MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem4 Structured version   Visualization version   GIF version

Theorem pgpfac1lem4 19848
Description: Lemma for pgpfac1 19850. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.w (𝜑𝑊 ∈ (SubGrp‘𝐺))
pgpfac1.i (𝜑 → (𝑆𝑊) = { 0 })
pgpfac1.ss (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
pgpfac1.2 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
pgpfac1.c (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
pgpfac1.mg · = (.g𝐺)
Assertion
Ref Expression
pgpfac1lem4 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Distinct variable groups:   𝑡, 0   𝑤,𝑡,𝐴   𝑡, ,𝑤   𝑡,𝑃,𝑤   𝑡,𝐵   𝑡,𝐺,𝑤   𝑡,𝑈,𝑤   𝑡,𝐶,𝑤   𝑡,𝑆,𝑤   𝑡,𝑊,𝑤   𝜑,𝑡,𝑤   𝑡, · ,𝑤   𝑡,𝐾,𝑤
Allowed substitution hints:   𝐵(𝑤)   𝐸(𝑤,𝑡)   𝑂(𝑤,𝑡)   0 (𝑤)

Proof of Theorem pgpfac1lem4
Dummy variables 𝑘 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.k . . . . . . . 8 𝐾 = (mrCls‘(SubGrp‘𝐺))
2 pgpfac1.s . . . . . . . 8 𝑆 = (𝐾‘{𝐴})
3 pgpfac1.b . . . . . . . 8 𝐵 = (Base‘𝐺)
4 pgpfac1.o . . . . . . . 8 𝑂 = (od‘𝐺)
5 pgpfac1.e . . . . . . . 8 𝐸 = (gEx‘𝐺)
6 pgpfac1.z . . . . . . . 8 0 = (0g𝐺)
7 pgpfac1.l . . . . . . . 8 = (LSSum‘𝐺)
8 pgpfac1.p . . . . . . . 8 (𝜑𝑃 pGrp 𝐺)
9 pgpfac1.g . . . . . . . 8 (𝜑𝐺 ∈ Abel)
10 pgpfac1.n . . . . . . . 8 (𝜑𝐵 ∈ Fin)
11 pgpfac1.oe . . . . . . . 8 (𝜑 → (𝑂𝐴) = 𝐸)
12 pgpfac1.u . . . . . . . 8 (𝜑𝑈 ∈ (SubGrp‘𝐺))
13 pgpfac1.au . . . . . . . 8 (𝜑𝐴𝑈)
14 pgpfac1.w . . . . . . . 8 (𝜑𝑊 ∈ (SubGrp‘𝐺))
15 pgpfac1.i . . . . . . . 8 (𝜑 → (𝑆𝑊) = { 0 })
16 pgpfac1.ss . . . . . . . 8 (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
17 pgpfac1.2 . . . . . . . 8 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
18 pgpfac1.c . . . . . . . 8 (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
19 pgpfac1.mg . . . . . . . 8 · = (.g𝐺)
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19pgpfac1lem2 19845 . . . . . . 7 (𝜑 → (𝑃 · 𝐶) ∈ (𝑆 𝑊))
21 ablgrp 19558 . . . . . . . . . . . 12 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
229, 21syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ Grp)
233subgacs 18954 . . . . . . . . . . 11 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
24 acsmre 17524 . . . . . . . . . . 11 ((SubGrp‘𝐺) ∈ (ACS‘𝐵) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
2522, 23, 243syl 18 . . . . . . . . . 10 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
263subgss 18920 . . . . . . . . . . . 12 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
2712, 26syl 17 . . . . . . . . . . 11 (𝜑𝑈𝐵)
2827, 13sseldd 3943 . . . . . . . . . 10 (𝜑𝐴𝐵)
291mrcsncl 17484 . . . . . . . . . 10 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
3025, 28, 29syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
312, 30eqeltrid 2842 . . . . . . . 8 (𝜑𝑆 ∈ (SubGrp‘𝐺))
327lsmcom 19627 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) = (𝑊 𝑆))
339, 31, 14, 32syl3anc 1371 . . . . . . 7 (𝜑 → (𝑆 𝑊) = (𝑊 𝑆))
3420, 33eleqtrd 2840 . . . . . 6 (𝜑 → (𝑃 · 𝐶) ∈ (𝑊 𝑆))
35 eqid 2736 . . . . . . 7 (-g𝐺) = (-g𝐺)
3635, 7, 14, 31lsmelvalm 19424 . . . . . 6 (𝜑 → ((𝑃 · 𝐶) ∈ (𝑊 𝑆) ↔ ∃𝑤𝑊𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠)))
3734, 36mpbid 231 . . . . 5 (𝜑 → ∃𝑤𝑊𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠))
38 eqid 2736 . . . . . . . . . . 11 (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)) = (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))
393, 19, 38, 1cycsubg2 18994 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → (𝐾‘{𝐴}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)))
4022, 28, 39syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐾‘{𝐴}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)))
412, 40eqtrid 2788 . . . . . . . 8 (𝜑𝑆 = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)))
4241rexeqdv 3312 . . . . . . 7 (𝜑 → (∃𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑠 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠)))
43 ovex 7386 . . . . . . . . 9 (𝑘 · 𝐴) ∈ V
4443rgenw 3066 . . . . . . . 8 𝑘 ∈ ℤ (𝑘 · 𝐴) ∈ V
45 oveq2 7361 . . . . . . . . . 10 (𝑠 = (𝑘 · 𝐴) → (𝑤(-g𝐺)𝑠) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
4645eqeq2d 2747 . . . . . . . . 9 (𝑠 = (𝑘 · 𝐴) → ((𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
4738, 46rexrnmptw 7041 . . . . . . . 8 (∀𝑘 ∈ ℤ (𝑘 · 𝐴) ∈ V → (∃𝑠 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
4844, 47ax-mp 5 . . . . . . 7 (∃𝑠 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
4942, 48bitrdi 286 . . . . . 6 (𝜑 → (∃𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
5049rexbidv 3173 . . . . 5 (𝜑 → (∃𝑤𝑊𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑤𝑊𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
5137, 50mpbid 231 . . . 4 (𝜑 → ∃𝑤𝑊𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
52 rexcom 3271 . . . 4 (∃𝑤𝑊𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ∃𝑘 ∈ ℤ ∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
5351, 52sylib 217 . . 3 (𝜑 → ∃𝑘 ∈ ℤ ∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
5422ad2antrr 724 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝐺 ∈ Grp)
553subgss 18920 . . . . . . . . . . 11 (𝑊 ∈ (SubGrp‘𝐺) → 𝑊𝐵)
5614, 55syl 17 . . . . . . . . . 10 (𝜑𝑊𝐵)
5756adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → 𝑊𝐵)
5857sselda 3942 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝑤𝐵)
59 simplr 767 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝑘 ∈ ℤ)
6028ad2antrr 724 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝐴𝐵)
613, 19mulgcl 18884 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑘 ∈ ℤ ∧ 𝐴𝐵) → (𝑘 · 𝐴) ∈ 𝐵)
6254, 59, 60, 61syl3anc 1371 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → (𝑘 · 𝐴) ∈ 𝐵)
63 pgpprm 19366 . . . . . . . . . . 11 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
64 prmz 16543 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
658, 63, 643syl 18 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
6618eldifad 3920 . . . . . . . . . . 11 (𝜑𝐶𝑈)
6727, 66sseldd 3943 . . . . . . . . . 10 (𝜑𝐶𝐵)
683, 19mulgcl 18884 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℤ ∧ 𝐶𝐵) → (𝑃 · 𝐶) ∈ 𝐵)
6922, 65, 67, 68syl3anc 1371 . . . . . . . . 9 (𝜑 → (𝑃 · 𝐶) ∈ 𝐵)
7069ad2antrr 724 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → (𝑃 · 𝐶) ∈ 𝐵)
71 eqid 2736 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
723, 71, 35grpsubadd 18826 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑤𝐵 ∧ (𝑘 · 𝐴) ∈ 𝐵 ∧ (𝑃 · 𝐶) ∈ 𝐵)) → ((𝑤(-g𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) = 𝑤))
7354, 58, 62, 70, 72syl13anc 1372 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → ((𝑤(-g𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) = 𝑤))
74 eqcom 2743 . . . . . . 7 ((𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ (𝑤(-g𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶))
75 eqcom 2743 . . . . . . 7 (𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) = 𝑤)
7673, 74, 753bitr4g 313 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → ((𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ 𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴))))
7776rexbidva 3171 . . . . 5 ((𝜑𝑘 ∈ ℤ) → (∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ∃𝑤𝑊 𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴))))
78 risset 3219 . . . . 5 (((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊 ↔ ∃𝑤𝑊 𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)))
7977, 78bitr4di 288 . . . 4 ((𝜑𝑘 ∈ ℤ) → (∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊))
8079rexbidva 3171 . . 3 (𝜑 → (∃𝑘 ∈ ℤ ∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ∃𝑘 ∈ ℤ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊))
8153, 80mpbid 231 . 2 (𝜑 → ∃𝑘 ∈ ℤ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)
828adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑃 pGrp 𝐺)
839adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐺 ∈ Abel)
8410adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐵 ∈ Fin)
8511adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑂𝐴) = 𝐸)
8612adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑈 ∈ (SubGrp‘𝐺))
8713adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐴𝑈)
8814adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑊 ∈ (SubGrp‘𝐺))
8915adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑆𝑊) = { 0 })
9016adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑆 𝑊) ⊆ 𝑈)
9117adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
9218adantr 481 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
93 simprl 769 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑘 ∈ ℤ)
94 simprr 771 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)
95 eqid 2736 . . 3 (𝐶(+g𝐺)((𝑘 / 𝑃) · 𝐴)) = (𝐶(+g𝐺)((𝑘 / 𝑃) · 𝐴))
961, 2, 3, 4, 5, 6, 7, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 19, 93, 94, 95pgpfac1lem3 19847 . 2 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
9781, 96rexlimddv 3156 1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3062  wrex 3071  Vcvv 3443  cdif 3905  cin 3907  wss 3908  wpss 3909  {csn 4584   class class class wbr 5103  cmpt 5186  ran crn 5632  cfv 6493  (class class class)co 7353  Fincfn 8879   / cdiv 11808  cz 12495  cprime 16539  Basecbs 17075  +gcplusg 17125  0gc0g 17313  Moorecmre 17454  mrClscmrc 17455  ACScacs 17457  Grpcgrp 18740  -gcsg 18742  .gcmg 18863  SubGrpcsubg 18913  odcod 19297  gExcgex 19298   pGrp cpgp 19299  LSSumclsm 19407  Abelcabl 19554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-inf2 9573  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-disj 5069  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-isom 6502  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7799  df-1st 7917  df-2nd 7918  df-frecs 8208  df-wrecs 8239  df-recs 8313  df-rdg 8352  df-1o 8408  df-2o 8409  df-oadd 8412  df-omul 8413  df-er 8644  df-ec 8646  df-qs 8650  df-map 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9374  df-inf 9375  df-oi 9442  df-dju 9833  df-card 9871  df-acn 9874  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-sub 11383  df-neg 11384  df-div 11809  df-nn 12150  df-2 12212  df-3 12213  df-n0 12410  df-xnn0 12482  df-z 12496  df-uz 12760  df-q 12866  df-rp 12908  df-fz 13417  df-fzo 13560  df-fl 13689  df-mod 13767  df-seq 13899  df-exp 13960  df-fac 14166  df-bc 14195  df-hash 14223  df-cj 14976  df-re 14977  df-im 14978  df-sqrt 15112  df-abs 15113  df-clim 15362  df-sum 15563  df-dvds 16129  df-gcd 16367  df-prm 16540  df-pc 16701  df-sets 17028  df-slot 17046  df-ndx 17058  df-base 17076  df-ress 17105  df-plusg 17138  df-0g 17315  df-mre 17458  df-mrc 17459  df-acs 17461  df-mgm 18489  df-sgrp 18538  df-mnd 18549  df-submnd 18594  df-grp 18743  df-minusg 18744  df-sbg 18745  df-mulg 18864  df-subg 18916  df-eqg 18918  df-ga 19061  df-cntz 19088  df-od 19301  df-gex 19302  df-pgp 19303  df-lsm 19409  df-cmn 19555  df-abl 19556
This theorem is referenced by:  pgpfac1lem5  19849
  Copyright terms: Public domain W3C validator