MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem4 Structured version   Visualization version   GIF version

Theorem pgpfac1lem4 20113
Description: Lemma for pgpfac1 20115. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.w (𝜑𝑊 ∈ (SubGrp‘𝐺))
pgpfac1.i (𝜑 → (𝑆𝑊) = { 0 })
pgpfac1.ss (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
pgpfac1.2 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
pgpfac1.c (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
pgpfac1.mg · = (.g𝐺)
Assertion
Ref Expression
pgpfac1lem4 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Distinct variable groups:   𝑡, 0   𝑤,𝑡,𝐴   𝑡, ,𝑤   𝑡,𝑃,𝑤   𝑡,𝐵   𝑡,𝐺,𝑤   𝑡,𝑈,𝑤   𝑡,𝐶,𝑤   𝑡,𝑆,𝑤   𝑡,𝑊,𝑤   𝜑,𝑡,𝑤   𝑡, · ,𝑤   𝑡,𝐾,𝑤
Allowed substitution hints:   𝐵(𝑤)   𝐸(𝑤,𝑡)   𝑂(𝑤,𝑡)   0 (𝑤)

Proof of Theorem pgpfac1lem4
Dummy variables 𝑘 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.k . . . . . . . 8 𝐾 = (mrCls‘(SubGrp‘𝐺))
2 pgpfac1.s . . . . . . . 8 𝑆 = (𝐾‘{𝐴})
3 pgpfac1.b . . . . . . . 8 𝐵 = (Base‘𝐺)
4 pgpfac1.o . . . . . . . 8 𝑂 = (od‘𝐺)
5 pgpfac1.e . . . . . . . 8 𝐸 = (gEx‘𝐺)
6 pgpfac1.z . . . . . . . 8 0 = (0g𝐺)
7 pgpfac1.l . . . . . . . 8 = (LSSum‘𝐺)
8 pgpfac1.p . . . . . . . 8 (𝜑𝑃 pGrp 𝐺)
9 pgpfac1.g . . . . . . . 8 (𝜑𝐺 ∈ Abel)
10 pgpfac1.n . . . . . . . 8 (𝜑𝐵 ∈ Fin)
11 pgpfac1.oe . . . . . . . 8 (𝜑 → (𝑂𝐴) = 𝐸)
12 pgpfac1.u . . . . . . . 8 (𝜑𝑈 ∈ (SubGrp‘𝐺))
13 pgpfac1.au . . . . . . . 8 (𝜑𝐴𝑈)
14 pgpfac1.w . . . . . . . 8 (𝜑𝑊 ∈ (SubGrp‘𝐺))
15 pgpfac1.i . . . . . . . 8 (𝜑 → (𝑆𝑊) = { 0 })
16 pgpfac1.ss . . . . . . . 8 (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
17 pgpfac1.2 . . . . . . . 8 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
18 pgpfac1.c . . . . . . . 8 (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
19 pgpfac1.mg . . . . . . . 8 · = (.g𝐺)
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19pgpfac1lem2 20110 . . . . . . 7 (𝜑 → (𝑃 · 𝐶) ∈ (𝑆 𝑊))
21 ablgrp 19818 . . . . . . . . . . . 12 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
229, 21syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ Grp)
233subgacs 19192 . . . . . . . . . . 11 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
24 acsmre 17697 . . . . . . . . . . 11 ((SubGrp‘𝐺) ∈ (ACS‘𝐵) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
2522, 23, 243syl 18 . . . . . . . . . 10 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
263subgss 19158 . . . . . . . . . . . 12 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
2712, 26syl 17 . . . . . . . . . . 11 (𝜑𝑈𝐵)
2827, 13sseldd 3996 . . . . . . . . . 10 (𝜑𝐴𝐵)
291mrcsncl 17657 . . . . . . . . . 10 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
3025, 28, 29syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
312, 30eqeltrid 2843 . . . . . . . 8 (𝜑𝑆 ∈ (SubGrp‘𝐺))
327lsmcom 19891 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) = (𝑊 𝑆))
339, 31, 14, 32syl3anc 1370 . . . . . . 7 (𝜑 → (𝑆 𝑊) = (𝑊 𝑆))
3420, 33eleqtrd 2841 . . . . . 6 (𝜑 → (𝑃 · 𝐶) ∈ (𝑊 𝑆))
35 eqid 2735 . . . . . . 7 (-g𝐺) = (-g𝐺)
3635, 7, 14, 31lsmelvalm 19684 . . . . . 6 (𝜑 → ((𝑃 · 𝐶) ∈ (𝑊 𝑆) ↔ ∃𝑤𝑊𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠)))
3734, 36mpbid 232 . . . . 5 (𝜑 → ∃𝑤𝑊𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠))
38 eqid 2735 . . . . . . . . . . 11 (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)) = (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))
393, 19, 38, 1cycsubg2 19241 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → (𝐾‘{𝐴}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)))
4022, 28, 39syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐾‘{𝐴}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)))
412, 40eqtrid 2787 . . . . . . . 8 (𝜑𝑆 = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)))
4241rexeqdv 3325 . . . . . . 7 (𝜑 → (∃𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑠 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠)))
43 ovex 7464 . . . . . . . . 9 (𝑘 · 𝐴) ∈ V
4443rgenw 3063 . . . . . . . 8 𝑘 ∈ ℤ (𝑘 · 𝐴) ∈ V
45 oveq2 7439 . . . . . . . . . 10 (𝑠 = (𝑘 · 𝐴) → (𝑤(-g𝐺)𝑠) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
4645eqeq2d 2746 . . . . . . . . 9 (𝑠 = (𝑘 · 𝐴) → ((𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
4738, 46rexrnmptw 7115 . . . . . . . 8 (∀𝑘 ∈ ℤ (𝑘 · 𝐴) ∈ V → (∃𝑠 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
4844, 47ax-mp 5 . . . . . . 7 (∃𝑠 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
4942, 48bitrdi 287 . . . . . 6 (𝜑 → (∃𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
5049rexbidv 3177 . . . . 5 (𝜑 → (∃𝑤𝑊𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑤𝑊𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
5137, 50mpbid 232 . . . 4 (𝜑 → ∃𝑤𝑊𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
52 rexcom 3288 . . . 4 (∃𝑤𝑊𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ∃𝑘 ∈ ℤ ∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
5351, 52sylib 218 . . 3 (𝜑 → ∃𝑘 ∈ ℤ ∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
5422ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝐺 ∈ Grp)
553subgss 19158 . . . . . . . . . . 11 (𝑊 ∈ (SubGrp‘𝐺) → 𝑊𝐵)
5614, 55syl 17 . . . . . . . . . 10 (𝜑𝑊𝐵)
5756adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → 𝑊𝐵)
5857sselda 3995 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝑤𝐵)
59 simplr 769 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝑘 ∈ ℤ)
6028ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝐴𝐵)
613, 19mulgcl 19122 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑘 ∈ ℤ ∧ 𝐴𝐵) → (𝑘 · 𝐴) ∈ 𝐵)
6254, 59, 60, 61syl3anc 1370 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → (𝑘 · 𝐴) ∈ 𝐵)
63 pgpprm 19626 . . . . . . . . . . 11 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
64 prmz 16709 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
658, 63, 643syl 18 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
6618eldifad 3975 . . . . . . . . . . 11 (𝜑𝐶𝑈)
6727, 66sseldd 3996 . . . . . . . . . 10 (𝜑𝐶𝐵)
683, 19mulgcl 19122 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℤ ∧ 𝐶𝐵) → (𝑃 · 𝐶) ∈ 𝐵)
6922, 65, 67, 68syl3anc 1370 . . . . . . . . 9 (𝜑 → (𝑃 · 𝐶) ∈ 𝐵)
7069ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → (𝑃 · 𝐶) ∈ 𝐵)
71 eqid 2735 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
723, 71, 35grpsubadd 19059 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑤𝐵 ∧ (𝑘 · 𝐴) ∈ 𝐵 ∧ (𝑃 · 𝐶) ∈ 𝐵)) → ((𝑤(-g𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) = 𝑤))
7354, 58, 62, 70, 72syl13anc 1371 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → ((𝑤(-g𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) = 𝑤))
74 eqcom 2742 . . . . . . 7 ((𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ (𝑤(-g𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶))
75 eqcom 2742 . . . . . . 7 (𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) = 𝑤)
7673, 74, 753bitr4g 314 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → ((𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ 𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴))))
7776rexbidva 3175 . . . . 5 ((𝜑𝑘 ∈ ℤ) → (∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ∃𝑤𝑊 𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴))))
78 risset 3231 . . . . 5 (((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊 ↔ ∃𝑤𝑊 𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)))
7977, 78bitr4di 289 . . . 4 ((𝜑𝑘 ∈ ℤ) → (∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊))
8079rexbidva 3175 . . 3 (𝜑 → (∃𝑘 ∈ ℤ ∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ∃𝑘 ∈ ℤ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊))
8153, 80mpbid 232 . 2 (𝜑 → ∃𝑘 ∈ ℤ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)
828adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑃 pGrp 𝐺)
839adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐺 ∈ Abel)
8410adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐵 ∈ Fin)
8511adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑂𝐴) = 𝐸)
8612adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑈 ∈ (SubGrp‘𝐺))
8713adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐴𝑈)
8814adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑊 ∈ (SubGrp‘𝐺))
8915adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑆𝑊) = { 0 })
9016adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑆 𝑊) ⊆ 𝑈)
9117adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
9218adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
93 simprl 771 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑘 ∈ ℤ)
94 simprr 773 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)
95 eqid 2735 . . 3 (𝐶(+g𝐺)((𝑘 / 𝑃) · 𝐴)) = (𝐶(+g𝐺)((𝑘 / 𝑃) · 𝐴))
961, 2, 3, 4, 5, 6, 7, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 19, 93, 94, 95pgpfac1lem3 20112 . 2 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
9781, 96rexlimddv 3159 1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  cdif 3960  cin 3962  wss 3963  wpss 3964  {csn 4631   class class class wbr 5148  cmpt 5231  ran crn 5690  cfv 6563  (class class class)co 7431  Fincfn 8984   / cdiv 11918  cz 12611  cprime 16705  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Moorecmre 17627  mrClscmrc 17628  ACScacs 17630  Grpcgrp 18964  -gcsg 18966  .gcmg 19098  SubGrpcsubg 19151  odcod 19557  gExcgex 19558   pGrp cpgp 19559  LSSumclsm 19667  Abelcabl 19814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-q 12989  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-dvds 16288  df-gcd 16529  df-prm 16706  df-pc 16871  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-0g 17488  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-eqg 19156  df-ga 19321  df-cntz 19348  df-od 19561  df-gex 19562  df-pgp 19563  df-lsm 19669  df-cmn 19815  df-abl 19816
This theorem is referenced by:  pgpfac1lem5  20114
  Copyright terms: Public domain W3C validator