| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvsng | Structured version Visualization version GIF version | ||
| Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) (Proof shortened by BJ, 25-Feb-2023.) |
| Ref | Expression |
|---|---|
| fvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funsng 6570 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) | |
| 2 | opex 5427 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 3 | 2 | snid 4629 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} |
| 4 | funopfv 6913 | . 2 ⊢ (Fun {〈𝐴, 𝐵〉} → (〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵)) | |
| 5 | 1, 3, 4 | mpisyl 21 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4592 〈cop 4598 Fun wfun 6508 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 |
| This theorem is referenced by: fvsn 7158 fvsnun1 7159 fsnunfv 7164 fvpr1g 7167 fsnex 7261 suppsnop 8160 mapsnend 9010 enfixsn 9055 axdc3lem4 10413 fseq1p1m1 13566 1fv 13615 s1fv 14582 sumsnf 15716 prodsn 15935 prodsnf 15937 seq1st 16548 vdwlem8 16966 setsid 17184 mgm1 18592 sgrp1 18663 mnd1 18713 mnd1id 18714 gsumws1 18772 grp1 18986 dprdsn 19975 ring1 20226 ixpsnbasval 21122 frgpcyg 21490 mat1dimscm 22369 mat1dimmul 22370 mat1rhmelval 22374 m1detdiag 22491 pt1hmeo 23700 noextenddif 27587 noextendlt 27588 noextendgt 27589 1loopgrvd0 29439 1hevtxdg0 29440 1hevtxdg1 29441 1egrvtxdg1 29444 wlkl0 30303 actfunsnrndisj 34603 reprsuc 34613 breprexplema 34628 cvmliftlem7 35285 cvmliftlem13 35290 bj-fununsn2 37249 sticksstones9 42149 sticksstones11 42151 frlmsnic 42535 sumsnd 45027 ovnovollem1 46661 nnsum3primesprm 47795 lincvalsng 48409 snlindsntorlem 48463 lmod1lem2 48481 lmod1lem3 48482 0aryfvalelfv 48628 1arympt1fv 48632 ovsng 48850 |
| Copyright terms: Public domain | W3C validator |