MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem4 Structured version   Visualization version   GIF version

Theorem pgpfac1lem4 20099
Description: Lemma for pgpfac1 20101. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.w (𝜑𝑊 ∈ (SubGrp‘𝐺))
pgpfac1.i (𝜑 → (𝑆𝑊) = { 0 })
pgpfac1.ss (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
pgpfac1.2 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
pgpfac1.c (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
pgpfac1.mg · = (.g𝐺)
Assertion
Ref Expression
pgpfac1lem4 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Distinct variable groups:   𝑡, 0   𝑤,𝑡,𝐴   𝑡, ,𝑤   𝑡,𝑃,𝑤   𝑡,𝐵   𝑡,𝐺,𝑤   𝑡,𝑈,𝑤   𝑡,𝐶,𝑤   𝑡,𝑆,𝑤   𝑡,𝑊,𝑤   𝜑,𝑡,𝑤   𝑡, · ,𝑤   𝑡,𝐾,𝑤
Allowed substitution hints:   𝐵(𝑤)   𝐸(𝑤,𝑡)   𝑂(𝑤,𝑡)   0 (𝑤)

Proof of Theorem pgpfac1lem4
Dummy variables 𝑘 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.k . . . . . . . 8 𝐾 = (mrCls‘(SubGrp‘𝐺))
2 pgpfac1.s . . . . . . . 8 𝑆 = (𝐾‘{𝐴})
3 pgpfac1.b . . . . . . . 8 𝐵 = (Base‘𝐺)
4 pgpfac1.o . . . . . . . 8 𝑂 = (od‘𝐺)
5 pgpfac1.e . . . . . . . 8 𝐸 = (gEx‘𝐺)
6 pgpfac1.z . . . . . . . 8 0 = (0g𝐺)
7 pgpfac1.l . . . . . . . 8 = (LSSum‘𝐺)
8 pgpfac1.p . . . . . . . 8 (𝜑𝑃 pGrp 𝐺)
9 pgpfac1.g . . . . . . . 8 (𝜑𝐺 ∈ Abel)
10 pgpfac1.n . . . . . . . 8 (𝜑𝐵 ∈ Fin)
11 pgpfac1.oe . . . . . . . 8 (𝜑 → (𝑂𝐴) = 𝐸)
12 pgpfac1.u . . . . . . . 8 (𝜑𝑈 ∈ (SubGrp‘𝐺))
13 pgpfac1.au . . . . . . . 8 (𝜑𝐴𝑈)
14 pgpfac1.w . . . . . . . 8 (𝜑𝑊 ∈ (SubGrp‘𝐺))
15 pgpfac1.i . . . . . . . 8 (𝜑 → (𝑆𝑊) = { 0 })
16 pgpfac1.ss . . . . . . . 8 (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
17 pgpfac1.2 . . . . . . . 8 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
18 pgpfac1.c . . . . . . . 8 (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
19 pgpfac1.mg . . . . . . . 8 · = (.g𝐺)
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19pgpfac1lem2 20096 . . . . . . 7 (𝜑 → (𝑃 · 𝐶) ∈ (𝑆 𝑊))
21 ablgrp 19804 . . . . . . . . . . . 12 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
229, 21syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ Grp)
233subgacs 19180 . . . . . . . . . . 11 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
24 acsmre 17696 . . . . . . . . . . 11 ((SubGrp‘𝐺) ∈ (ACS‘𝐵) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
2522, 23, 243syl 18 . . . . . . . . . 10 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
263subgss 19146 . . . . . . . . . . . 12 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
2712, 26syl 17 . . . . . . . . . . 11 (𝜑𝑈𝐵)
2827, 13sseldd 3983 . . . . . . . . . 10 (𝜑𝐴𝐵)
291mrcsncl 17656 . . . . . . . . . 10 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
3025, 28, 29syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
312, 30eqeltrid 2844 . . . . . . . 8 (𝜑𝑆 ∈ (SubGrp‘𝐺))
327lsmcom 19877 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) = (𝑊 𝑆))
339, 31, 14, 32syl3anc 1372 . . . . . . 7 (𝜑 → (𝑆 𝑊) = (𝑊 𝑆))
3420, 33eleqtrd 2842 . . . . . 6 (𝜑 → (𝑃 · 𝐶) ∈ (𝑊 𝑆))
35 eqid 2736 . . . . . . 7 (-g𝐺) = (-g𝐺)
3635, 7, 14, 31lsmelvalm 19670 . . . . . 6 (𝜑 → ((𝑃 · 𝐶) ∈ (𝑊 𝑆) ↔ ∃𝑤𝑊𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠)))
3734, 36mpbid 232 . . . . 5 (𝜑 → ∃𝑤𝑊𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠))
38 eqid 2736 . . . . . . . . . . 11 (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)) = (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))
393, 19, 38, 1cycsubg2 19229 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → (𝐾‘{𝐴}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)))
4022, 28, 39syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐾‘{𝐴}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)))
412, 40eqtrid 2788 . . . . . . . 8 (𝜑𝑆 = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)))
4241rexeqdv 3326 . . . . . . 7 (𝜑 → (∃𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑠 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠)))
43 ovex 7465 . . . . . . . . 9 (𝑘 · 𝐴) ∈ V
4443rgenw 3064 . . . . . . . 8 𝑘 ∈ ℤ (𝑘 · 𝐴) ∈ V
45 oveq2 7440 . . . . . . . . . 10 (𝑠 = (𝑘 · 𝐴) → (𝑤(-g𝐺)𝑠) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
4645eqeq2d 2747 . . . . . . . . 9 (𝑠 = (𝑘 · 𝐴) → ((𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
4738, 46rexrnmptw 7114 . . . . . . . 8 (∀𝑘 ∈ ℤ (𝑘 · 𝐴) ∈ V → (∃𝑠 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
4844, 47ax-mp 5 . . . . . . 7 (∃𝑠 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
4942, 48bitrdi 287 . . . . . 6 (𝜑 → (∃𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
5049rexbidv 3178 . . . . 5 (𝜑 → (∃𝑤𝑊𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑤𝑊𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
5137, 50mpbid 232 . . . 4 (𝜑 → ∃𝑤𝑊𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
52 rexcom 3289 . . . 4 (∃𝑤𝑊𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ∃𝑘 ∈ ℤ ∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
5351, 52sylib 218 . . 3 (𝜑 → ∃𝑘 ∈ ℤ ∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
5422ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝐺 ∈ Grp)
553subgss 19146 . . . . . . . . . . 11 (𝑊 ∈ (SubGrp‘𝐺) → 𝑊𝐵)
5614, 55syl 17 . . . . . . . . . 10 (𝜑𝑊𝐵)
5756adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → 𝑊𝐵)
5857sselda 3982 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝑤𝐵)
59 simplr 768 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝑘 ∈ ℤ)
6028ad2antrr 726 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝐴𝐵)
613, 19mulgcl 19110 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑘 ∈ ℤ ∧ 𝐴𝐵) → (𝑘 · 𝐴) ∈ 𝐵)
6254, 59, 60, 61syl3anc 1372 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → (𝑘 · 𝐴) ∈ 𝐵)
63 pgpprm 19612 . . . . . . . . . . 11 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
64 prmz 16713 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
658, 63, 643syl 18 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
6618eldifad 3962 . . . . . . . . . . 11 (𝜑𝐶𝑈)
6727, 66sseldd 3983 . . . . . . . . . 10 (𝜑𝐶𝐵)
683, 19mulgcl 19110 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℤ ∧ 𝐶𝐵) → (𝑃 · 𝐶) ∈ 𝐵)
6922, 65, 67, 68syl3anc 1372 . . . . . . . . 9 (𝜑 → (𝑃 · 𝐶) ∈ 𝐵)
7069ad2antrr 726 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → (𝑃 · 𝐶) ∈ 𝐵)
71 eqid 2736 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
723, 71, 35grpsubadd 19047 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑤𝐵 ∧ (𝑘 · 𝐴) ∈ 𝐵 ∧ (𝑃 · 𝐶) ∈ 𝐵)) → ((𝑤(-g𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) = 𝑤))
7354, 58, 62, 70, 72syl13anc 1373 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → ((𝑤(-g𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) = 𝑤))
74 eqcom 2743 . . . . . . 7 ((𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ (𝑤(-g𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶))
75 eqcom 2743 . . . . . . 7 (𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) = 𝑤)
7673, 74, 753bitr4g 314 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → ((𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ 𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴))))
7776rexbidva 3176 . . . . 5 ((𝜑𝑘 ∈ ℤ) → (∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ∃𝑤𝑊 𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴))))
78 risset 3232 . . . . 5 (((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊 ↔ ∃𝑤𝑊 𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)))
7977, 78bitr4di 289 . . . 4 ((𝜑𝑘 ∈ ℤ) → (∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊))
8079rexbidva 3176 . . 3 (𝜑 → (∃𝑘 ∈ ℤ ∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ∃𝑘 ∈ ℤ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊))
8153, 80mpbid 232 . 2 (𝜑 → ∃𝑘 ∈ ℤ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)
828adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑃 pGrp 𝐺)
839adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐺 ∈ Abel)
8410adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐵 ∈ Fin)
8511adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑂𝐴) = 𝐸)
8612adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑈 ∈ (SubGrp‘𝐺))
8713adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐴𝑈)
8814adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑊 ∈ (SubGrp‘𝐺))
8915adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑆𝑊) = { 0 })
9016adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑆 𝑊) ⊆ 𝑈)
9117adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
9218adantr 480 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
93 simprl 770 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑘 ∈ ℤ)
94 simprr 772 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)
95 eqid 2736 . . 3 (𝐶(+g𝐺)((𝑘 / 𝑃) · 𝐴)) = (𝐶(+g𝐺)((𝑘 / 𝑃) · 𝐴))
961, 2, 3, 4, 5, 6, 7, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 19, 93, 94, 95pgpfac1lem3 20098 . 2 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
9781, 96rexlimddv 3160 1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060  wrex 3069  Vcvv 3479  cdif 3947  cin 3949  wss 3950  wpss 3951  {csn 4625   class class class wbr 5142  cmpt 5224  ran crn 5685  cfv 6560  (class class class)co 7432  Fincfn 8986   / cdiv 11921  cz 12615  cprime 16709  Basecbs 17248  +gcplusg 17298  0gc0g 17485  Moorecmre 17626  mrClscmrc 17627  ACScacs 17629  Grpcgrp 18952  -gcsg 18954  .gcmg 19086  SubGrpcsubg 19139  odcod 19543  gExcgex 19544   pGrp cpgp 19545  LSSumclsm 19653  Abelcabl 19800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-disj 5110  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-omul 8512  df-er 8746  df-ec 8748  df-qs 8752  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-acn 9983  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-sum 15724  df-dvds 16292  df-gcd 16533  df-prm 16710  df-pc 16876  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-0g 17487  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-eqg 19144  df-ga 19309  df-cntz 19336  df-od 19547  df-gex 19548  df-pgp 19549  df-lsm 19655  df-cmn 19801  df-abl 19802
This theorem is referenced by:  pgpfac1lem5  20100
  Copyright terms: Public domain W3C validator