MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem2 Structured version   Visualization version   GIF version

Theorem pgpfac1lem2 20119
Description: Lemma for pgpfac1 20124. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.w (𝜑𝑊 ∈ (SubGrp‘𝐺))
pgpfac1.i (𝜑 → (𝑆𝑊) = { 0 })
pgpfac1.ss (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
pgpfac1.2 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
pgpfac1.c (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
pgpfac1.mg · = (.g𝐺)
Assertion
Ref Expression
pgpfac1lem2 (𝜑 → (𝑃 · 𝐶) ∈ (𝑆 𝑊))
Distinct variable groups:   𝑤,𝐴   𝑤,   𝑤,𝑃   𝑤,𝐺   𝑤,𝑈   𝑤,𝐶   𝑤,𝑆   𝑤,𝑊   𝜑,𝑤   𝑤, ·   𝑤,𝐾
Allowed substitution hints:   𝐵(𝑤)   𝐸(𝑤)   𝑂(𝑤)   0 (𝑤)

Proof of Theorem pgpfac1lem2
Dummy variables 𝑘 𝑠 𝑡 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.c . . 3 (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
21eldifbd 3989 . 2 (𝜑 → ¬ 𝐶 ∈ (𝑆 𝑊))
31eldifad 3988 . . . . . . 7 (𝜑𝐶𝑈)
43adantr 480 . . . . . 6 ((𝜑 ∧ ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊)) → 𝐶𝑈)
5 pgpfac1.u . . . . . . . . . 10 (𝜑𝑈 ∈ (SubGrp‘𝐺))
6 pgpfac1.p . . . . . . . . . . . 12 (𝜑𝑃 pGrp 𝐺)
7 pgpprm 19635 . . . . . . . . . . . 12 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
86, 7syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℙ)
9 prmz 16722 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
108, 9syl 17 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
11 pgpfac1.mg . . . . . . . . . . 11 · = (.g𝐺)
1211subgmulgcl 19179 . . . . . . . . . 10 ((𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑃 ∈ ℤ ∧ 𝐶𝑈) → (𝑃 · 𝐶) ∈ 𝑈)
135, 10, 3, 12syl3anc 1371 . . . . . . . . 9 (𝜑 → (𝑃 · 𝐶) ∈ 𝑈)
1413adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊)) → (𝑃 · 𝐶) ∈ 𝑈)
15 simpr 484 . . . . . . . 8 ((𝜑 ∧ ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊)) → ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊))
1614, 15eldifd 3987 . . . . . . 7 ((𝜑 ∧ ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊)) → (𝑃 · 𝐶) ∈ (𝑈 ∖ (𝑆 𝑊)))
17 pgpfac1.k . . . . . . . 8 𝐾 = (mrCls‘(SubGrp‘𝐺))
18 pgpfac1.s . . . . . . . 8 𝑆 = (𝐾‘{𝐴})
19 pgpfac1.b . . . . . . . 8 𝐵 = (Base‘𝐺)
20 pgpfac1.o . . . . . . . 8 𝑂 = (od‘𝐺)
21 pgpfac1.e . . . . . . . 8 𝐸 = (gEx‘𝐺)
22 pgpfac1.z . . . . . . . 8 0 = (0g𝐺)
23 pgpfac1.l . . . . . . . 8 = (LSSum‘𝐺)
24 pgpfac1.g . . . . . . . 8 (𝜑𝐺 ∈ Abel)
25 pgpfac1.n . . . . . . . 8 (𝜑𝐵 ∈ Fin)
26 pgpfac1.oe . . . . . . . 8 (𝜑 → (𝑂𝐴) = 𝐸)
27 pgpfac1.au . . . . . . . 8 (𝜑𝐴𝑈)
28 pgpfac1.w . . . . . . . 8 (𝜑𝑊 ∈ (SubGrp‘𝐺))
29 pgpfac1.i . . . . . . . 8 (𝜑 → (𝑆𝑊) = { 0 })
30 pgpfac1.ss . . . . . . . 8 (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
31 pgpfac1.2 . . . . . . . 8 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
3217, 18, 19, 20, 21, 22, 23, 6, 24, 25, 26, 5, 27, 28, 29, 30, 31pgpfac1lem1 20118 . . . . . . 7 ((𝜑 ∧ (𝑃 · 𝐶) ∈ (𝑈 ∖ (𝑆 𝑊))) → ((𝑆 𝑊) (𝐾‘{(𝑃 · 𝐶)})) = 𝑈)
3316, 32syldan 590 . . . . . 6 ((𝜑 ∧ ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊)) → ((𝑆 𝑊) (𝐾‘{(𝑃 · 𝐶)})) = 𝑈)
344, 33eleqtrrd 2847 . . . . 5 ((𝜑 ∧ ¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊)) → 𝐶 ∈ ((𝑆 𝑊) (𝐾‘{(𝑃 · 𝐶)})))
3534ex 412 . . . 4 (𝜑 → (¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ ((𝑆 𝑊) (𝐾‘{(𝑃 · 𝐶)}))))
36 eqid 2740 . . . . . 6 (-g𝐺) = (-g𝐺)
37 ablgrp 19827 . . . . . . . . . . . 12 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
3824, 37syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ Grp)
3919subgacs 19201 . . . . . . . . . . 11 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
4038, 39syl 17 . . . . . . . . . 10 (𝜑 → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
4140acsmred 17714 . . . . . . . . 9 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
4219subgss 19167 . . . . . . . . . . 11 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
435, 42syl 17 . . . . . . . . . 10 (𝜑𝑈𝐵)
4443, 27sseldd 4009 . . . . . . . . 9 (𝜑𝐴𝐵)
4517mrcsncl 17670 . . . . . . . . 9 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
4641, 44, 45syl2anc 583 . . . . . . . 8 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
4718, 46eqeltrid 2848 . . . . . . 7 (𝜑𝑆 ∈ (SubGrp‘𝐺))
4823lsmsubg2 19901 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
4924, 47, 28, 48syl3anc 1371 . . . . . 6 (𝜑 → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
5043, 13sseldd 4009 . . . . . . 7 (𝜑 → (𝑃 · 𝐶) ∈ 𝐵)
5117mrcsncl 17670 . . . . . . 7 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ (𝑃 · 𝐶) ∈ 𝐵) → (𝐾‘{(𝑃 · 𝐶)}) ∈ (SubGrp‘𝐺))
5241, 50, 51syl2anc 583 . . . . . 6 (𝜑 → (𝐾‘{(𝑃 · 𝐶)}) ∈ (SubGrp‘𝐺))
5336, 23, 49, 52lsmelvalm 19693 . . . . 5 (𝜑 → (𝐶 ∈ ((𝑆 𝑊) (𝐾‘{(𝑃 · 𝐶)})) ↔ ∃𝑠 ∈ (𝑆 𝑊)∃𝑡 ∈ (𝐾‘{(𝑃 · 𝐶)})𝐶 = (𝑠(-g𝐺)𝑡)))
54 eqid 2740 . . . . . . . . . 10 (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶))) = (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶)))
5519, 11, 54, 17cycsubg2 19250 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑃 · 𝐶) ∈ 𝐵) → (𝐾‘{(𝑃 · 𝐶)}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶))))
5638, 50, 55syl2anc 583 . . . . . . . 8 (𝜑 → (𝐾‘{(𝑃 · 𝐶)}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶))))
5756rexeqdv 3335 . . . . . . 7 (𝜑 → (∃𝑡 ∈ (𝐾‘{(𝑃 · 𝐶)})𝐶 = (𝑠(-g𝐺)𝑡) ↔ ∃𝑡 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶)))𝐶 = (𝑠(-g𝐺)𝑡)))
58 ovex 7481 . . . . . . . . 9 (𝑘 · (𝑃 · 𝐶)) ∈ V
5958rgenw 3071 . . . . . . . 8 𝑘 ∈ ℤ (𝑘 · (𝑃 · 𝐶)) ∈ V
60 oveq2 7456 . . . . . . . . . 10 (𝑡 = (𝑘 · (𝑃 · 𝐶)) → (𝑠(-g𝐺)𝑡) = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))))
6160eqeq2d 2751 . . . . . . . . 9 (𝑡 = (𝑘 · (𝑃 · 𝐶)) → (𝐶 = (𝑠(-g𝐺)𝑡) ↔ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶)))))
6254, 61rexrnmptw 7129 . . . . . . . 8 (∀𝑘 ∈ ℤ (𝑘 · (𝑃 · 𝐶)) ∈ V → (∃𝑡 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶)))𝐶 = (𝑠(-g𝐺)𝑡) ↔ ∃𝑘 ∈ ℤ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶)))))
6359, 62mp1i 13 . . . . . . 7 (𝜑 → (∃𝑡 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · (𝑃 · 𝐶)))𝐶 = (𝑠(-g𝐺)𝑡) ↔ ∃𝑘 ∈ ℤ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶)))))
6457, 63bitrd 279 . . . . . 6 (𝜑 → (∃𝑡 ∈ (𝐾‘{(𝑃 · 𝐶)})𝐶 = (𝑠(-g𝐺)𝑡) ↔ ∃𝑘 ∈ ℤ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶)))))
6564rexbidv 3185 . . . . 5 (𝜑 → (∃𝑠 ∈ (𝑆 𝑊)∃𝑡 ∈ (𝐾‘{(𝑃 · 𝐶)})𝐶 = (𝑠(-g𝐺)𝑡) ↔ ∃𝑠 ∈ (𝑆 𝑊)∃𝑘 ∈ ℤ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶)))))
66 rexcom 3296 . . . . . 6 (∃𝑠 ∈ (𝑆 𝑊)∃𝑘 ∈ ℤ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ ∃𝑘 ∈ ℤ ∃𝑠 ∈ (𝑆 𝑊)𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))))
6738ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → 𝐺 ∈ Grp)
6830, 43sstrd 4019 . . . . . . . . . . . . . 14 (𝜑 → (𝑆 𝑊) ⊆ 𝐵)
6968adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℤ) → (𝑆 𝑊) ⊆ 𝐵)
7069sselda 4008 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → 𝑠𝐵)
71 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → 𝑘 ∈ ℤ)
7250ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → (𝑃 · 𝐶) ∈ 𝐵)
7319, 11mulgcl 19131 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ 𝑘 ∈ ℤ ∧ (𝑃 · 𝐶) ∈ 𝐵) → (𝑘 · (𝑃 · 𝐶)) ∈ 𝐵)
7467, 71, 72, 73syl3anc 1371 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → (𝑘 · (𝑃 · 𝐶)) ∈ 𝐵)
7543, 3sseldd 4009 . . . . . . . . . . . . 13 (𝜑𝐶𝐵)
7675ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → 𝐶𝐵)
77 eqid 2740 . . . . . . . . . . . . 13 (+g𝐺) = (+g𝐺)
7819, 77, 36grpsubadd 19068 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ (𝑠𝐵 ∧ (𝑘 · (𝑃 · 𝐶)) ∈ 𝐵𝐶𝐵)) → ((𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝐶 ↔ (𝐶(+g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝑠))
7967, 70, 74, 76, 78syl13anc 1372 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → ((𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝐶 ↔ (𝐶(+g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝑠))
80 1zzd 12674 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → 1 ∈ ℤ)
8110ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → 𝑃 ∈ ℤ)
8271, 81zmulcld 12753 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → (𝑘 · 𝑃) ∈ ℤ)
8319, 11, 77mulgdir 19146 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ (1 ∈ ℤ ∧ (𝑘 · 𝑃) ∈ ℤ ∧ 𝐶𝐵)) → ((1 + (𝑘 · 𝑃)) · 𝐶) = ((1 · 𝐶)(+g𝐺)((𝑘 · 𝑃) · 𝐶)))
8467, 80, 82, 76, 83syl13anc 1372 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → ((1 + (𝑘 · 𝑃)) · 𝐶) = ((1 · 𝐶)(+g𝐺)((𝑘 · 𝑃) · 𝐶)))
8519, 11mulg1 19121 . . . . . . . . . . . . . . 15 (𝐶𝐵 → (1 · 𝐶) = 𝐶)
8676, 85syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → (1 · 𝐶) = 𝐶)
8719, 11mulgass 19151 . . . . . . . . . . . . . . 15 ((𝐺 ∈ Grp ∧ (𝑘 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝐶𝐵)) → ((𝑘 · 𝑃) · 𝐶) = (𝑘 · (𝑃 · 𝐶)))
8867, 71, 81, 76, 87syl13anc 1372 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → ((𝑘 · 𝑃) · 𝐶) = (𝑘 · (𝑃 · 𝐶)))
8986, 88oveq12d 7466 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → ((1 · 𝐶)(+g𝐺)((𝑘 · 𝑃) · 𝐶)) = (𝐶(+g𝐺)(𝑘 · (𝑃 · 𝐶))))
9084, 89eqtrd 2780 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → ((1 + (𝑘 · 𝑃)) · 𝐶) = (𝐶(+g𝐺)(𝑘 · (𝑃 · 𝐶))))
9190eqeq1d 2742 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → (((1 + (𝑘 · 𝑃)) · 𝐶) = 𝑠 ↔ (𝐶(+g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝑠))
9279, 91bitr4d 282 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → ((𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝐶 ↔ ((1 + (𝑘 · 𝑃)) · 𝐶) = 𝑠))
93 eqcom 2747 . . . . . . . . . 10 (𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) = 𝐶)
94 eqcom 2747 . . . . . . . . . 10 (𝑠 = ((1 + (𝑘 · 𝑃)) · 𝐶) ↔ ((1 + (𝑘 · 𝑃)) · 𝐶) = 𝑠)
9592, 93, 943bitr4g 314 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑠 ∈ (𝑆 𝑊)) → (𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ 𝑠 = ((1 + (𝑘 · 𝑃)) · 𝐶)))
9695rexbidva 3183 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → (∃𝑠 ∈ (𝑆 𝑊)𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ ∃𝑠 ∈ (𝑆 𝑊)𝑠 = ((1 + (𝑘 · 𝑃)) · 𝐶)))
97 risset 3239 . . . . . . . 8 (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) ↔ ∃𝑠 ∈ (𝑆 𝑊)𝑠 = ((1 + (𝑘 · 𝑃)) · 𝐶))
9896, 97bitr4di 289 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (∃𝑠 ∈ (𝑆 𝑊)𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊)))
9998rexbidva 3183 . . . . . 6 (𝜑 → (∃𝑘 ∈ ℤ ∃𝑠 ∈ (𝑆 𝑊)𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ ∃𝑘 ∈ ℤ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊)))
10066, 99bitrid 283 . . . . 5 (𝜑 → (∃𝑠 ∈ (𝑆 𝑊)∃𝑘 ∈ ℤ 𝐶 = (𝑠(-g𝐺)(𝑘 · (𝑃 · 𝐶))) ↔ ∃𝑘 ∈ ℤ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊)))
10153, 65, 1003bitrd 305 . . . 4 (𝜑 → (𝐶 ∈ ((𝑆 𝑊) (𝐾‘{(𝑃 · 𝐶)})) ↔ ∃𝑘 ∈ ℤ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊)))
10235, 101sylibd 239 . . 3 (𝜑 → (¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊) → ∃𝑘 ∈ ℤ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊)))
10338adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → 𝐺 ∈ Grp)
10475adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → 𝐶𝐵)
105 1z 12673 . . . . . . 7 1 ∈ ℤ
106 id 22 . . . . . . . 8 (𝑘 ∈ ℤ → 𝑘 ∈ ℤ)
107 zmulcl 12692 . . . . . . . 8 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑘 · 𝑃) ∈ ℤ)
108106, 10, 107syl2anr 596 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (𝑘 · 𝑃) ∈ ℤ)
109 zaddcl 12683 . . . . . . 7 ((1 ∈ ℤ ∧ (𝑘 · 𝑃) ∈ ℤ) → (1 + (𝑘 · 𝑃)) ∈ ℤ)
110105, 108, 109sylancr 586 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → (1 + (𝑘 · 𝑃)) ∈ ℤ)
11119, 20odcl 19578 . . . . . . . . 9 (𝐶𝐵 → (𝑂𝐶) ∈ ℕ0)
112104, 111syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → (𝑂𝐶) ∈ ℕ0)
113112nn0zd 12665 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (𝑂𝐶) ∈ ℤ)
114 hashcl 14405 . . . . . . . . . 10 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
11525, 114syl 17 . . . . . . . . 9 (𝜑 → (♯‘𝐵) ∈ ℕ0)
116115nn0zd 12665 . . . . . . . 8 (𝜑 → (♯‘𝐵) ∈ ℤ)
117116adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (♯‘𝐵) ∈ ℤ)
118110, 117gcdcomd 16560 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → ((1 + (𝑘 · 𝑃)) gcd (♯‘𝐵)) = ((♯‘𝐵) gcd (1 + (𝑘 · 𝑃))))
11919pgphash 19649 . . . . . . . . . . 11 ((𝑃 pGrp 𝐺𝐵 ∈ Fin) → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
1206, 25, 119syl2anc 583 . . . . . . . . . 10 (𝜑 → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
121120adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
122121oveq1d 7463 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → ((♯‘𝐵) gcd (1 + (𝑘 · 𝑃))) = ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd (1 + (𝑘 · 𝑃))))
123 simpr 484 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
12410adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 𝑃 ∈ ℤ)
125 1zzd 12674 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → 1 ∈ ℤ)
126 gcdaddm 16571 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑃 gcd 1) = (𝑃 gcd (1 + (𝑘 · 𝑃))))
127123, 124, 125, 126syl3anc 1371 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → (𝑃 gcd 1) = (𝑃 gcd (1 + (𝑘 · 𝑃))))
128 gcd1 16574 . . . . . . . . . . 11 (𝑃 ∈ ℤ → (𝑃 gcd 1) = 1)
129124, 128syl 17 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → (𝑃 gcd 1) = 1)
130127, 129eqtr3d 2782 . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → (𝑃 gcd (1 + (𝑘 · 𝑃))) = 1)
13119grpbn0 19006 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
13238, 131syl 17 . . . . . . . . . . . . 13 (𝜑𝐵 ≠ ∅)
133 hashnncl 14415 . . . . . . . . . . . . . 14 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
13425, 133syl 17 . . . . . . . . . . . . 13 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
135132, 134mpbird 257 . . . . . . . . . . . 12 (𝜑 → (♯‘𝐵) ∈ ℕ)
1368, 135pccld 16897 . . . . . . . . . . 11 (𝜑 → (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0)
137136adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0)
138 rpexp1i 16770 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ (1 + (𝑘 · 𝑃)) ∈ ℤ ∧ (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0) → ((𝑃 gcd (1 + (𝑘 · 𝑃))) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd (1 + (𝑘 · 𝑃))) = 1))
139124, 110, 137, 138syl3anc 1371 . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → ((𝑃 gcd (1 + (𝑘 · 𝑃))) = 1 → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd (1 + (𝑘 · 𝑃))) = 1))
140130, 139mpd 15 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → ((𝑃↑(𝑃 pCnt (♯‘𝐵))) gcd (1 + (𝑘 · 𝑃))) = 1)
141118, 122, 1403eqtrd 2784 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → ((1 + (𝑘 · 𝑃)) gcd (♯‘𝐵)) = 1)
14219, 20oddvds2 19608 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝐶𝐵) → (𝑂𝐶) ∥ (♯‘𝐵))
14338, 25, 75, 142syl3anc 1371 . . . . . . . 8 (𝜑 → (𝑂𝐶) ∥ (♯‘𝐵))
144143adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (𝑂𝐶) ∥ (♯‘𝐵))
145 rpdvds 16707 . . . . . . 7 ((((1 + (𝑘 · 𝑃)) ∈ ℤ ∧ (𝑂𝐶) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) ∧ (((1 + (𝑘 · 𝑃)) gcd (♯‘𝐵)) = 1 ∧ (𝑂𝐶) ∥ (♯‘𝐵))) → ((1 + (𝑘 · 𝑃)) gcd (𝑂𝐶)) = 1)
146110, 113, 117, 141, 144, 145syl32anc 1378 . . . . . 6 ((𝜑𝑘 ∈ ℤ) → ((1 + (𝑘 · 𝑃)) gcd (𝑂𝐶)) = 1)
14719, 20, 11odbezout 19600 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐶𝐵 ∧ (1 + (𝑘 · 𝑃)) ∈ ℤ) ∧ ((1 + (𝑘 · 𝑃)) gcd (𝑂𝐶)) = 1) → ∃𝑎 ∈ ℤ (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) = 𝐶)
148103, 104, 110, 146, 147syl31anc 1373 . . . . 5 ((𝜑𝑘 ∈ ℤ) → ∃𝑎 ∈ ℤ (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) = 𝐶)
14949ad2antrr 725 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
150 simpr 484 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
15111subgmulgcl 19179 . . . . . . . . 9 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ 𝑎 ∈ ℤ ∧ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊)) → (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) ∈ (𝑆 𝑊))
1521513expia 1121 . . . . . . . 8 (((𝑆 𝑊) ∈ (SubGrp‘𝐺) ∧ 𝑎 ∈ ℤ) → (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) ∈ (𝑆 𝑊)))
153149, 150, 152syl2anc 583 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) ∈ (𝑆 𝑊)))
154 eleq1 2832 . . . . . . . 8 ((𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) = 𝐶 → ((𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) ∈ (𝑆 𝑊) ↔ 𝐶 ∈ (𝑆 𝑊)))
155154imbi2d 340 . . . . . . 7 ((𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) = 𝐶 → ((((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) ∈ (𝑆 𝑊)) ↔ (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ (𝑆 𝑊))))
156153, 155syl5ibcom 245 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → ((𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) = 𝐶 → (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ (𝑆 𝑊))))
157156rexlimdva 3161 . . . . 5 ((𝜑𝑘 ∈ ℤ) → (∃𝑎 ∈ ℤ (𝑎 · ((1 + (𝑘 · 𝑃)) · 𝐶)) = 𝐶 → (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ (𝑆 𝑊))))
158148, 157mpd 15 . . . 4 ((𝜑𝑘 ∈ ℤ) → (((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ (𝑆 𝑊)))
159158rexlimdva 3161 . . 3 (𝜑 → (∃𝑘 ∈ ℤ ((1 + (𝑘 · 𝑃)) · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ (𝑆 𝑊)))
160102, 159syld 47 . 2 (𝜑 → (¬ (𝑃 · 𝐶) ∈ (𝑆 𝑊) → 𝐶 ∈ (𝑆 𝑊)))
1612, 160mt3d 148 1 (𝜑 → (𝑃 · 𝐶) ∈ (𝑆 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  cin 3975  wss 3976  wpss 3977  c0 4352  {csn 4648   class class class wbr 5166  cmpt 5249  ran crn 5701  cfv 6573  (class class class)co 7448  Fincfn 9003  1c1 11185   + caddc 11187   · cmul 11189  cn 12293  0cn0 12553  cz 12639  cexp 14112  chash 14379  cdvds 16302   gcd cgcd 16540  cprime 16718   pCnt cpc 16883  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Moorecmre 17640  mrClscmrc 17641  ACScacs 17643  Grpcgrp 18973  -gcsg 18975  .gcmg 19107  SubGrpcsubg 19160  odcod 19566  gExcgex 19567   pGrp cpgp 19568  LSSumclsm 19676  Abelcabl 19823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-ec 8765  df-qs 8769  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-dvds 16303  df-gcd 16541  df-prm 16719  df-pc 16884  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-eqg 19165  df-ga 19330  df-cntz 19357  df-od 19570  df-pgp 19572  df-lsm 19678  df-cmn 19824  df-abl 19825
This theorem is referenced by:  pgpfac1lem4  20122
  Copyright terms: Public domain W3C validator