| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvsng | Structured version Visualization version GIF version | ||
| Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) (Proof shortened by BJ, 25-Feb-2023.) |
| Ref | Expression |
|---|---|
| fvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funsng 6567 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) | |
| 2 | opex 5424 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 3 | 2 | snid 4626 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} |
| 4 | funopfv 6910 | . 2 ⊢ (Fun {〈𝐴, 𝐵〉} → (〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵)) | |
| 5 | 1, 3, 4 | mpisyl 21 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4589 〈cop 4595 Fun wfun 6505 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 |
| This theorem is referenced by: fvsn 7155 fvsnun1 7156 fsnunfv 7161 fvpr1g 7164 fsnex 7258 suppsnop 8157 mapsnend 9007 enfixsn 9050 axdc3lem4 10406 fseq1p1m1 13559 1fv 13608 s1fv 14575 sumsnf 15709 prodsn 15928 prodsnf 15930 seq1st 16541 vdwlem8 16959 setsid 17177 mgm1 18585 sgrp1 18656 mnd1 18706 mnd1id 18707 gsumws1 18765 grp1 18979 dprdsn 19968 ring1 20219 ixpsnbasval 21115 frgpcyg 21483 mat1dimscm 22362 mat1dimmul 22363 mat1rhmelval 22367 m1detdiag 22484 pt1hmeo 23693 noextenddif 27580 noextendlt 27581 noextendgt 27582 1loopgrvd0 29432 1hevtxdg0 29433 1hevtxdg1 29434 1egrvtxdg1 29437 wlkl0 30296 actfunsnrndisj 34596 reprsuc 34606 breprexplema 34621 cvmliftlem7 35278 cvmliftlem13 35283 bj-fununsn2 37242 sticksstones9 42142 sticksstones11 42144 frlmsnic 42528 sumsnd 45020 ovnovollem1 46654 nnsum3primesprm 47791 lincvalsng 48405 snlindsntorlem 48459 lmod1lem2 48477 lmod1lem3 48478 0aryfvalelfv 48624 1arympt1fv 48628 ovsng 48846 |
| Copyright terms: Public domain | W3C validator |