Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvsng | Structured version Visualization version GIF version |
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) (Proof shortened by BJ, 25-Feb-2023.) |
Ref | Expression |
---|---|
fvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funsng 6469 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) | |
2 | opex 5373 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
3 | 2 | snid 4594 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} |
4 | funopfv 6803 | . 2 ⊢ (Fun {〈𝐴, 𝐵〉} → (〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵)) | |
5 | 1, 3, 4 | mpisyl 21 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 〈cop 4564 Fun wfun 6412 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: fvsn 7035 fvsnun1 7036 fsnunfv 7041 fvpr1g 7044 fvpr2gOLD 7046 fsnex 7135 suppsnop 7965 mapsnend 8780 enfixsn 8821 axdc3lem4 10140 fseq1p1m1 13259 1fv 13304 s1fv 14243 sumsnf 15383 prodsn 15600 prodsnf 15602 seq1st 16204 vdwlem8 16617 setsid 16837 mgm1 18257 sgrp1 18299 mnd1 18341 mnd1id 18342 gsumws1 18391 grp1 18597 dprdsn 19554 ring1 19756 ixpsnbasval 20393 frgpcyg 20693 mat1dimscm 21532 mat1dimmul 21533 mat1rhmelval 21537 m1detdiag 21654 pt1hmeo 22865 1loopgrvd0 27774 1hevtxdg0 27775 1hevtxdg1 27776 1egrvtxdg1 27779 wlkl0 28632 actfunsnrndisj 32485 reprsuc 32495 breprexplema 32510 cvmliftlem7 33153 cvmliftlem13 33158 noextenddif 33798 noextendlt 33799 noextendgt 33800 bj-fununsn2 35352 sticksstones9 40038 sticksstones11 40040 metakunt20 40072 frlmsnic 40188 sumsnd 42458 ovnovollem1 44084 nnsum3primesprm 45130 lincvalsng 45645 snlindsntorlem 45699 lmod1lem2 45717 lmod1lem3 45718 0aryfvalelfv 45869 1arympt1fv 45873 |
Copyright terms: Public domain | W3C validator |