| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvsng | Structured version Visualization version GIF version | ||
| Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) (Proof shortened by BJ, 25-Feb-2023.) |
| Ref | Expression |
|---|---|
| fvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funsng 6537 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) | |
| 2 | opex 5407 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 3 | 2 | snid 4614 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} |
| 4 | funopfv 6877 | . 2 ⊢ (Fun {〈𝐴, 𝐵〉} → (〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵)) | |
| 5 | 1, 3, 4 | mpisyl 21 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {csn 4575 〈cop 4581 Fun wfun 6480 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 |
| This theorem is referenced by: fvsn 7121 fvsnun1 7122 fsnunfv 7127 fvpr1g 7130 fsnex 7223 suppsnop 8114 mapsnend 8965 enfixsn 9006 axdc3lem4 10351 fseq1p1m1 13500 1fv 13549 s1fv 14520 sumsnf 15652 prodsn 15871 prodsnf 15873 seq1st 16484 vdwlem8 16902 setsid 17120 mgm1 18568 sgrp1 18639 mnd1 18689 mnd1id 18690 gsumws1 18748 grp1 18962 dprdsn 19952 ring1 20230 ixpsnbasval 21144 frgpcyg 21512 mat1dimscm 22391 mat1dimmul 22392 mat1rhmelval 22396 m1detdiag 22513 pt1hmeo 23722 noextenddif 27608 noextendlt 27609 noextendgt 27610 1loopgrvd0 29485 1hevtxdg0 29486 1hevtxdg1 29487 1egrvtxdg1 29490 wlkl0 30349 actfunsnrndisj 34639 reprsuc 34649 breprexplema 34664 cvmliftlem7 35356 cvmliftlem13 35361 bj-fununsn2 37319 sticksstones9 42267 sticksstones11 42269 frlmsnic 42658 sumsnd 45147 ovnovollem1 46778 nnsum3primesprm 47914 lincvalsng 48541 snlindsntorlem 48595 lmod1lem2 48613 lmod1lem3 48614 0aryfvalelfv 48760 1arympt1fv 48764 ovsng 48982 |
| Copyright terms: Public domain | W3C validator |