![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvsng | Structured version Visualization version GIF version |
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) (Proof shortened by BJ, 25-Feb-2023.) |
Ref | Expression |
---|---|
fvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funsng 6236 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) | |
2 | opex 5210 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
3 | 2 | snid 4471 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} |
4 | funopfv 6545 | . 2 ⊢ (Fun {〈𝐴, 𝐵〉} → (〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵)) | |
5 | 1, 3, 4 | mpisyl 21 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2048 {csn 4439 〈cop 4445 Fun wfun 6180 ‘cfv 6186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2747 ax-sep 5058 ax-nul 5065 ax-pr 5184 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2756 df-cleq 2768 df-clel 2843 df-nfc 2915 df-ral 3090 df-rex 3091 df-rab 3094 df-v 3414 df-sbc 3681 df-dif 3831 df-un 3833 df-in 3835 df-ss 3842 df-nul 4178 df-if 4349 df-sn 4440 df-pr 4442 df-op 4446 df-uni 4711 df-br 4928 df-opab 4990 df-id 5309 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-iota 6150 df-fun 6188 df-fv 6194 |
This theorem is referenced by: fvsn 6764 fvsnun1 6767 fsnunfv 6774 fvpr1g 6779 fvpr2g 6780 fsnex 6862 suppsnop 7644 mapsnend 8381 enfixsn 8418 axdc3lem4 9669 fseq1p1m1 12794 1fv 12839 s1fv 13767 sumsnf 14953 prodsn 15170 prodsnf 15172 seq1st 15765 vdwlem8 16174 setsid 16388 xpsc0 16683 xpsc1 16684 mgm1 17719 sgrp1 17755 mnd1 17793 mnd1id 17794 gsumws1 17838 grp1 17987 dprdsn 18902 ring1 19069 ixpsnbasval 19697 frgpcyg 20416 mat1dimscm 20782 mat1dimmul 20783 mat1rhmelval 20787 m1detdiag 20904 pt1hmeo 22112 1loopgrvd0 26983 1hevtxdg0 26984 1hevtxdg1 26985 1egrvtxdg1 26988 wlkl0 27914 actfunsnrndisj 31515 reprsuc 31525 breprexplema 31540 cvmliftlem7 32113 cvmliftlem13 32118 noextenddif 32666 noextendlt 32667 noextendgt 32668 bj-fununsn2 33970 frlmsnic 38564 sumsnd 40679 ovnovollem1 42348 nnsum3primesprm 43297 lincvalsng 43812 snlindsntorlem 43866 lmod1lem2 43884 lmod1lem3 43885 |
Copyright terms: Public domain | W3C validator |