MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem2 Structured version   Visualization version   GIF version

Theorem pgpfac1lem2 19194
Description: Lemma for pgpfac1 19199. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.w (𝜑𝑊 ∈ (SubGrp‘𝐺))
pgpfac1.i (𝜑 → (𝑆𝑊) = { 0 })
pgpfac1.ss (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
pgpfac1.2 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
pgpfac1.c (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
pgpfac1.mg · = (.g𝐺)
Assertion
Ref Expression
pgpfac1lem2 (𝜑 → (𝑃 · 𝐶) ∈ (𝑆 𝑊))
Distinct variable groups:   𝑤,𝐴   𝑤,   𝑤,𝑃   𝑤,𝐺   𝑤,𝑈   𝑤,𝐶   𝑤,𝑆   𝑤,𝑊   𝜑,𝑤   𝑤, ·   𝑤,𝐾
Allowed substitution hints:   𝐵(𝑤)   𝐸(𝑤)   𝑂(𝑤)   0 (𝑤)

Proof of Theorem pgpfac1lem2
Dummy variables 𝑘 𝑠 𝑡 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.c . . 3 (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
21eldifbd 3897 . 2 (𝜑 → ¬ 𝐶 ∈ (𝑆 𝑊))
31eldifad 3896 . . . . . . 7 (𝜑𝐶𝑈)
43adantr 484 . . . . . 6 ((𝜑 ∧ ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊)) → 𝐶𝑈)
5 pgpfac1.u . . . . . . . . . 10 (𝜑𝑈 ∈ (SubGrp‘𝐺))
6 pgpfac1.p . . . . . . . . . . . 12 (𝜑𝑃 pGrp 𝐺)
7 pgpprm 18714 . . . . . . . . . . . 12 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
86, 7syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℙ)
9 prmz 16013 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
108, 9syl 17 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
11 pgpfac1.mg . . . . . . . . . . 11 · = (.g𝐺)
1211subgmulgcl 18288 . . . . . . . . . 10 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑃 ∈ ℤ ∧ 𝐶𝑈) → (𝑃 · 𝐶) ∈ 𝑈)
135, 10, 3, 12syl3anc 1368 . . . . . . . . 9 (𝜑 → (𝑃 · 𝐶) ∈ 𝑈)
1413adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊)) → (𝑃 · 𝐶) ∈ 𝑈)
15 simpr 488 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊)) → ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊))
1614, 15eldifd 3895 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊)) → (𝑃 · 𝐶) ∈ (𝑈 ∖ (𝑆 𝑊)))
17 pgpfac1.k . . . . . . . 8 𝐾 = (mrCls‘(SubGrp‘𝐺))
18 pgpfac1.s . . . . . . . 8 𝑆 = (𝐾‘{𝐴})
19 pgpfac1.b . . . . . . . 8 𝐵 = (Base‘𝐺)
20 pgpfac1.o . . . . . . . 8 𝑂 = (od‘𝐺)
21 pgpfac1.e . . . . . . . 8 𝐸 = (gEx‘𝐺)
22 pgpfac1.z . . . . . . . 8 0 = (0g𝐺)
23 pgpfac1.l . . . . . . . 8 = (LSSum‘𝐺)
24 pgpfac1.g . . . . . . . 8 (𝜑𝐺 ∈ Abel)
25 pgpfac1.n . . . . . . . 8 (𝜑𝐵 ∈ Fin)
26 pgpfac1.oe . . . . . . . 8 (𝜑 → (𝑂𝐴) = 𝐸)
27 pgpfac1.au . . . . . . . 8 (𝜑𝐴𝑈)
28 pgpfac1.w . . . . . . . 8 (𝜑𝑊 ∈ (SubGrp‘𝐺))
29 pgpfac1.i . . . . . . . 8 (𝜑 → (𝑆𝑊) = { 0 })
30 pgpfac1.ss . . . . . . . 8 (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
31 pgpfac1.2 . . . . . . . 8 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
3217, 18, 19, 20, 21, 22, 23, 6, 24, 25, 26, 5, 27, 28, 29, 30, 31pgpfac1lem1 19193 . . . . . . 7 ((𝜑 ∧ (𝑃 · 𝐶) ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{(𝑃 · 𝐶)})) = 𝑈)
3316, 32syldan 594 . . . . . 6 ((𝜑 ∧ ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊)) → ((𝑆 𝑊) (𝐾‘{(𝑃 · 𝐶)})) = 𝑈)
344, 33eleqtrrd 2896 . . . . 5 ((𝜑 ∧ ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊)) → 𝐶 ∈ ((𝑆 𝑊) (𝐾‘{(𝑃 · 𝐶)})))
3534ex 416 . . . 4 (𝜑 → (¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ ((𝑆 𝑊) (𝐾‘{(𝑃 · 𝐶)}))))
36 eqid 2801 . . . . . 6 (-g𝐺) = (-g𝐺)
37 ablgrp 18907 . . . . . . . . . . . 12 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3824, 37syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ Grp)
3919subgacs 18309 . . . . . . . . . . 11 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
4038, 39syl 17 . . . . . . . . . 10 (𝜑 → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
4140acsmred 16923 . . . . . . . . 9 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
4219subgss 18276 . . . . . . . . . . 11 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
435, 42syl 17 . . . . . . . . . 10 (𝜑𝑈𝐵)
4443, 27sseldd 3919 . . . . . . . . 9 (𝜑𝐴𝐵)
4517mrcsncl 16879 . . . . . . . . 9 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
4641, 44, 45syl2anc 587 . . . . . . . 8 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
4718, 46eqeltrid 2897 . . . . . . 7 (𝜑𝑆 ∈ (SubGrp‘𝐺))
4823lsmsubg2 18976 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
4924, 47, 28, 48syl3anc 1368 . . . . . 6 (𝜑 → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
5043, 13sseldd 3919 . . . . . . 7 (𝜑 → (𝑃 · 𝐶) ∈ 𝐵)
5117mrcsncl 16879 . . . . . . 7 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ (𝑃 · 𝐶) ∈ 𝐵) → (𝐾‘{(𝑃 · 𝐶)}) ∈ (SubGrp‘𝐺))
5241, 50, 51syl2anc 587 . . . . . 6 (𝜑 → (𝐾‘{(𝑃 · 𝐶)}) ∈ (SubGrp‘𝐺))
5336, 23, 49, 52lsmelvalm 18772 . . . . 5 (𝜑 → (𝐶 ∈ ((𝑆 𝑊) (𝐾‘{(𝑃 · 𝐶)})) ↔ ∃𝑠 ∈ (𝑆 𝑊)∃𝑡 ∈ (𝐾‘{(𝑃 · 𝐶)})𝐶 = (𝑠(-g𝐺)𝑡)))
54 eqid 2801 . . . . . . . . . 10 (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶))) = (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶)))
5519, 11, 54, 17cycsubg2 18349 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑃 · 𝐶) ∈ 𝐵) → (𝐾‘{(𝑃 · 𝐶)}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶))))
5638, 50, 55syl2anc 587 . . . . . . . 8 (𝜑 → (𝐾‘{(𝑃 · 𝐶)}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶))))
5756rexeqdv 3368 . . . . . . 7 (𝜑 → (∃𝑡 ∈ (𝐾‘{(𝑃 · 𝐶)})𝐶 = (𝑠(-g𝐺)𝑡) ↔ ∃𝑡 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶)))𝐶 = (𝑠(-g𝐺)𝑡)))
58 ovex 7172 . . . . . . . . 9 (𝑘 · (𝑃 · 𝐶)) ∈ V
5958rgenw 3121 . . . . . . . 8 𝑘 ∈ ℤ (𝑘 · (𝑃 · 𝐶)) ∈ V
60 oveq2 7147 . . . . . . . . . 10 (𝑡 = (𝑘 · (𝑃 · 𝐶)) → (𝑠(-g𝐺)𝑡) = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))))
6160eqeq2d 2812 . . . . . . . . 9 (𝑡 = (𝑘 · (𝑃 · 𝐶)) → (𝐶 = (𝑠(-g𝐺)𝑡) ↔ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶)))))
6254, 61rexrnmptw 6842 . . . . . . . 8 (∀𝑘 ∈ ℤ (𝑘 · (𝑃 · 𝐶)) ∈ V → (∃𝑡 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶)))𝐶 = (𝑠(-g𝐺)𝑡) ↔ ∃𝑘 ∈ ℤ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶)))))
6359, 62mp1i 13 . . . . . . 7 (𝜑 → (∃𝑡 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶)))𝐶 = (𝑠(-g𝐺)𝑡) ↔ ∃𝑘 ∈ ℤ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶)))))
6457, 63bitrd 282 . . . . . 6 (𝜑 → (∃𝑡 ∈ (𝐾‘{(𝑃 · 𝐶)})𝐶 = (𝑠(-g𝐺)𝑡) ↔ ∃𝑘 ∈ ℤ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶)))))
6564rexbidv 3259 . . . . 5 (𝜑 → (∃𝑠 ∈ (𝑆 𝑊)∃𝑡 ∈ (𝐾‘{(𝑃 · 𝐶)})𝐶 = (𝑠(-g𝐺)𝑡) ↔ ∃𝑠 ∈ (𝑆 𝑊)∃𝑘 ∈ ℤ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶)))))
66 rexcom 3311 . . . . . 6 (∃𝑠 ∈ (𝑆 𝑊)∃𝑘 ∈ ℤ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ ∃𝑘 ∈ ℤ ∃𝑠 ∈ (𝑆 𝑊)𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))))
6738ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → 𝐺 ∈ Grp)
6830, 43sstrd 3928 . . . . . . . . . . . . . 14 (𝜑 → (𝑆 𝑊) ⊆ 𝐵)
6968adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℤ) → (𝑆 𝑊) ⊆ 𝐵)
7069sselda 3918 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → 𝑠𝐵)
71 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → 𝑘 ∈ ℤ)
7250ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → (𝑃 · 𝐶) ∈ 𝐵)
7319, 11mulgcl 18241 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑘 ∈ ℤ ∧ (𝑃 · 𝐶) ∈ 𝐵) → (𝑘 · (𝑃 · 𝐶)) ∈ 𝐵)
7467, 71, 72, 73syl3anc 1368 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → (𝑘 · (𝑃 · 𝐶)) ∈ 𝐵)
7543, 3sseldd 3919 . . . . . . . . . . . . 13 (𝜑𝐶𝐵)
7675ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → 𝐶𝐵)
77 eqid 2801 . . . . . . . . . . . . 13 (+g𝐺) = (+g𝐺)
7819, 77, 36grpsubadd 18183 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑠𝐵 ∧ (𝑘 · (𝑃 · 𝐶)) ∈ 𝐵𝐶𝐵)) → ((𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝐶 ↔ (𝐶(+g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝑠))
7967, 70, 74, 76, 78syl13anc 1369 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → ((𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝐶 ↔ (𝐶(+g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝑠))
80 1zzd 12005 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → 1 ∈ ℤ)
8110ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → 𝑃 ∈ ℤ)
8271, 81zmulcld 12085 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → (𝑘 · 𝑃) ∈ ℤ)
8319, 11, 77mulgdir 18255 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (1 ∈ ℤ ∧ (𝑘 · 𝑃) ∈ ℤ ∧ 𝐶𝐵)) → ((1 + (𝑘 · 𝑃)) · 𝐶) = ((1 · 𝐶)(+g𝐺)((𝑘 · 𝑃) · 𝐶)))
8467, 80, 82, 76, 83syl13anc 1369 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → ((1 + (𝑘 · 𝑃)) · 𝐶) = ((1 · 𝐶)(+g𝐺)((𝑘 · 𝑃) · 𝐶)))
8519, 11mulg1 18231 . . . . . . . . . . . . . . 15 (𝐶𝐵 → (1 · 𝐶) = 𝐶)
8676, 85syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → (1 · 𝐶) = 𝐶)
8719, 11mulgass 18260 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (𝑘 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝐶𝐵)) → ((𝑘 · 𝑃) · 𝐶) = (𝑘 · (𝑃 · 𝐶)))
8867, 71, 81, 76, 87syl13anc 1369 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → ((𝑘 · 𝑃) · 𝐶) = (𝑘 · (𝑃 · 𝐶)))
8986, 88oveq12d 7157 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → ((1 · 𝐶)(+g𝐺)((𝑘 · 𝑃) · 𝐶)) = (𝐶(+g𝐺)(𝑘 · (𝑃 · 𝐶))))
9084, 89eqtrd 2836 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → ((1 + (𝑘 · 𝑃)) · 𝐶) = (𝐶(+g𝐺)(𝑘 · (𝑃 · 𝐶))))
9190eqeq1d 2803 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → (((1 + (𝑘 · 𝑃)) · 𝐶) = 𝑠 ↔ (𝐶(+g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝑠))
9279, 91bitr4d 285 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → ((𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝐶 ↔ ((1 + (𝑘 · 𝑃)) · 𝐶) = 𝑠))
93 eqcom 2808 . . . . . . . . . 10 (𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝐶)
94 eqcom 2808 . . . . . . . . . 10 (𝑠 = ((1 + (𝑘 · 𝑃)) · 𝐶) ↔ ((1 + (𝑘 · 𝑃)) · 𝐶) = 𝑠)
9592, 93, 943bitr4g 317 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → (𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ 𝑠 = ((1 + (𝑘 · 𝑃)) · 𝐶)))
9695rexbidva 3258 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → (∃𝑠 ∈ (𝑆 𝑊)𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ ∃𝑠 ∈ (𝑆 𝑊)𝑠 = ((1 + (𝑘 · 𝑃)) · 𝐶)))
97 risset 3229 . . . . . . . 8 (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) ↔ ∃𝑠 ∈ (𝑆 𝑊)𝑠 = ((1 + (𝑘 · 𝑃)) · 𝐶))
9896, 97syl6bbr 292 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (∃𝑠 ∈ (𝑆 𝑊)𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊)))
9998rexbidva 3258 . . . . . 6 (𝜑 → (∃𝑘 ∈ ℤ ∃𝑠 ∈ (𝑆 𝑊)𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ ∃𝑘 ∈ ℤ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊)))
10066, 99syl5bb 286 . . . . 5 (𝜑 → (∃𝑠 ∈ (𝑆 𝑊)∃𝑘 ∈ ℤ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ ∃𝑘 ∈ ℤ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊)))
10153, 65, 1003bitrd 308 . . . 4 (𝜑 → (𝐶 ∈ ((𝑆 𝑊) (𝐾‘{(𝑃 · 𝐶)})) ↔ ∃𝑘 ∈ ℤ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊)))
10235, 101sylibd 242 . . 3 (𝜑 → (¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊) → ∃𝑘 ∈ ℤ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊)))
10338adantr 484 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → 𝐺 ∈ Grp)
10475adantr 484 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → 𝐶𝐵)
105 1z 12004 . . . . . . 7 1 ∈ ℤ
106 id 22 . . . . . . . 8 (𝑘 ∈ ℤ → 𝑘 ∈ ℤ)
107 zmulcl 12023 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑘 · 𝑃) ∈ ℤ)
108106, 10, 107syl2anr 599 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (𝑘 · 𝑃) ∈ ℤ)
109 zaddcl 12014 . . . . . . 7 ((1 ∈ ℤ ∧ (𝑘 · 𝑃) ∈ ℤ) → (1 + (𝑘 · 𝑃)) ∈ ℤ)
110105, 108, 109sylancr 590 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → (1 + (𝑘 · 𝑃)) ∈ ℤ)
11119, 20odcl 18660 . . . . . . . . 9 (𝐶𝐵 → (𝑂𝐶) ∈ ℕ0)
112104, 111syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → (𝑂𝐶) ∈ ℕ0)
113112nn0zd 12077 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (𝑂𝐶) ∈ ℤ)
114 hashcl 13717 . . . . . . . . . 10 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
11525, 114syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝐵) ∈ ℕ0)
116115nn0zd 12077 . . . . . . . 8 (𝜑 → (♯‘𝐵) ∈ ℤ)
117116adantr 484 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (♯‘𝐵) ∈ ℤ)
118 gcdcom 15856 . . . . . . . . 9 (((1 + (𝑘 · 𝑃)) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → ((1 + (𝑘 · 𝑃)) gcd (♯‘𝐵)) = ((♯‘𝐵) gcd (1 + (𝑘 · 𝑃))))
119110, 117, 118syl2anc 587 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → ((1 + (𝑘 · 𝑃)) gcd (♯‘𝐵)) = ((♯‘𝐵) gcd (1 + (𝑘 · 𝑃))))
12019pgphash 18728 . . . . . . . . . . 11 ((𝑃 pGrp 𝐺𝐵 ∈ Fin) → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
1216, 25, 120syl2anc 587 . . . . . . . . . 10 (𝜑 → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
122121adantr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
123122oveq1d 7154 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → ((♯‘𝐵) gcd (1 + (𝑘 · 𝑃))) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd (1 + (𝑘 · 𝑃))))
124 simpr 488 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
12510adantr 484 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 𝑃 ∈ ℤ)
126 1zzd 12005 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 1 ∈ ℤ)
127 gcdaddm 15867 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑃 gcd 1) = (𝑃 gcd (1 + (𝑘 · 𝑃))))
128124, 125, 126, 127syl3anc 1368 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → (𝑃 gcd 1) = (𝑃 gcd (1 + (𝑘 · 𝑃))))
129 gcd1 15870 . . . . . . . . . . 11 (𝑃 ∈ ℤ → (𝑃 gcd 1) = 1)
130125, 129syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → (𝑃 gcd 1) = 1)
131128, 130eqtr3d 2838 . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → (𝑃 gcd (1 + (𝑘 · 𝑃))) = 1)
13219grpbn0 18128 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
13338, 132syl 17 . . . . . . . . . . . . 13 (𝜑𝐵 ≠ ∅)
134 hashnncl 13727 . . . . . . . . . . . . . 14 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
13525, 134syl 17 . . . . . . . . . . . . 13 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
136133, 135mpbird 260 . . . . . . . . . . . 12 (𝜑 → (♯‘𝐵) ∈ ℕ)
1378, 136pccld 16181 . . . . . . . . . . 11 (𝜑 → (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0)
138137adantr 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0)
139 rpexp1i 16059 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ (1 + (𝑘 · 𝑃)) ∈ ℤ ∧ (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑃 gcd (1 + (𝑘 · 𝑃))) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd (1 + (𝑘 · 𝑃))) = 1))
140125, 110, 138, 139syl3anc 1368 . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → ((𝑃 gcd (1 + (𝑘 · 𝑃))) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd (1 + (𝑘 · 𝑃))) = 1))
141131, 140mpd 15 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd (1 + (𝑘 · 𝑃))) = 1)
142119, 123, 1413eqtrd 2840 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → ((1 + (𝑘 · 𝑃)) gcd (♯‘𝐵)) = 1)
14319, 20oddvds2 18689 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝐶𝐵) → (𝑂𝐶) ∥ (♯‘𝐵))
14438, 25, 75, 143syl3anc 1368 . . . . . . . 8 (𝜑 → (𝑂𝐶) ∥ (♯‘𝐵))
145144adantr 484 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (𝑂𝐶) ∥ (♯‘𝐵))
146 rpdvds 15998 . . . . . . 7 ((((1 + (𝑘 · 𝑃)) ∈ ℤ ∧ (𝑂𝐶) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) ∧ (((1 + (𝑘 · 𝑃)) gcd (♯‘𝐵)) = 1 ∧ (𝑂𝐶) ∥ (♯‘𝐵))) → ((1 + (𝑘 · 𝑃)) gcd (𝑂𝐶)) = 1)
147110, 113, 117, 142, 145, 146syl32anc 1375 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → ((1 + (𝑘 · 𝑃)) gcd (𝑂𝐶)) = 1)
14819, 20, 11odbezout 18681 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐶𝐵 ∧ (1 + (𝑘 · 𝑃)) ∈ ℤ) ∧ ((1 + (𝑘 · 𝑃)) gcd (𝑂𝐶)) = 1) → ∃𝑎 ∈ ℤ (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) = 𝐶)
149103, 104, 110, 147, 148syl31anc 1370 . . . . 5 ((𝜑𝑘 ∈ ℤ) → ∃𝑎 ∈ ℤ (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) = 𝐶)
15049ad2antrr 725 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
151 simpr 488 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
15211subgmulgcl 18288 . . . . . . . . 9 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ 𝑎 ∈ ℤ ∧ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊)) → (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) ∈ (𝑆 𝑊))
1531523expia 1118 . . . . . . . 8 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ 𝑎 ∈ ℤ) → (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) ∈ (𝑆 𝑊)))
154150, 151, 153syl2anc 587 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) ∈ (𝑆 𝑊)))
155 eleq1 2880 . . . . . . . 8 ((𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) = 𝐶 → ((𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) ∈ (𝑆 𝑊) ↔ 𝐶 ∈ (𝑆 𝑊)))
156155imbi2d 344 . . . . . . 7 ((𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) = 𝐶 → ((((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) ∈ (𝑆 𝑊)) ↔ (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ (𝑆 𝑊))))
157154, 156syl5ibcom 248 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → ((𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) = 𝐶 → (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ (𝑆 𝑊))))
158157rexlimdva 3246 . . . . 5 ((𝜑𝑘 ∈ ℤ) → (∃𝑎 ∈ ℤ (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) = 𝐶 → (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ (𝑆 𝑊))))
159149, 158mpd 15 . . . 4 ((𝜑𝑘 ∈ ℤ) → (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ (𝑆 𝑊)))
160159rexlimdva 3246 . . 3 (𝜑 → (∃𝑘 ∈ ℤ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ (𝑆 𝑊)))
161102, 160syld 47 . 2 (𝜑 → (¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ (𝑆 𝑊)))
1622, 161mt3d 150 1 (𝜑 → (𝑃 · 𝐶) ∈ (𝑆 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wne 2990  wral 3109  wrex 3110  Vcvv 3444  cdif 3881  cin 3883  wss 3884  wpss 3885  c0 4246  {csn 4528   class class class wbr 5033  cmpt 5113  ran crn 5524  cfv 6328  (class class class)co 7139  Fincfn 8496  1c1 10531   + caddc 10533   · cmul 10535  cn 11629  0cn0 11889  cz 11973  cexp 13429  chash 13690  cdvds 15603   gcd cgcd 15837  cprime 16009   pCnt cpc 16167  Basecbs 16479  +gcplusg 16561  0gc0g 16709  Moorecmre 16849  mrClscmrc 16850  ACScacs 16852  Grpcgrp 18099  -gcsg 18101  .gcmg 18220  SubGrpcsubg 18269  odcod 18648  gExcgex 18649   pGrp cpgp 18650  LSSumclsm 18755  Abelcabl 18903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-disj 4999  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-oadd 8093  df-omul 8094  df-er 8276  df-ec 8278  df-qs 8282  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-oi 8962  df-dju 9318  df-card 9356  df-acn 9359  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-fz 12890  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-sum 15039  df-dvds 15604  df-gcd 15838  df-prm 16010  df-pc 16168  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-0g 16711  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-grp 18102  df-minusg 18103  df-sbg 18104  df-mulg 18221  df-subg 18272  df-eqg 18274  df-ga 18416  df-cntz 18443  df-od 18652  df-pgp 18654  df-lsm 18757  df-cmn 18904  df-abl 18905
This theorem is referenced by:  pgpfac1lem4  19197
  Copyright terms: Public domain W3C validator