Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvsng | Structured version Visualization version GIF version |
Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 26-Oct-2012.) (Proof shortened by BJ, 25-Feb-2023.) |
Ref | Expression |
---|---|
fvsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funsng 6492 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) | |
2 | opex 5380 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
3 | 2 | snid 4598 | . 2 ⊢ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} |
4 | funopfv 6830 | . 2 ⊢ (Fun {〈𝐴, 𝐵〉} → (〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵)) | |
5 | 1, 3, 4 | mpisyl 21 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({〈𝐴, 𝐵〉}‘𝐴) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 {csn 4562 〈cop 4568 Fun wfun 6431 ‘cfv 6437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pr 5353 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-iota 6395 df-fun 6439 df-fv 6445 |
This theorem is referenced by: fvsn 7062 fvsnun1 7063 fsnunfv 7068 fvpr1g 7071 fvpr2gOLD 7073 fsnex 7164 suppsnop 8003 mapsnend 8835 enfixsn 8877 axdc3lem4 10218 fseq1p1m1 13339 1fv 13384 s1fv 14324 sumsnf 15464 prodsn 15681 prodsnf 15683 seq1st 16285 vdwlem8 16698 setsid 16918 mgm1 18351 sgrp1 18393 mnd1 18435 mnd1id 18436 gsumws1 18485 grp1 18691 dprdsn 19648 ring1 19850 ixpsnbasval 20489 frgpcyg 20790 mat1dimscm 21633 mat1dimmul 21634 mat1rhmelval 21638 m1detdiag 21755 pt1hmeo 22966 1loopgrvd0 27880 1hevtxdg0 27881 1hevtxdg1 27882 1egrvtxdg1 27885 wlkl0 28740 actfunsnrndisj 32594 reprsuc 32604 breprexplema 32619 cvmliftlem7 33262 cvmliftlem13 33267 noextenddif 33880 noextendlt 33881 noextendgt 33882 bj-fununsn2 35434 sticksstones9 40117 sticksstones11 40119 metakunt20 40151 frlmsnic 40270 sumsnd 42576 ovnovollem1 44201 nnsum3primesprm 45253 lincvalsng 45768 snlindsntorlem 45822 lmod1lem2 45840 lmod1lem3 45841 0aryfvalelfv 45992 1arympt1fv 45996 |
Copyright terms: Public domain | W3C validator |