Step | Hyp | Ref
| Expression |
1 | | pgpfac1.k |
. . . . . . . 8
⊢ 𝐾 =
(mrCls‘(SubGrp‘𝐺)) |
2 | | pgpfac1.s |
. . . . . . . 8
⊢ 𝑆 = (𝐾‘{𝐴}) |
3 | | pgpfac1.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝐺) |
4 | | pgpfac1.o |
. . . . . . . 8
⊢ 𝑂 = (od‘𝐺) |
5 | | pgpfac1.e |
. . . . . . . 8
⊢ 𝐸 = (gEx‘𝐺) |
6 | | pgpfac1.z |
. . . . . . . 8
⊢ 0 =
(0g‘𝐺) |
7 | | pgpfac1.l |
. . . . . . . 8
⊢ ⊕ =
(LSSum‘𝐺) |
8 | | pgpfac1.p |
. . . . . . . 8
⊢ (𝜑 → 𝑃 pGrp 𝐺) |
9 | | pgpfac1.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Abel) |
10 | | pgpfac1.n |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ Fin) |
11 | | pgpfac1.oe |
. . . . . . . 8
⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) |
12 | | pgpfac1.u |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
13 | | pgpfac1.au |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
14 | | pgpfac1.w |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) |
15 | | pgpfac1.i |
. . . . . . . 8
⊢ (𝜑 → (𝑆 ∩ 𝑊) = { 0 }) |
16 | | pgpfac1.ss |
. . . . . . . 8
⊢ (𝜑 → (𝑆 ⊕ 𝑊) ⊆ 𝑈) |
17 | | pgpfac1.2 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤) → ¬ (𝑆 ⊕ 𝑊) ⊊ 𝑤)) |
18 | | pgpfac1.c |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) |
19 | | pgpfac1.mg |
. . . . . . . 8
⊢ · =
(.g‘𝐺) |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19 | pgpfac1lem2 19593 |
. . . . . . 7
⊢ (𝜑 → (𝑃 · 𝐶) ∈ (𝑆 ⊕ 𝑊)) |
21 | | ablgrp 19306 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
22 | 9, 21 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐺 ∈ Grp) |
23 | 3 | subgacs 18704 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘𝐵)) |
24 | | acsmre 17278 |
. . . . . . . . . . 11
⊢
((SubGrp‘𝐺)
∈ (ACS‘𝐵) →
(SubGrp‘𝐺) ∈
(Moore‘𝐵)) |
25 | 22, 23, 24 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵)) |
26 | 3 | subgss 18671 |
. . . . . . . . . . . 12
⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ 𝐵) |
27 | 12, 26 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
28 | 27, 13 | sseldd 3918 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
29 | 1 | mrcsncl 17238 |
. . . . . . . . . 10
⊢
(((SubGrp‘𝐺)
∈ (Moore‘𝐵)
∧ 𝐴 ∈ 𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
30 | 25, 28, 29 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
31 | 2, 30 | eqeltrid 2843 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
32 | 7 | lsmcom 19374 |
. . . . . . . 8
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 ⊕ 𝑊) = (𝑊 ⊕ 𝑆)) |
33 | 9, 31, 14, 32 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → (𝑆 ⊕ 𝑊) = (𝑊 ⊕ 𝑆)) |
34 | 20, 33 | eleqtrd 2841 |
. . . . . 6
⊢ (𝜑 → (𝑃 · 𝐶) ∈ (𝑊 ⊕ 𝑆)) |
35 | | eqid 2738 |
. . . . . . 7
⊢
(-g‘𝐺) = (-g‘𝐺) |
36 | 35, 7, 14, 31 | lsmelvalm 19171 |
. . . . . 6
⊢ (𝜑 → ((𝑃 · 𝐶) ∈ (𝑊 ⊕ 𝑆) ↔ ∃𝑤 ∈ 𝑊 ∃𝑠 ∈ 𝑆 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)𝑠))) |
37 | 34, 36 | mpbid 231 |
. . . . 5
⊢ (𝜑 → ∃𝑤 ∈ 𝑊 ∃𝑠 ∈ 𝑆 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)𝑠)) |
38 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)) = (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)) |
39 | 3, 19, 38, 1 | cycsubg2 18744 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵) → (𝐾‘{𝐴}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))) |
40 | 22, 28, 39 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (𝐾‘{𝐴}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))) |
41 | 2, 40 | eqtrid 2790 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))) |
42 | 41 | rexeqdv 3340 |
. . . . . . 7
⊢ (𝜑 → (∃𝑠 ∈ 𝑆 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)𝑠) ↔ ∃𝑠 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g‘𝐺)𝑠))) |
43 | | ovex 7288 |
. . . . . . . . 9
⊢ (𝑘 · 𝐴) ∈ V |
44 | 43 | rgenw 3075 |
. . . . . . . 8
⊢
∀𝑘 ∈
ℤ (𝑘 · 𝐴) ∈ V |
45 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑘 · 𝐴) → (𝑤(-g‘𝐺)𝑠) = (𝑤(-g‘𝐺)(𝑘 · 𝐴))) |
46 | 45 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑠 = (𝑘 · 𝐴) → ((𝑃 · 𝐶) = (𝑤(-g‘𝐺)𝑠) ↔ (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)))) |
47 | 38, 46 | rexrnmptw 6953 |
. . . . . . . 8
⊢
(∀𝑘 ∈
ℤ (𝑘 · 𝐴) ∈ V → (∃𝑠 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g‘𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)))) |
48 | 44, 47 | ax-mp 5 |
. . . . . . 7
⊢
(∃𝑠 ∈ ran
(𝑘 ∈ ℤ ↦
(𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g‘𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴))) |
49 | 42, 48 | bitrdi 286 |
. . . . . 6
⊢ (𝜑 → (∃𝑠 ∈ 𝑆 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)))) |
50 | 49 | rexbidv 3225 |
. . . . 5
⊢ (𝜑 → (∃𝑤 ∈ 𝑊 ∃𝑠 ∈ 𝑆 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)𝑠) ↔ ∃𝑤 ∈ 𝑊 ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)))) |
51 | 37, 50 | mpbid 231 |
. . . 4
⊢ (𝜑 → ∃𝑤 ∈ 𝑊 ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴))) |
52 | | rexcom 3281 |
. . . 4
⊢
(∃𝑤 ∈
𝑊 ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)) ↔ ∃𝑘 ∈ ℤ ∃𝑤 ∈ 𝑊 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴))) |
53 | 51, 52 | sylib 217 |
. . 3
⊢ (𝜑 → ∃𝑘 ∈ ℤ ∃𝑤 ∈ 𝑊 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴))) |
54 | 22 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑤 ∈ 𝑊) → 𝐺 ∈ Grp) |
55 | 3 | subgss 18671 |
. . . . . . . . . . 11
⊢ (𝑊 ∈ (SubGrp‘𝐺) → 𝑊 ⊆ 𝐵) |
56 | 14, 55 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ⊆ 𝐵) |
57 | 56 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑊 ⊆ 𝐵) |
58 | 57 | sselda 3917 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑤 ∈ 𝑊) → 𝑤 ∈ 𝐵) |
59 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑤 ∈ 𝑊) → 𝑘 ∈ ℤ) |
60 | 28 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑤 ∈ 𝑊) → 𝐴 ∈ 𝐵) |
61 | 3, 19 | mulgcl 18636 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝑘 ∈ ℤ ∧ 𝐴 ∈ 𝐵) → (𝑘 · 𝐴) ∈ 𝐵) |
62 | 54, 59, 60, 61 | syl3anc 1369 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑤 ∈ 𝑊) → (𝑘 · 𝐴) ∈ 𝐵) |
63 | | pgpprm 19113 |
. . . . . . . . . . 11
⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
64 | | prmz 16308 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
65 | 8, 63, 64 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑃 ∈ ℤ) |
66 | 18 | eldifad 3895 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐶 ∈ 𝑈) |
67 | 27, 66 | sseldd 3918 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ 𝐵) |
68 | 3, 19 | mulgcl 18636 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℤ ∧ 𝐶 ∈ 𝐵) → (𝑃 · 𝐶) ∈ 𝐵) |
69 | 22, 65, 67, 68 | syl3anc 1369 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃 · 𝐶) ∈ 𝐵) |
70 | 69 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑤 ∈ 𝑊) → (𝑃 · 𝐶) ∈ 𝐵) |
71 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘𝐺) = (+g‘𝐺) |
72 | 3, 71, 35 | grpsubadd 18578 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝑤 ∈ 𝐵 ∧ (𝑘 · 𝐴) ∈ 𝐵 ∧ (𝑃 · 𝐶) ∈ 𝐵)) → ((𝑤(-g‘𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶) ↔ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) = 𝑤)) |
73 | 54, 58, 62, 70, 72 | syl13anc 1370 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑤 ∈ 𝑊) → ((𝑤(-g‘𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶) ↔ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) = 𝑤)) |
74 | | eqcom 2745 |
. . . . . . 7
⊢ ((𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)) ↔ (𝑤(-g‘𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶)) |
75 | | eqcom 2745 |
. . . . . . 7
⊢ (𝑤 = ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ↔ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) = 𝑤) |
76 | 73, 74, 75 | 3bitr4g 313 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ 𝑤 ∈ 𝑊) → ((𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)) ↔ 𝑤 = ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)))) |
77 | 76 | rexbidva 3224 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (∃𝑤 ∈ 𝑊 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)) ↔ ∃𝑤 ∈ 𝑊 𝑤 = ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)))) |
78 | | risset 3193 |
. . . . 5
⊢ (((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊 ↔ ∃𝑤 ∈ 𝑊 𝑤 = ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴))) |
79 | 77, 78 | bitr4di 288 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (∃𝑤 ∈ 𝑊 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)) ↔ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) |
80 | 79 | rexbidva 3224 |
. . 3
⊢ (𝜑 → (∃𝑘 ∈ ℤ ∃𝑤 ∈ 𝑊 (𝑃 · 𝐶) = (𝑤(-g‘𝐺)(𝑘 · 𝐴)) ↔ ∃𝑘 ∈ ℤ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) |
81 | 53, 80 | mpbid 231 |
. 2
⊢ (𝜑 → ∃𝑘 ∈ ℤ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊) |
82 | 8 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑃 pGrp 𝐺) |
83 | 9 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐺 ∈ Abel) |
84 | 10 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐵 ∈ Fin) |
85 | 11 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑂‘𝐴) = 𝐸) |
86 | 12 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑈 ∈ (SubGrp‘𝐺)) |
87 | 13 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐴 ∈ 𝑈) |
88 | 14 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑊 ∈ (SubGrp‘𝐺)) |
89 | 15 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑆 ∩ 𝑊) = { 0 }) |
90 | 16 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑆 ⊕ 𝑊) ⊆ 𝑈) |
91 | 17 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤 ⊊ 𝑈 ∧ 𝐴 ∈ 𝑤) → ¬ (𝑆 ⊕ 𝑊) ⊊ 𝑤)) |
92 | 18 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) |
93 | | simprl 767 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑘 ∈ ℤ) |
94 | | simprr 769 |
. . 3
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊) |
95 | | eqid 2738 |
. . 3
⊢ (𝐶(+g‘𝐺)((𝑘 / 𝑃) · 𝐴)) = (𝐶(+g‘𝐺)((𝑘 / 𝑃) · 𝐴)) |
96 | 1, 2, 3, 4, 5, 6, 7, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 19, 93, 94, 95 | pgpfac1lem3 19595 |
. 2
⊢ ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆 ∩ 𝑡) = { 0 } ∧ (𝑆 ⊕ 𝑡) = 𝑈)) |
97 | 81, 96 | rexlimddv 3219 |
1
⊢ (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆 ∩ 𝑡) = { 0 } ∧ (𝑆 ⊕ 𝑡) = 𝑈)) |