Step | Hyp | Ref
| Expression |
1 | | pgpfac1.k |
. . . . . . . 8
β’ πΎ =
(mrClsβ(SubGrpβπΊ)) |
2 | | pgpfac1.s |
. . . . . . . 8
β’ π = (πΎβ{π΄}) |
3 | | pgpfac1.b |
. . . . . . . 8
β’ π΅ = (BaseβπΊ) |
4 | | pgpfac1.o |
. . . . . . . 8
β’ π = (odβπΊ) |
5 | | pgpfac1.e |
. . . . . . . 8
β’ πΈ = (gExβπΊ) |
6 | | pgpfac1.z |
. . . . . . . 8
β’ 0 =
(0gβπΊ) |
7 | | pgpfac1.l |
. . . . . . . 8
β’ β =
(LSSumβπΊ) |
8 | | pgpfac1.p |
. . . . . . . 8
β’ (π β π pGrp πΊ) |
9 | | pgpfac1.g |
. . . . . . . 8
β’ (π β πΊ β Abel) |
10 | | pgpfac1.n |
. . . . . . . 8
β’ (π β π΅ β Fin) |
11 | | pgpfac1.oe |
. . . . . . . 8
β’ (π β (πβπ΄) = πΈ) |
12 | | pgpfac1.u |
. . . . . . . 8
β’ (π β π β (SubGrpβπΊ)) |
13 | | pgpfac1.au |
. . . . . . . 8
β’ (π β π΄ β π) |
14 | | pgpfac1.w |
. . . . . . . 8
β’ (π β π β (SubGrpβπΊ)) |
15 | | pgpfac1.i |
. . . . . . . 8
β’ (π β (π β© π) = { 0 }) |
16 | | pgpfac1.ss |
. . . . . . . 8
β’ (π β (π β π) β π) |
17 | | pgpfac1.2 |
. . . . . . . 8
β’ (π β βπ€ β (SubGrpβπΊ)((π€ β π β§ π΄ β π€) β Β¬ (π β π) β π€)) |
18 | | pgpfac1.c |
. . . . . . . 8
β’ (π β πΆ β (π β (π β π))) |
19 | | pgpfac1.mg |
. . . . . . . 8
β’ Β· =
(.gβπΊ) |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19 | pgpfac1lem2 19861 |
. . . . . . 7
β’ (π β (π Β· πΆ) β (π β π)) |
21 | | ablgrp 19574 |
. . . . . . . . . . . 12
β’ (πΊ β Abel β πΊ β Grp) |
22 | 9, 21 | syl 17 |
. . . . . . . . . . 11
β’ (π β πΊ β Grp) |
23 | 3 | subgacs 18970 |
. . . . . . . . . . 11
β’ (πΊ β Grp β
(SubGrpβπΊ) β
(ACSβπ΅)) |
24 | | acsmre 17539 |
. . . . . . . . . . 11
β’
((SubGrpβπΊ)
β (ACSβπ΅) β
(SubGrpβπΊ) β
(Mooreβπ΅)) |
25 | 22, 23, 24 | 3syl 18 |
. . . . . . . . . 10
β’ (π β (SubGrpβπΊ) β (Mooreβπ΅)) |
26 | 3 | subgss 18936 |
. . . . . . . . . . . 12
β’ (π β (SubGrpβπΊ) β π β π΅) |
27 | 12, 26 | syl 17 |
. . . . . . . . . . 11
β’ (π β π β π΅) |
28 | 27, 13 | sseldd 3950 |
. . . . . . . . . 10
β’ (π β π΄ β π΅) |
29 | 1 | mrcsncl 17499 |
. . . . . . . . . 10
β’
(((SubGrpβπΊ)
β (Mooreβπ΅)
β§ π΄ β π΅) β (πΎβ{π΄}) β (SubGrpβπΊ)) |
30 | 25, 28, 29 | syl2anc 585 |
. . . . . . . . 9
β’ (π β (πΎβ{π΄}) β (SubGrpβπΊ)) |
31 | 2, 30 | eqeltrid 2842 |
. . . . . . . 8
β’ (π β π β (SubGrpβπΊ)) |
32 | 7 | lsmcom 19643 |
. . . . . . . 8
β’ ((πΊ β Abel β§ π β (SubGrpβπΊ) β§ π β (SubGrpβπΊ)) β (π β π) = (π β π)) |
33 | 9, 31, 14, 32 | syl3anc 1372 |
. . . . . . 7
β’ (π β (π β π) = (π β π)) |
34 | 20, 33 | eleqtrd 2840 |
. . . . . 6
β’ (π β (π Β· πΆ) β (π β π)) |
35 | | eqid 2737 |
. . . . . . 7
β’
(-gβπΊ) = (-gβπΊ) |
36 | 35, 7, 14, 31 | lsmelvalm 19440 |
. . . . . 6
β’ (π β ((π Β· πΆ) β (π β π) β βπ€ β π βπ β π (π Β· πΆ) = (π€(-gβπΊ)π ))) |
37 | 34, 36 | mpbid 231 |
. . . . 5
β’ (π β βπ€ β π βπ β π (π Β· πΆ) = (π€(-gβπΊ)π )) |
38 | | eqid 2737 |
. . . . . . . . . . 11
β’ (π β β€ β¦ (π Β· π΄)) = (π β β€ β¦ (π Β· π΄)) |
39 | 3, 19, 38, 1 | cycsubg2 19010 |
. . . . . . . . . 10
β’ ((πΊ β Grp β§ π΄ β π΅) β (πΎβ{π΄}) = ran (π β β€ β¦ (π Β· π΄))) |
40 | 22, 28, 39 | syl2anc 585 |
. . . . . . . . 9
β’ (π β (πΎβ{π΄}) = ran (π β β€ β¦ (π Β· π΄))) |
41 | 2, 40 | eqtrid 2789 |
. . . . . . . 8
β’ (π β π = ran (π β β€ β¦ (π Β· π΄))) |
42 | 41 | rexeqdv 3317 |
. . . . . . 7
β’ (π β (βπ β π (π Β· πΆ) = (π€(-gβπΊ)π ) β βπ β ran (π β β€ β¦ (π Β· π΄))(π Β· πΆ) = (π€(-gβπΊ)π ))) |
43 | | ovex 7395 |
. . . . . . . . 9
β’ (π Β· π΄) β V |
44 | 43 | rgenw 3069 |
. . . . . . . 8
β’
βπ β
β€ (π Β· π΄) β V |
45 | | oveq2 7370 |
. . . . . . . . . 10
β’ (π = (π Β· π΄) β (π€(-gβπΊ)π ) = (π€(-gβπΊ)(π Β· π΄))) |
46 | 45 | eqeq2d 2748 |
. . . . . . . . 9
β’ (π = (π Β· π΄) β ((π Β· πΆ) = (π€(-gβπΊ)π ) β (π Β· πΆ) = (π€(-gβπΊ)(π Β· π΄)))) |
47 | 38, 46 | rexrnmptw 7050 |
. . . . . . . 8
β’
(βπ β
β€ (π Β· π΄) β V β (βπ β ran (π β β€ β¦ (π Β· π΄))(π Β· πΆ) = (π€(-gβπΊ)π ) β βπ β β€ (π Β· πΆ) = (π€(-gβπΊ)(π Β· π΄)))) |
48 | 44, 47 | ax-mp 5 |
. . . . . . 7
β’
(βπ β ran
(π β β€ β¦
(π Β· π΄))(π Β· πΆ) = (π€(-gβπΊ)π ) β βπ β β€ (π Β· πΆ) = (π€(-gβπΊ)(π Β· π΄))) |
49 | 42, 48 | bitrdi 287 |
. . . . . 6
β’ (π β (βπ β π (π Β· πΆ) = (π€(-gβπΊ)π ) β βπ β β€ (π Β· πΆ) = (π€(-gβπΊ)(π Β· π΄)))) |
50 | 49 | rexbidv 3176 |
. . . . 5
β’ (π β (βπ€ β π βπ β π (π Β· πΆ) = (π€(-gβπΊ)π ) β βπ€ β π βπ β β€ (π Β· πΆ) = (π€(-gβπΊ)(π Β· π΄)))) |
51 | 37, 50 | mpbid 231 |
. . . 4
β’ (π β βπ€ β π βπ β β€ (π Β· πΆ) = (π€(-gβπΊ)(π Β· π΄))) |
52 | | rexcom 3276 |
. . . 4
β’
(βπ€ β
π βπ β β€ (π Β· πΆ) = (π€(-gβπΊ)(π Β· π΄)) β βπ β β€ βπ€ β π (π Β· πΆ) = (π€(-gβπΊ)(π Β· π΄))) |
53 | 51, 52 | sylib 217 |
. . 3
β’ (π β βπ β β€ βπ€ β π (π Β· πΆ) = (π€(-gβπΊ)(π Β· π΄))) |
54 | 22 | ad2antrr 725 |
. . . . . . . 8
β’ (((π β§ π β β€) β§ π€ β π) β πΊ β Grp) |
55 | 3 | subgss 18936 |
. . . . . . . . . . 11
β’ (π β (SubGrpβπΊ) β π β π΅) |
56 | 14, 55 | syl 17 |
. . . . . . . . . 10
β’ (π β π β π΅) |
57 | 56 | adantr 482 |
. . . . . . . . 9
β’ ((π β§ π β β€) β π β π΅) |
58 | 57 | sselda 3949 |
. . . . . . . 8
β’ (((π β§ π β β€) β§ π€ β π) β π€ β π΅) |
59 | | simplr 768 |
. . . . . . . . 9
β’ (((π β§ π β β€) β§ π€ β π) β π β β€) |
60 | 28 | ad2antrr 725 |
. . . . . . . . 9
β’ (((π β§ π β β€) β§ π€ β π) β π΄ β π΅) |
61 | 3, 19 | mulgcl 18900 |
. . . . . . . . 9
β’ ((πΊ β Grp β§ π β β€ β§ π΄ β π΅) β (π Β· π΄) β π΅) |
62 | 54, 59, 60, 61 | syl3anc 1372 |
. . . . . . . 8
β’ (((π β§ π β β€) β§ π€ β π) β (π Β· π΄) β π΅) |
63 | | pgpprm 19382 |
. . . . . . . . . . 11
β’ (π pGrp πΊ β π β β) |
64 | | prmz 16558 |
. . . . . . . . . . 11
β’ (π β β β π β
β€) |
65 | 8, 63, 64 | 3syl 18 |
. . . . . . . . . 10
β’ (π β π β β€) |
66 | 18 | eldifad 3927 |
. . . . . . . . . . 11
β’ (π β πΆ β π) |
67 | 27, 66 | sseldd 3950 |
. . . . . . . . . 10
β’ (π β πΆ β π΅) |
68 | 3, 19 | mulgcl 18900 |
. . . . . . . . . 10
β’ ((πΊ β Grp β§ π β β€ β§ πΆ β π΅) β (π Β· πΆ) β π΅) |
69 | 22, 65, 67, 68 | syl3anc 1372 |
. . . . . . . . 9
β’ (π β (π Β· πΆ) β π΅) |
70 | 69 | ad2antrr 725 |
. . . . . . . 8
β’ (((π β§ π β β€) β§ π€ β π) β (π Β· πΆ) β π΅) |
71 | | eqid 2737 |
. . . . . . . . 9
β’
(+gβπΊ) = (+gβπΊ) |
72 | 3, 71, 35 | grpsubadd 18842 |
. . . . . . . 8
β’ ((πΊ β Grp β§ (π€ β π΅ β§ (π Β· π΄) β π΅ β§ (π Β· πΆ) β π΅)) β ((π€(-gβπΊ)(π Β· π΄)) = (π Β· πΆ) β ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) = π€)) |
73 | 54, 58, 62, 70, 72 | syl13anc 1373 |
. . . . . . 7
β’ (((π β§ π β β€) β§ π€ β π) β ((π€(-gβπΊ)(π Β· π΄)) = (π Β· πΆ) β ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) = π€)) |
74 | | eqcom 2744 |
. . . . . . 7
β’ ((π Β· πΆ) = (π€(-gβπΊ)(π Β· π΄)) β (π€(-gβπΊ)(π Β· π΄)) = (π Β· πΆ)) |
75 | | eqcom 2744 |
. . . . . . 7
β’ (π€ = ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) = π€) |
76 | 73, 74, 75 | 3bitr4g 314 |
. . . . . 6
β’ (((π β§ π β β€) β§ π€ β π) β ((π Β· πΆ) = (π€(-gβπΊ)(π Β· π΄)) β π€ = ((π Β· πΆ)(+gβπΊ)(π Β· π΄)))) |
77 | 76 | rexbidva 3174 |
. . . . 5
β’ ((π β§ π β β€) β (βπ€ β π (π Β· πΆ) = (π€(-gβπΊ)(π Β· π΄)) β βπ€ β π π€ = ((π Β· πΆ)(+gβπΊ)(π Β· π΄)))) |
78 | | risset 3224 |
. . . . 5
β’ (((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β π β βπ€ β π π€ = ((π Β· πΆ)(+gβπΊ)(π Β· π΄))) |
79 | 77, 78 | bitr4di 289 |
. . . 4
β’ ((π β§ π β β€) β (βπ€ β π (π Β· πΆ) = (π€(-gβπΊ)(π Β· π΄)) β ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β π)) |
80 | 79 | rexbidva 3174 |
. . 3
β’ (π β (βπ β β€ βπ€ β π (π Β· πΆ) = (π€(-gβπΊ)(π Β· π΄)) β βπ β β€ ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β π)) |
81 | 53, 80 | mpbid 231 |
. 2
β’ (π β βπ β β€ ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β π) |
82 | 8 | adantr 482 |
. . 3
β’ ((π β§ (π β β€ β§ ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β π)) β π pGrp πΊ) |
83 | 9 | adantr 482 |
. . 3
β’ ((π β§ (π β β€ β§ ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β π)) β πΊ β Abel) |
84 | 10 | adantr 482 |
. . 3
β’ ((π β§ (π β β€ β§ ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β π)) β π΅ β Fin) |
85 | 11 | adantr 482 |
. . 3
β’ ((π β§ (π β β€ β§ ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β π)) β (πβπ΄) = πΈ) |
86 | 12 | adantr 482 |
. . 3
β’ ((π β§ (π β β€ β§ ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β π)) β π β (SubGrpβπΊ)) |
87 | 13 | adantr 482 |
. . 3
β’ ((π β§ (π β β€ β§ ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β π)) β π΄ β π) |
88 | 14 | adantr 482 |
. . 3
β’ ((π β§ (π β β€ β§ ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β π)) β π β (SubGrpβπΊ)) |
89 | 15 | adantr 482 |
. . 3
β’ ((π β§ (π β β€ β§ ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β π)) β (π β© π) = { 0 }) |
90 | 16 | adantr 482 |
. . 3
β’ ((π β§ (π β β€ β§ ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β π)) β (π β π) β π) |
91 | 17 | adantr 482 |
. . 3
β’ ((π β§ (π β β€ β§ ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β π)) β βπ€ β (SubGrpβπΊ)((π€ β π β§ π΄ β π€) β Β¬ (π β π) β π€)) |
92 | 18 | adantr 482 |
. . 3
β’ ((π β§ (π β β€ β§ ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β π)) β πΆ β (π β (π β π))) |
93 | | simprl 770 |
. . 3
β’ ((π β§ (π β β€ β§ ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β π)) β π β β€) |
94 | | simprr 772 |
. . 3
β’ ((π β§ (π β β€ β§ ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β π)) β ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β π) |
95 | | eqid 2737 |
. . 3
β’ (πΆ(+gβπΊ)((π / π) Β· π΄)) = (πΆ(+gβπΊ)((π / π) Β· π΄)) |
96 | 1, 2, 3, 4, 5, 6, 7, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 19, 93, 94, 95 | pgpfac1lem3 19863 |
. 2
β’ ((π β§ (π β β€ β§ ((π Β· πΆ)(+gβπΊ)(π Β· π΄)) β π)) β βπ‘ β (SubGrpβπΊ)((π β© π‘) = { 0 } β§ (π β π‘) = π)) |
97 | 81, 96 | rexlimddv 3159 |
1
β’ (π β βπ‘ β (SubGrpβπΊ)((π β© π‘) = { 0 } β§ (π β π‘) = π)) |