| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvsng | Structured version Visualization version GIF version | ||
| Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) (Proof shortened by BJ, 25-Feb-2023.) |
| Ref | Expression |
|---|---|
| fvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funsng 6586 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) | |
| 2 | opex 5439 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 3 | 2 | snid 4638 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} |
| 4 | funopfv 6927 | . 2 ⊢ (Fun {〈𝐴, 𝐵〉} → (〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵)) | |
| 5 | 1, 3, 4 | mpisyl 21 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {csn 4601 〈cop 4607 Fun wfun 6524 ‘cfv 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fv 6538 |
| This theorem is referenced by: fvsn 7172 fvsnun1 7173 fsnunfv 7178 fvpr1g 7181 fsnex 7275 suppsnop 8175 mapsnend 9048 enfixsn 9093 axdc3lem4 10465 fseq1p1m1 13613 1fv 13662 s1fv 14626 sumsnf 15757 prodsn 15976 prodsnf 15978 seq1st 16588 vdwlem8 17006 setsid 17224 mgm1 18634 sgrp1 18705 mnd1 18755 mnd1id 18756 gsumws1 18814 grp1 19028 dprdsn 20017 ring1 20268 ixpsnbasval 21164 frgpcyg 21532 mat1dimscm 22411 mat1dimmul 22412 mat1rhmelval 22416 m1detdiag 22533 pt1hmeo 23742 noextenddif 27630 noextendlt 27631 noextendgt 27632 1loopgrvd0 29430 1hevtxdg0 29431 1hevtxdg1 29432 1egrvtxdg1 29435 wlkl0 30294 actfunsnrndisj 34583 reprsuc 34593 breprexplema 34608 cvmliftlem7 35259 cvmliftlem13 35264 bj-fununsn2 37218 sticksstones9 42113 sticksstones11 42115 metakunt20 42183 frlmsnic 42510 sumsnd 44998 ovnovollem1 46633 nnsum3primesprm 47752 lincvalsng 48340 snlindsntorlem 48394 lmod1lem2 48412 lmod1lem3 48413 0aryfvalelfv 48563 1arympt1fv 48567 ovsng 48782 |
| Copyright terms: Public domain | W3C validator |