| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvsng | Structured version Visualization version GIF version | ||
| Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) (Proof shortened by BJ, 25-Feb-2023.) |
| Ref | Expression |
|---|---|
| fvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funsng 6532 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) | |
| 2 | opex 5404 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 3 | 2 | snid 4615 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} |
| 4 | funopfv 6871 | . 2 ⊢ (Fun {〈𝐴, 𝐵〉} → (〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵)) | |
| 5 | 1, 3, 4 | mpisyl 21 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4576 〈cop 4582 Fun wfun 6475 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: fvsn 7115 fvsnun1 7116 fsnunfv 7121 fvpr1g 7124 fsnex 7217 suppsnop 8108 mapsnend 8958 enfixsn 8999 axdc3lem4 10341 fseq1p1m1 13495 1fv 13544 s1fv 14515 sumsnf 15647 prodsn 15866 prodsnf 15868 seq1st 16479 vdwlem8 16897 setsid 17115 mgm1 18563 sgrp1 18634 mnd1 18684 mnd1id 18685 gsumws1 18743 grp1 18957 dprdsn 19948 ring1 20226 ixpsnbasval 21140 frgpcyg 21508 mat1dimscm 22388 mat1dimmul 22389 mat1rhmelval 22393 m1detdiag 22510 pt1hmeo 23719 noextenddif 27605 noextendlt 27606 noextendgt 27607 1loopgrvd0 29481 1hevtxdg0 29482 1hevtxdg1 29483 1egrvtxdg1 29486 wlkl0 30342 actfunsnrndisj 34613 reprsuc 34623 breprexplema 34638 cvmliftlem7 35323 cvmliftlem13 35328 bj-fununsn2 37287 sticksstones9 42186 sticksstones11 42188 frlmsnic 42572 sumsnd 45062 ovnovollem1 46693 nnsum3primesprm 47820 lincvalsng 48447 snlindsntorlem 48501 lmod1lem2 48519 lmod1lem3 48520 0aryfvalelfv 48666 1arympt1fv 48670 ovsng 48888 |
| Copyright terms: Public domain | W3C validator |