| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvsng | Structured version Visualization version GIF version | ||
| Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) (Proof shortened by BJ, 25-Feb-2023.) |
| Ref | Expression |
|---|---|
| fvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funsng 6537 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) | |
| 2 | opex 5411 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 3 | 2 | snid 4616 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} |
| 4 | funopfv 6876 | . 2 ⊢ (Fun {〈𝐴, 𝐵〉} → (〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵)) | |
| 5 | 1, 3, 4 | mpisyl 21 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4579 〈cop 4585 Fun wfun 6480 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 |
| This theorem is referenced by: fvsn 7121 fvsnun1 7122 fsnunfv 7127 fvpr1g 7130 fsnex 7224 suppsnop 8118 mapsnend 8968 enfixsn 9010 axdc3lem4 10366 fseq1p1m1 13519 1fv 13568 s1fv 14535 sumsnf 15668 prodsn 15887 prodsnf 15889 seq1st 16500 vdwlem8 16918 setsid 17136 mgm1 18550 sgrp1 18621 mnd1 18671 mnd1id 18672 gsumws1 18730 grp1 18944 dprdsn 19935 ring1 20213 ixpsnbasval 21130 frgpcyg 21498 mat1dimscm 22378 mat1dimmul 22379 mat1rhmelval 22383 m1detdiag 22500 pt1hmeo 23709 noextenddif 27596 noextendlt 27597 noextendgt 27598 1loopgrvd0 29468 1hevtxdg0 29469 1hevtxdg1 29470 1egrvtxdg1 29473 wlkl0 30329 actfunsnrndisj 34572 reprsuc 34582 breprexplema 34597 cvmliftlem7 35263 cvmliftlem13 35268 bj-fununsn2 37227 sticksstones9 42127 sticksstones11 42129 frlmsnic 42513 sumsnd 45004 ovnovollem1 46638 nnsum3primesprm 47775 lincvalsng 48402 snlindsntorlem 48456 lmod1lem2 48474 lmod1lem3 48475 0aryfvalelfv 48621 1arympt1fv 48625 ovsng 48843 |
| Copyright terms: Public domain | W3C validator |