| Step | Hyp | Ref
| Expression |
| 1 | | relco 6081 |
. 2
⊢ Rel
((𝐵 × 𝐶) ∘ 𝐹) |
| 2 | | relxp 5658 |
. 2
⊢ Rel
(𝐴 × 𝐶) |
| 3 | | vex 3454 |
. . . . . . . . . . 11
⊢ 𝑥 ∈ V |
| 4 | | vex 3454 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
| 5 | 3, 4 | breldm 5874 |
. . . . . . . . . 10
⊢ (𝑥𝐹𝑧 → 𝑥 ∈ dom 𝐹) |
| 6 | 5 | ad2antrl 728 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑥𝐹𝑧 ∧ 𝑧(𝐵 × 𝐶)𝑦)) → 𝑥 ∈ dom 𝐹) |
| 7 | | fdm 6699 |
. . . . . . . . . 10
⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) |
| 8 | 7 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑥𝐹𝑧 ∧ 𝑧(𝐵 × 𝐶)𝑦)) → dom 𝐹 = 𝐴) |
| 9 | 6, 8 | eleqtrd 2831 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑥𝐹𝑧 ∧ 𝑧(𝐵 × 𝐶)𝑦)) → 𝑥 ∈ 𝐴) |
| 10 | | brxp 5689 |
. . . . . . . . . 10
⊢ (𝑧(𝐵 × 𝐶)𝑦 ↔ (𝑧 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) |
| 11 | 10 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑧(𝐵 × 𝐶)𝑦 → 𝑦 ∈ 𝐶) |
| 12 | 11 | ad2antll 729 |
. . . . . . . 8
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑥𝐹𝑧 ∧ 𝑧(𝐵 × 𝐶)𝑦)) → 𝑦 ∈ 𝐶) |
| 13 | 9, 12 | jca 511 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑥𝐹𝑧 ∧ 𝑧(𝐵 × 𝐶)𝑦)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) |
| 14 | 13 | ex 412 |
. . . . . 6
⊢ (𝐹:𝐴⟶𝐵 → ((𝑥𝐹𝑧 ∧ 𝑧(𝐵 × 𝐶)𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
| 15 | 14 | exlimdv 1933 |
. . . . 5
⊢ (𝐹:𝐴⟶𝐵 → (∃𝑧(𝑥𝐹𝑧 ∧ 𝑧(𝐵 × 𝐶)𝑦) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
| 16 | 15 | imp 406 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ ∃𝑧(𝑥𝐹𝑧 ∧ 𝑧(𝐵 × 𝐶)𝑦)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) |
| 17 | | ffvelcdm 7055 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
| 18 | 17 | adantrr 717 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → (𝐹‘𝑥) ∈ 𝐵) |
| 19 | | ffvbr 48834 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → 𝑥𝐹(𝐹‘𝑥)) |
| 20 | 19 | adantrr 717 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → 𝑥𝐹(𝐹‘𝑥)) |
| 21 | | simprr 772 |
. . . . . . 7
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → 𝑦 ∈ 𝐶) |
| 22 | | brxp 5689 |
. . . . . . 7
⊢ ((𝐹‘𝑥)(𝐵 × 𝐶)𝑦 ↔ ((𝐹‘𝑥) ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) |
| 23 | 18, 21, 22 | sylanbrc 583 |
. . . . . 6
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → (𝐹‘𝑥)(𝐵 × 𝐶)𝑦) |
| 24 | 20, 23 | jca 511 |
. . . . 5
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → (𝑥𝐹(𝐹‘𝑥) ∧ (𝐹‘𝑥)(𝐵 × 𝐶)𝑦)) |
| 25 | | breq2 5113 |
. . . . . 6
⊢ (𝑧 = (𝐹‘𝑥) → (𝑥𝐹𝑧 ↔ 𝑥𝐹(𝐹‘𝑥))) |
| 26 | | breq1 5112 |
. . . . . 6
⊢ (𝑧 = (𝐹‘𝑥) → (𝑧(𝐵 × 𝐶)𝑦 ↔ (𝐹‘𝑥)(𝐵 × 𝐶)𝑦)) |
| 27 | 25, 26 | anbi12d 632 |
. . . . 5
⊢ (𝑧 = (𝐹‘𝑥) → ((𝑥𝐹𝑧 ∧ 𝑧(𝐵 × 𝐶)𝑦) ↔ (𝑥𝐹(𝐹‘𝑥) ∧ (𝐹‘𝑥)(𝐵 × 𝐶)𝑦))) |
| 28 | 18, 24, 27 | spcedv 3567 |
. . . 4
⊢ ((𝐹:𝐴⟶𝐵 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) → ∃𝑧(𝑥𝐹𝑧 ∧ 𝑧(𝐵 × 𝐶)𝑦)) |
| 29 | 16, 28 | impbida 800 |
. . 3
⊢ (𝐹:𝐴⟶𝐵 → (∃𝑧(𝑥𝐹𝑧 ∧ 𝑧(𝐵 × 𝐶)𝑦) ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶))) |
| 30 | | vex 3454 |
. . . 4
⊢ 𝑦 ∈ V |
| 31 | 3, 30 | brco 5836 |
. . 3
⊢ (𝑥((𝐵 × 𝐶) ∘ 𝐹)𝑦 ↔ ∃𝑧(𝑥𝐹𝑧 ∧ 𝑧(𝐵 × 𝐶)𝑦)) |
| 32 | | brxp 5689 |
. . 3
⊢ (𝑥(𝐴 × 𝐶)𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)) |
| 33 | 29, 31, 32 | 3bitr4g 314 |
. 2
⊢ (𝐹:𝐴⟶𝐵 → (𝑥((𝐵 × 𝐶) ∘ 𝐹)𝑦 ↔ 𝑥(𝐴 × 𝐶)𝑦)) |
| 34 | 1, 2, 33 | eqbrrdiv 5759 |
1
⊢ (𝐹:𝐴⟶𝐵 → ((𝐵 × 𝐶) ∘ 𝐹) = (𝐴 × 𝐶)) |