Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvsng | Structured version Visualization version GIF version |
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) (Proof shortened by BJ, 25-Feb-2023.) |
Ref | Expression |
---|---|
fvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funsng 6431 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) | |
2 | opex 5348 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
3 | 2 | snid 4577 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} |
4 | funopfv 6764 | . 2 ⊢ (Fun {〈𝐴, 𝐵〉} → (〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵)) | |
5 | 1, 3, 4 | mpisyl 21 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 {csn 4541 〈cop 4547 Fun wfun 6374 ‘cfv 6380 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 |
This theorem is referenced by: fvsn 6996 fvsnun1 6997 fsnunfv 7002 fvpr1g 7007 fvpr2g 7008 fsnex 7093 suppsnop 7920 mapsnend 8713 enfixsn 8754 axdc3lem4 10067 fseq1p1m1 13186 1fv 13231 s1fv 14167 sumsnf 15307 prodsn 15524 prodsnf 15526 seq1st 16128 vdwlem8 16541 setsid 16758 mgm1 18130 sgrp1 18172 mnd1 18214 mnd1id 18215 gsumws1 18264 grp1 18470 dprdsn 19423 ring1 19620 ixpsnbasval 20247 frgpcyg 20538 mat1dimscm 21372 mat1dimmul 21373 mat1rhmelval 21377 m1detdiag 21494 pt1hmeo 22703 1loopgrvd0 27592 1hevtxdg0 27593 1hevtxdg1 27594 1egrvtxdg1 27597 wlkl0 28450 actfunsnrndisj 32297 reprsuc 32307 breprexplema 32322 cvmliftlem7 32966 cvmliftlem13 32971 noextenddif 33608 noextendlt 33609 noextendgt 33610 bj-fununsn2 35160 sticksstones9 39832 sticksstones11 39834 metakunt20 39866 frlmsnic 39975 sumsnd 42242 ovnovollem1 43869 nnsum3primesprm 44915 lincvalsng 45430 snlindsntorlem 45484 lmod1lem2 45502 lmod1lem3 45503 0aryfvalelfv 45654 1arympt1fv 45658 |
Copyright terms: Public domain | W3C validator |