![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvsng | Structured version Visualization version GIF version |
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) (Proof shortened by BJ, 25-Feb-2023.) |
Ref | Expression |
---|---|
fvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funsng 6629 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) | |
2 | opex 5484 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
3 | 2 | snid 4684 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} |
4 | funopfv 6972 | . 2 ⊢ (Fun {〈𝐴, 𝐵〉} → (〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵)) | |
5 | 1, 3, 4 | mpisyl 21 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {csn 4648 〈cop 4654 Fun wfun 6567 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 |
This theorem is referenced by: fvsn 7215 fvsnun1 7216 fsnunfv 7221 fvpr1g 7224 fvpr2gOLD 7226 fsnex 7319 suppsnop 8219 mapsnend 9101 enfixsn 9147 axdc3lem4 10522 fseq1p1m1 13658 1fv 13704 s1fv 14658 sumsnf 15791 prodsn 16010 prodsnf 16012 seq1st 16618 vdwlem8 17035 setsid 17255 mgm1 18696 sgrp1 18767 mnd1 18814 mnd1id 18815 gsumws1 18873 grp1 19087 dprdsn 20080 ring1 20333 ixpsnbasval 21238 frgpcyg 21615 mat1dimscm 22502 mat1dimmul 22503 mat1rhmelval 22507 m1detdiag 22624 pt1hmeo 23835 noextenddif 27731 noextendlt 27732 noextendgt 27733 1loopgrvd0 29540 1hevtxdg0 29541 1hevtxdg1 29542 1egrvtxdg1 29545 wlkl0 30399 actfunsnrndisj 34582 reprsuc 34592 breprexplema 34607 cvmliftlem7 35259 cvmliftlem13 35264 bj-fununsn2 37220 sticksstones9 42111 sticksstones11 42113 metakunt20 42181 frlmsnic 42495 sumsnd 44926 ovnovollem1 46577 nnsum3primesprm 47664 lincvalsng 48145 snlindsntorlem 48199 lmod1lem2 48217 lmod1lem3 48218 0aryfvalelfv 48369 1arympt1fv 48373 |
Copyright terms: Public domain | W3C validator |