version

Theorem rfovcnvfvd 44003
Description: Value of the converse of the operator, (𝐴𝑂𝐵), which maps between relations and functions for relations between base sets, 𝐴 and 𝐵, evaluated at function 𝐺. (Contributed by RP, 27-Apr-2021.)
Hypotheses
Ref Expression
rfovd.rf 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
rfovd.a (𝜑𝐴𝑉)
rfovd.b (𝜑𝐵𝑊)
rfovcnvf1od.f 𝐹 = (𝐴𝑂𝐵)
rfovcnvfv.g (𝜑𝐺 ∈ (𝒫 𝐵m 𝐴))
Assertion
Ref Expression
rfovcnvfvd (𝜑 → (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
Distinct variable groups:   𝐴,𝑎,𝑏,𝑟,𝑥,𝑦   𝐵,𝑎,𝑏,𝑟,𝑥,𝑦   𝑥,𝐺,𝑦   𝑊,𝑎,𝑥   𝜑,𝑎,𝑏,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦,𝑟,𝑎,𝑏)   𝐺(𝑟,𝑎,𝑏)   𝑂(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑟,𝑎,𝑏)   𝑊(𝑦,𝑟,𝑏)

Proof of Theorem rfovcnvfvd
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 rfovd.rf . . 3 𝑂 = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ (𝑥𝑎 ↦ {𝑦𝑏𝑥𝑟𝑦})))
2 rfovd.a . . 3 (𝜑𝐴𝑉)
3 rfovd.b . . 3 (𝜑𝐵𝑊)
4 rfovcnvf1od.f . . 3 𝐹 = (𝐴𝑂𝐵)
51, 2, 3, 4rfovcnvd 44001 . 2 (𝜑𝐹 = (𝑔 ∈ (𝒫 𝐵m 𝐴) ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑔𝑥))}))
6 fveq1 6860 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
76eleq2d 2815 . . . . 5 (𝑔 = 𝐺 → (𝑦 ∈ (𝑔𝑥) ↔ 𝑦 ∈ (𝐺𝑥)))
87anbi2d 630 . . . 4 (𝑔 = 𝐺 → ((𝑥𝐴𝑦 ∈ (𝑔𝑥)) ↔ (𝑥𝐴𝑦 ∈ (𝐺𝑥))))
98opabbidv 5176 . . 3 (𝑔 = 𝐺 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑔𝑥))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
109adantl 481 . 2 ((𝜑𝑔 = 𝐺) → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝑔𝑥))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
11 rfovcnvfv.g . 2 (𝜑𝐺 ∈ (𝒫 𝐵m 𝐴))
12 simprl 770 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ (𝐺𝑥))) → 𝑥𝐴)
13 elmapi 8825 . . . . . . . 8 (𝐺 ∈ (𝒫 𝐵m 𝐴) → 𝐺:𝐴⟶𝒫 𝐵)
1413ffvelcdmda 7059 . . . . . . 7 ((𝐺 ∈ (𝒫 𝐵m 𝐴) ∧ 𝑥𝐴) → (𝐺𝑥) ∈ 𝒫 𝐵)
1511, 14sylan 580 . . . . . 6 ((𝜑𝑥𝐴) → (𝐺𝑥) ∈ 𝒫 𝐵)
1615elpwid 4575 . . . . 5 ((𝜑𝑥𝐴) → (𝐺𝑥) ⊆ 𝐵)
1716sseld 3948 . . . 4 ((𝜑𝑥𝐴) → (𝑦 ∈ (𝐺𝑥) → 𝑦𝐵))
1817impr 454 . . 3 ((𝜑 ∧ (𝑥𝐴𝑦 ∈ (𝐺𝑥))) → 𝑦𝐵)
192, 3, 12, 18opabex2 8039 . 2 (𝜑 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))} ∈ V)
205, 10, 11, 19fvmptd 6978 1 (𝜑 → (𝐹𝐺) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 ∈ (𝐺𝑥))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  Vcvv 3450  𝒫 cpw 4566   class class class wbr 5110  {copab 5172  cmpt 5191   × cxp 5639  ccnv 5640  cfv 6514  (class class class)co 7390  cmpo 7392  m cmap 8802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator