![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvsng | Structured version Visualization version GIF version |
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) (Proof shortened by BJ, 25-Feb-2023.) |
Ref | Expression |
---|---|
fvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funsng 6600 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {⟨𝐴, 𝐵⟩}) | |
2 | opex 5465 | . . 3 ⊢ ⟨𝐴, 𝐵⟩ ∈ V | |
3 | 2 | snid 4665 | . 2 ⊢ ⟨𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩} |
4 | funopfv 6944 | . 2 ⊢ (Fun {⟨𝐴, 𝐵⟩} → (⟨𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩} → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵)) | |
5 | 1, 3, 4 | mpisyl 21 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({⟨𝐴, 𝐵⟩}‘𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {csn 4629 ⟨cop 4635 Fun wfun 6538 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 |
This theorem is referenced by: fvsn 7179 fvsnun1 7180 fsnunfv 7185 fvpr1g 7188 fvpr2gOLD 7190 fsnex 7281 suppsnop 8163 mapsnend 9036 enfixsn 9081 axdc3lem4 10448 fseq1p1m1 13575 1fv 13620 s1fv 14560 sumsnf 15689 prodsn 15906 prodsnf 15908 seq1st 16508 vdwlem8 16921 setsid 17141 mgm1 18577 sgrp1 18620 mnd1 18667 mnd1id 18668 gsumws1 18719 grp1 18930 dprdsn 19906 ring1 20122 ixpsnbasval 20832 frgpcyg 21129 mat1dimscm 21977 mat1dimmul 21978 mat1rhmelval 21982 m1detdiag 22099 pt1hmeo 23310 noextenddif 27171 noextendlt 27172 noextendgt 27173 1loopgrvd0 28761 1hevtxdg0 28762 1hevtxdg1 28763 1egrvtxdg1 28766 wlkl0 29620 actfunsnrndisj 33617 reprsuc 33627 breprexplema 33642 cvmliftlem7 34282 cvmliftlem13 34287 bj-fununsn2 36135 sticksstones9 40970 sticksstones11 40972 metakunt20 41004 frlmsnic 41110 sumsnd 43710 ovnovollem1 45372 nnsum3primesprm 46458 lincvalsng 47097 snlindsntorlem 47151 lmod1lem2 47169 lmod1lem3 47170 0aryfvalelfv 47321 1arympt1fv 47325 |
Copyright terms: Public domain | W3C validator |