| Step | Hyp | Ref
| Expression |
| 1 | | pgpfac1.k |
. . . . . . . 8
⊢ 𝐾 =
(mrCls‘(SubGrp‘𝐺)) |
| 2 | | pgpfac1.s |
. . . . . . . 8
⊢ 𝑆 = (𝐾‘{𝐴}) |
| 3 | | pgpfac1.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
| 4 | | pgpfac1.o |
. . . . . . . 8
⊢ 𝑂 = (od‘𝐺) |
| 5 | | pgpfac1.e |
. . . . . . . 8
⊢ 𝐸 = (gEx‘𝐺) |
| 6 | | pgpfac1.z |
. . . . . . . 8
⊢ 0 =
(0g‘𝐺) |
| 7 | | pgpfac1.l |
. . . . . . . 8
⊢ ⊕ =
(LSSum‘𝐺) |
| 8 | | pgpfac1.p |
. . . . . . . 8
⊢ (𝜑 → 𝑃 pGrp 𝐺) |
| 9 | | pgpfac1.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Abel) |
| 10 | | pgpfac1.n |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 11 | | pgpfac1.oe |
. . . . . . . 8
⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) |
| 12 | | pgpfac1.u |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| 13 | | pgpfac1.au |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| 14 | | pgpfac1.w |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) |
| 15 | | pgpfac1.i |
. . . . . . . 8
⊢ (𝜑 → (𝑆 ∩ 𝑊) = { 0 }) |
| 16 | | pgpfac1.ss |
. . . . . . . 8
⊢ (𝜑 → (𝑆 ⊕ 𝑊) ⊆ 𝑈) |
| 17 | | pgpfac1.2 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤) → ¬ (𝑆 ⊕ 𝑊) ⊊ 𝑤)) |
| 18 | | pgpfac1.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) |
| 19 | | pgpfac1.mg |
. . . . . . . 8
⊢ · =
(.g‘𝐺) |
| 20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19 | pgpfac1lem2 20063 |
. . . . . . 7
⊢ (𝜑 → (𝑃 · 𝐶) ∈ (𝑆 ⊕ 𝑊)) |
| 21 | | ablgrp 19771 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| 22 | 9, 21 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 23 | 3 | subgacs 19149 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘𝐵)) |
| 24 | | acsmre 17669 |
. . . . . . . . . . 11
⊢
((SubGrp‘𝐺)
∈ (ACS‘𝐵) →
(SubGrp‘𝐺) ∈
(Moore‘𝐵)) |
| 25 | 22, 23, 24 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵)) |
| 26 | 3 | subgss 19115 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ 𝐵) |
| 27 | 12, 26 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
| 28 | 27, 13 | sseldd 3964 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 29 | 1 | mrcsncl 17629 |
. . . . . . . . . 10
⊢
(((SubGrp‘𝐺)
∈ (Moore‘𝐵)
∧ 𝐴 ∈ 𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
| 30 | 25, 28, 29 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
| 31 | 2, 30 | eqeltrid 2839 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| 32 | 7 | lsmcom 19844 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 ⊕ 𝑊) = (𝑊 ⊕ 𝑆)) |
| 33 | 9, 31, 14, 32 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → (𝑆 ⊕ 𝑊) = (𝑊 ⊕ 𝑆)) |
| 34 | 20, 33 | eleqtrd 2837 |
. . . . . 6
⊢ (𝜑 → (𝑃 · 𝐶) ∈ (𝑊 ⊕ 𝑆)) |
| 35 | | eqid 2736 |
. . . . . . 7
⊢
(-g‘𝐺) = (-g‘𝐺) |
| 36 | 35, 7, 14, 31 | lsmelvalm 19637 |
. . . . . 6
⊢ (𝜑 → ((𝑃 · 𝐶) ∈ (𝑊 ⊕ 𝑆) ↔ ∃𝑤 ∈ 𝑊 ∃𝑠 ∈ 𝑆 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)𝑠))) |
| 37 | 34, 36 | mpbid 232 |
. . . . 5
⊢ (𝜑 → ∃𝑤 ∈ 𝑊 ∃𝑠 ∈ 𝑆 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)𝑠)) |
| 38 | | eqid 2736 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)) = (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)) |
| 39 | 3, 19, 38, 1 | cycsubg2 19198 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → (𝐾‘{𝐴}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))) |
| 40 | 22, 28, 39 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾‘{𝐴}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))) |
| 41 | 2, 40 | eqtrid 2783 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))) |
| 42 | 41 | rexeqdv 3310 |
. . . . . . 7
⊢ (𝜑 → (∃𝑠 ∈ 𝑆 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)𝑠) ↔ ∃𝑠 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g‘𝐺)𝑠))) |
| 43 | | ovex 7443 |
. . . . . . . . 9
⊢ (𝑘 · 𝐴) ∈ V |
| 44 | 43 | rgenw 3056 |
. . . . . . . 8
⊢
∀𝑘 ∈
ℤ (𝑘 · 𝐴) ∈ V |
| 45 | | oveq2 7418 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑘 · 𝐴) → (𝑤(-g‘𝐺)𝑠) = (𝑤(-g‘𝐺)(𝑘 · 𝐴))) |
| 46 | 45 | eqeq2d 2747 |
. . . . . . . . 9
⊢ (𝑠 = (𝑘 · 𝐴) → ((𝑃 · 𝐶) = (𝑤(-g‘𝐺)𝑠) ↔ (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)))) |
| 47 | 38, 46 | rexrnmptw 7090 |
. . . . . . . 8
⊢
(∀𝑘 ∈
ℤ (𝑘 · 𝐴) ∈ V → (∃𝑠 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g‘𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)))) |
| 48 | 44, 47 | ax-mp 5 |
. . . . . . 7
⊢
(∃𝑠 ∈ ran
(𝑘 ∈ ℤ ↦
(𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g‘𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴))) |
| 49 | 42, 48 | bitrdi 287 |
. . . . . 6
⊢ (𝜑 → (∃𝑠 ∈ 𝑆 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)))) |
| 50 | 49 | rexbidv 3165 |
. . . . 5
⊢ (𝜑 → (∃𝑤 ∈ 𝑊 ∃𝑠 ∈ 𝑆 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)𝑠) ↔ ∃𝑤 ∈ 𝑊 ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)))) |
| 51 | 37, 50 | mpbid 232 |
. . . 4
⊢ (𝜑 → ∃𝑤 ∈ 𝑊 ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴))) |
| 52 | | rexcom 3275 |
. . . 4
⊢
(∃𝑤 ∈
𝑊 ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)) ↔ ∃𝑘 ∈ ℤ ∃𝑤 ∈ 𝑊 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴))) |
| 53 | 51, 52 | sylib 218 |
. . 3
⊢ (𝜑 → ∃𝑘 ∈ ℤ ∃𝑤 ∈ 𝑊 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴))) |
| 54 | 22 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑤 ∈ 𝑊) → 𝐺 ∈ Grp) |
| 55 | 3 | subgss 19115 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ (SubGrp‘𝐺) → 𝑊 ⊆ 𝐵) |
| 56 | 14, 55 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ⊆ 𝐵) |
| 57 | 56 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑊 ⊆ 𝐵) |
| 58 | 57 | sselda 3963 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑤 ∈ 𝑊) → 𝑤 ∈ 𝐵) |
| 59 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑤 ∈ 𝑊) → 𝑘 ∈ ℤ) |
| 60 | 28 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑤 ∈ 𝑊) → 𝐴 ∈ 𝐵) |
| 61 | 3, 19 | mulgcl 19079 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑘 ∈ ℤ ∧ 𝐴 ∈ 𝐵) → (𝑘 · 𝐴) ∈ 𝐵) |
| 62 | 54, 59, 60, 61 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑤 ∈ 𝑊) → (𝑘 · 𝐴) ∈ 𝐵) |
| 63 | | pgpprm 19579 |
. . . . . . . . . . 11
⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
| 64 | | prmz 16699 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
| 65 | 8, 63, 64 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 66 | 18 | eldifad 3943 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| 67 | 27, 66 | sseldd 3964 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| 68 | 3, 19 | mulgcl 19079 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℤ ∧ 𝐶 ∈ 𝐵) → (𝑃 · 𝐶) ∈ 𝐵) |
| 69 | 22, 65, 67, 68 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 · 𝐶) ∈ 𝐵) |
| 70 | 69 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑤 ∈ 𝑊) → (𝑃 · 𝐶) ∈ 𝐵) |
| 71 | | eqid 2736 |
. . . . . . . . 9
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 72 | 3, 71, 35 | grpsubadd 19016 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑤 ∈ 𝐵 ∧ (𝑘 · 𝐴) ∈ 𝐵 ∧ (𝑃 · 𝐶) ∈ 𝐵)) → ((𝑤(-g‘𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶) ↔ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) = 𝑤)) |
| 73 | 54, 58, 62, 70, 72 | syl13anc 1374 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑤 ∈ 𝑊) → ((𝑤(-g‘𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶) ↔ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) = 𝑤)) |
| 74 | | eqcom 2743 |
. . . . . . 7
⊢ ((𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)) ↔ (𝑤(-g‘𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶)) |
| 75 | | eqcom 2743 |
. . . . . . 7
⊢ (𝑤 = ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ↔ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) = 𝑤) |
| 76 | 73, 74, 75 | 3bitr4g 314 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑤 ∈ 𝑊) → ((𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)) ↔ 𝑤 = ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)))) |
| 77 | 76 | rexbidva 3163 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (∃𝑤 ∈ 𝑊 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)) ↔ ∃𝑤 ∈ 𝑊 𝑤 = ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)))) |
| 78 | | risset 3221 |
. . . . 5
⊢ (((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊 ↔ ∃𝑤 ∈ 𝑊 𝑤 = ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴))) |
| 79 | 77, 78 | bitr4di 289 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (∃𝑤 ∈ 𝑊 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)) ↔ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) |
| 80 | 79 | rexbidva 3163 |
. . 3
⊢ (𝜑 → (∃𝑘 ∈ ℤ ∃𝑤 ∈ 𝑊 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)) ↔ ∃𝑘 ∈ ℤ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) |
| 81 | 53, 80 | mpbid 232 |
. 2
⊢ (𝜑 → ∃𝑘 ∈ ℤ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊) |
| 82 | 8 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑃 pGrp 𝐺) |
| 83 | 9 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐺 ∈ Abel) |
| 84 | 10 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐵 ∈ Fin) |
| 85 | 11 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑂‘𝐴) = 𝐸) |
| 86 | 12 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑈 ∈ (SubGrp‘𝐺)) |
| 87 | 13 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐴 ∈ 𝑈) |
| 88 | 14 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑊 ∈ (SubGrp‘𝐺)) |
| 89 | 15 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑆 ∩ 𝑊) = { 0 }) |
| 90 | 16 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑆 ⊕ 𝑊) ⊆ 𝑈) |
| 91 | 17 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤) → ¬ (𝑆 ⊕ 𝑊) ⊊ 𝑤)) |
| 92 | 18 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) |
| 93 | | simprl 770 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑘 ∈ ℤ) |
| 94 | | simprr 772 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊) |
| 95 | | eqid 2736 |
. . 3
⊢ (𝐶(+g‘𝐺)((𝑘 / 𝑃) · 𝐴)) = (𝐶(+g‘𝐺)((𝑘 / 𝑃) · 𝐴)) |
| 96 | 1, 2, 3, 4, 5, 6, 7, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 19, 93, 94, 95 | pgpfac1lem3 20065 |
. 2
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆 ∩ 𝑡) = { 0 } ∧ (𝑆 ⊕ 𝑡) = 𝑈)) |
| 97 | 81, 96 | rexlimddv 3148 |
1
⊢ (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆 ∩ 𝑡) = { 0 } ∧ (𝑆 ⊕ 𝑡) = 𝑈)) |