Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xpco2 Structured version   Visualization version   GIF version

Theorem xpco2 48835
Description: Composition of a Cartesian product with a function. (Contributed by Zhi Wang, 25-Nov-2025.)
Assertion
Ref Expression
xpco2 (𝐹:𝐴𝐵 → ((𝐵 × 𝐶) ∘ 𝐹) = (𝐴 × 𝐶))

Proof of Theorem xpco2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6081 . 2 Rel ((𝐵 × 𝐶) ∘ 𝐹)
2 relxp 5658 . 2 Rel (𝐴 × 𝐶)
3 vex 3454 . . . . . . . . . . 11 𝑥 ∈ V
4 vex 3454 . . . . . . . . . . 11 𝑧 ∈ V
53, 4breldm 5874 . . . . . . . . . 10 (𝑥𝐹𝑧𝑥 ∈ dom 𝐹)
65ad2antrl 728 . . . . . . . . 9 ((𝐹:𝐴𝐵 ∧ (𝑥𝐹𝑧𝑧(𝐵 × 𝐶)𝑦)) → 𝑥 ∈ dom 𝐹)
7 fdm 6699 . . . . . . . . . 10 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
87adantr 480 . . . . . . . . 9 ((𝐹:𝐴𝐵 ∧ (𝑥𝐹𝑧𝑧(𝐵 × 𝐶)𝑦)) → dom 𝐹 = 𝐴)
96, 8eleqtrd 2831 . . . . . . . 8 ((𝐹:𝐴𝐵 ∧ (𝑥𝐹𝑧𝑧(𝐵 × 𝐶)𝑦)) → 𝑥𝐴)
10 brxp 5689 . . . . . . . . . 10 (𝑧(𝐵 × 𝐶)𝑦 ↔ (𝑧𝐵𝑦𝐶))
1110simprbi 496 . . . . . . . . 9 (𝑧(𝐵 × 𝐶)𝑦𝑦𝐶)
1211ad2antll 729 . . . . . . . 8 ((𝐹:𝐴𝐵 ∧ (𝑥𝐹𝑧𝑧(𝐵 × 𝐶)𝑦)) → 𝑦𝐶)
139, 12jca 511 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ (𝑥𝐹𝑧𝑧(𝐵 × 𝐶)𝑦)) → (𝑥𝐴𝑦𝐶))
1413ex 412 . . . . . 6 (𝐹:𝐴𝐵 → ((𝑥𝐹𝑧𝑧(𝐵 × 𝐶)𝑦) → (𝑥𝐴𝑦𝐶)))
1514exlimdv 1933 . . . . 5 (𝐹:𝐴𝐵 → (∃𝑧(𝑥𝐹𝑧𝑧(𝐵 × 𝐶)𝑦) → (𝑥𝐴𝑦𝐶)))
1615imp 406 . . . 4 ((𝐹:𝐴𝐵 ∧ ∃𝑧(𝑥𝐹𝑧𝑧(𝐵 × 𝐶)𝑦)) → (𝑥𝐴𝑦𝐶))
17 ffvelcdm 7055 . . . . . 6 ((𝐹:𝐴𝐵𝑥𝐴) → (𝐹𝑥) ∈ 𝐵)
1817adantrr 717 . . . . 5 ((𝐹:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐶)) → (𝐹𝑥) ∈ 𝐵)
19 ffvbr 48834 . . . . . . 7 ((𝐹:𝐴𝐵𝑥𝐴) → 𝑥𝐹(𝐹𝑥))
2019adantrr 717 . . . . . 6 ((𝐹:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐶)) → 𝑥𝐹(𝐹𝑥))
21 simprr 772 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐶)) → 𝑦𝐶)
22 brxp 5689 . . . . . . 7 ((𝐹𝑥)(𝐵 × 𝐶)𝑦 ↔ ((𝐹𝑥) ∈ 𝐵𝑦𝐶))
2318, 21, 22sylanbrc 583 . . . . . 6 ((𝐹:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐶)) → (𝐹𝑥)(𝐵 × 𝐶)𝑦)
2420, 23jca 511 . . . . 5 ((𝐹:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐶)) → (𝑥𝐹(𝐹𝑥) ∧ (𝐹𝑥)(𝐵 × 𝐶)𝑦))
25 breq2 5113 . . . . . 6 (𝑧 = (𝐹𝑥) → (𝑥𝐹𝑧𝑥𝐹(𝐹𝑥)))
26 breq1 5112 . . . . . 6 (𝑧 = (𝐹𝑥) → (𝑧(𝐵 × 𝐶)𝑦 ↔ (𝐹𝑥)(𝐵 × 𝐶)𝑦))
2725, 26anbi12d 632 . . . . 5 (𝑧 = (𝐹𝑥) → ((𝑥𝐹𝑧𝑧(𝐵 × 𝐶)𝑦) ↔ (𝑥𝐹(𝐹𝑥) ∧ (𝐹𝑥)(𝐵 × 𝐶)𝑦)))
2818, 24, 27spcedv 3567 . . . 4 ((𝐹:𝐴𝐵 ∧ (𝑥𝐴𝑦𝐶)) → ∃𝑧(𝑥𝐹𝑧𝑧(𝐵 × 𝐶)𝑦))
2916, 28impbida 800 . . 3 (𝐹:𝐴𝐵 → (∃𝑧(𝑥𝐹𝑧𝑧(𝐵 × 𝐶)𝑦) ↔ (𝑥𝐴𝑦𝐶)))
30 vex 3454 . . . 4 𝑦 ∈ V
313, 30brco 5836 . . 3 (𝑥((𝐵 × 𝐶) ∘ 𝐹)𝑦 ↔ ∃𝑧(𝑥𝐹𝑧𝑧(𝐵 × 𝐶)𝑦))
32 brxp 5689 . . 3 (𝑥(𝐴 × 𝐶)𝑦 ↔ (𝑥𝐴𝑦𝐶))
3329, 31, 323bitr4g 314 . 2 (𝐹:𝐴𝐵 → (𝑥((𝐵 × 𝐶) ∘ 𝐹)𝑦𝑥(𝐴 × 𝐶)𝑦))
341, 2, 33eqbrrdiv 5759 1 (𝐹:𝐴𝐵 → ((𝐵 × 𝐶) ∘ 𝐹) = (𝐴 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109   class class class wbr 5109   × cxp 5638  dom cdm 5640  ccom 5644  wf 6509  cfv 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521
This theorem is referenced by:  prcofdiag  49373
  Copyright terms: Public domain W3C validator