MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem4 Structured version   Visualization version   GIF version

Theorem pgpfac1lem4 18962
Description: Lemma for pgpfac1 18964. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.w (𝜑𝑊 ∈ (SubGrp‘𝐺))
pgpfac1.i (𝜑 → (𝑆𝑊) = { 0 })
pgpfac1.ss (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
pgpfac1.2 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
pgpfac1.c (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
pgpfac1.mg · = (.g𝐺)
Assertion
Ref Expression
pgpfac1lem4 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Distinct variable groups:   𝑡, 0   𝑤,𝑡,𝐴   𝑡, ,𝑤   𝑡,𝑃,𝑤   𝑡,𝐵   𝑡,𝐺,𝑤   𝑡,𝑈,𝑤   𝑡,𝐶,𝑤   𝑡,𝑆,𝑤   𝑡,𝑊,𝑤   𝜑,𝑡,𝑤   𝑡, · ,𝑤   𝑡,𝐾,𝑤
Allowed substitution hints:   𝐵(𝑤)   𝐸(𝑤,𝑡)   𝑂(𝑤,𝑡)   0 (𝑤)

Proof of Theorem pgpfac1lem4
Dummy variables 𝑘 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pgpfac1.k . . . . . . . 8 𝐾 = (mrCls‘(SubGrp‘𝐺))
2 pgpfac1.s . . . . . . . 8 𝑆 = (𝐾‘{𝐴})
3 pgpfac1.b . . . . . . . 8 𝐵 = (Base‘𝐺)
4 pgpfac1.o . . . . . . . 8 𝑂 = (od‘𝐺)
5 pgpfac1.e . . . . . . . 8 𝐸 = (gEx‘𝐺)
6 pgpfac1.z . . . . . . . 8 0 = (0g𝐺)
7 pgpfac1.l . . . . . . . 8 = (LSSum‘𝐺)
8 pgpfac1.p . . . . . . . 8 (𝜑𝑃 pGrp 𝐺)
9 pgpfac1.g . . . . . . . 8 (𝜑𝐺 ∈ Abel)
10 pgpfac1.n . . . . . . . 8 (𝜑𝐵 ∈ Fin)
11 pgpfac1.oe . . . . . . . 8 (𝜑 → (𝑂𝐴) = 𝐸)
12 pgpfac1.u . . . . . . . 8 (𝜑𝑈 ∈ (SubGrp‘𝐺))
13 pgpfac1.au . . . . . . . 8 (𝜑𝐴𝑈)
14 pgpfac1.w . . . . . . . 8 (𝜑𝑊 ∈ (SubGrp‘𝐺))
15 pgpfac1.i . . . . . . . 8 (𝜑 → (𝑆𝑊) = { 0 })
16 pgpfac1.ss . . . . . . . 8 (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
17 pgpfac1.2 . . . . . . . 8 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
18 pgpfac1.c . . . . . . . 8 (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
19 pgpfac1.mg . . . . . . . 8 · = (.g𝐺)
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19pgpfac1lem2 18959 . . . . . . 7 (𝜑 → (𝑃 · 𝐶) ∈ (𝑆 𝑊))
21 ablgrp 18683 . . . . . . . . . . . 12 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
229, 21syl 17 . . . . . . . . . . 11 (𝜑𝐺 ∈ Grp)
233subgacs 18110 . . . . . . . . . . 11 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
24 acsmre 16793 . . . . . . . . . . 11 ((SubGrp‘𝐺) ∈ (ACS‘𝐵) → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
2522, 23, 243syl 18 . . . . . . . . . 10 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
263subgss 18076 . . . . . . . . . . . 12 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
2712, 26syl 17 . . . . . . . . . . 11 (𝜑𝑈𝐵)
2827, 13sseldd 3852 . . . . . . . . . 10 (𝜑𝐴𝐵)
291mrcsncl 16753 . . . . . . . . . 10 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
3025, 28, 29syl2anc 576 . . . . . . . . 9 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
312, 30syl5eqel 2863 . . . . . . . 8 (𝜑𝑆 ∈ (SubGrp‘𝐺))
327lsmcom 18746 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) = (𝑊 𝑆))
339, 31, 14, 32syl3anc 1352 . . . . . . 7 (𝜑 → (𝑆 𝑊) = (𝑊 𝑆))
3420, 33eleqtrd 2861 . . . . . 6 (𝜑 → (𝑃 · 𝐶) ∈ (𝑊 𝑆))
35 eqid 2771 . . . . . . 7 (-g𝐺) = (-g𝐺)
3635, 7, 14, 31lsmelvalm 18549 . . . . . 6 (𝜑 → ((𝑃 · 𝐶) ∈ (𝑊 𝑆) ↔ ∃𝑤𝑊𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠)))
3734, 36mpbid 224 . . . . 5 (𝜑 → ∃𝑤𝑊𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠))
38 eqid 2771 . . . . . . . . . . 11 (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)) = (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))
393, 19, 38, 1cycsubg2 18112 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝐴𝐵) → (𝐾‘{𝐴}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)))
4022, 28, 39syl2anc 576 . . . . . . . . 9 (𝜑 → (𝐾‘{𝐴}) = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)))
412, 40syl5eq 2819 . . . . . . . 8 (𝜑𝑆 = ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴)))
4241rexeqdv 3349 . . . . . . 7 (𝜑 → (∃𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑠 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠)))
43 ovex 7006 . . . . . . . . 9 (𝑘 · 𝐴) ∈ V
4443rgenw 3093 . . . . . . . 8 𝑘 ∈ ℤ (𝑘 · 𝐴) ∈ V
45 oveq2 6982 . . . . . . . . . 10 (𝑠 = (𝑘 · 𝐴) → (𝑤(-g𝐺)𝑠) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
4645eqeq2d 2781 . . . . . . . . 9 (𝑠 = (𝑘 · 𝐴) → ((𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
4738, 46rexrnmpt 6684 . . . . . . . 8 (∀𝑘 ∈ ℤ (𝑘 · 𝐴) ∈ V → (∃𝑠 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
4844, 47ax-mp 5 . . . . . . 7 (∃𝑠 ∈ ran (𝑘 ∈ ℤ ↦ (𝑘 · 𝐴))(𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
4942, 48syl6bb 279 . . . . . 6 (𝜑 → (∃𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
5049rexbidv 3235 . . . . 5 (𝜑 → (∃𝑤𝑊𝑠𝑆 (𝑃 · 𝐶) = (𝑤(-g𝐺)𝑠) ↔ ∃𝑤𝑊𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴))))
5137, 50mpbid 224 . . . 4 (𝜑 → ∃𝑤𝑊𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
52 rexcom 3289 . . . 4 (∃𝑤𝑊𝑘 ∈ ℤ (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ∃𝑘 ∈ ℤ ∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
5351, 52sylib 210 . . 3 (𝜑 → ∃𝑘 ∈ ℤ ∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)))
5422ad2antrr 714 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝐺 ∈ Grp)
553subgss 18076 . . . . . . . . . . 11 (𝑊 ∈ (SubGrp‘𝐺) → 𝑊𝐵)
5614, 55syl 17 . . . . . . . . . 10 (𝜑𝑊𝐵)
5756adantr 473 . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → 𝑊𝐵)
5857sselda 3851 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝑤𝐵)
59 simplr 757 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝑘 ∈ ℤ)
6028ad2antrr 714 . . . . . . . . 9 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → 𝐴𝐵)
613, 19mulgcl 18042 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑘 ∈ ℤ ∧ 𝐴𝐵) → (𝑘 · 𝐴) ∈ 𝐵)
6254, 59, 60, 61syl3anc 1352 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → (𝑘 · 𝐴) ∈ 𝐵)
63 pgpprm 18491 . . . . . . . . . . 11 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
64 prmz 15873 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
658, 63, 643syl 18 . . . . . . . . . 10 (𝜑𝑃 ∈ ℤ)
6618eldifad 3834 . . . . . . . . . . 11 (𝜑𝐶𝑈)
6727, 66sseldd 3852 . . . . . . . . . 10 (𝜑𝐶𝐵)
683, 19mulgcl 18042 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℤ ∧ 𝐶𝐵) → (𝑃 · 𝐶) ∈ 𝐵)
6922, 65, 67, 68syl3anc 1352 . . . . . . . . 9 (𝜑 → (𝑃 · 𝐶) ∈ 𝐵)
7069ad2antrr 714 . . . . . . . 8 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → (𝑃 · 𝐶) ∈ 𝐵)
71 eqid 2771 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
723, 71, 35grpsubadd 17986 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑤𝐵 ∧ (𝑘 · 𝐴) ∈ 𝐵 ∧ (𝑃 · 𝐶) ∈ 𝐵)) → ((𝑤(-g𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) = 𝑤))
7354, 58, 62, 70, 72syl13anc 1353 . . . . . . 7 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → ((𝑤(-g𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) = 𝑤))
74 eqcom 2778 . . . . . . 7 ((𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ (𝑤(-g𝐺)(𝑘 · 𝐴)) = (𝑃 · 𝐶))
75 eqcom 2778 . . . . . . 7 (𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) = 𝑤)
7673, 74, 753bitr4g 306 . . . . . 6 (((𝜑𝑘 ∈ ℤ) ∧ 𝑤𝑊) → ((𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ 𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴))))
7776rexbidva 3234 . . . . 5 ((𝜑𝑘 ∈ ℤ) → (∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ∃𝑤𝑊 𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴))))
78 risset 3206 . . . . 5 (((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊 ↔ ∃𝑤𝑊 𝑤 = ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)))
7977, 78syl6bbr 281 . . . 4 ((𝜑𝑘 ∈ ℤ) → (∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊))
8079rexbidva 3234 . . 3 (𝜑 → (∃𝑘 ∈ ℤ ∃𝑤𝑊 (𝑃 · 𝐶) = (𝑤(-g𝐺)(𝑘 · 𝐴)) ↔ ∃𝑘 ∈ ℤ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊))
8153, 80mpbid 224 . 2 (𝜑 → ∃𝑘 ∈ ℤ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)
828adantr 473 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑃 pGrp 𝐺)
839adantr 473 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐺 ∈ Abel)
8410adantr 473 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐵 ∈ Fin)
8511adantr 473 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑂𝐴) = 𝐸)
8612adantr 473 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑈 ∈ (SubGrp‘𝐺))
8713adantr 473 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐴𝑈)
8814adantr 473 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑊 ∈ (SubGrp‘𝐺))
8915adantr 473 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑆𝑊) = { 0 })
9016adantr 473 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → (𝑆 𝑊) ⊆ 𝑈)
9117adantr 473 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
9218adantr 473 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
93 simprl 759 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → 𝑘 ∈ ℤ)
94 simprr 761 . . 3 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)
95 eqid 2771 . . 3 (𝐶(+g𝐺)((𝑘 / 𝑃) · 𝐴)) = (𝐶(+g𝐺)((𝑘 / 𝑃) · 𝐴))
961, 2, 3, 4, 5, 6, 7, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 19, 93, 94, 95pgpfac1lem3 18961 . 2 ((𝜑 ∧ (𝑘 ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑘 · 𝐴)) ∈ 𝑊)) → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
9781, 96rexlimddv 3229 1 (𝜑 → ∃𝑡 ∈ (SubGrp‘𝐺)((𝑆𝑡) = { 0 } ∧ (𝑆 𝑡) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051  wral 3081  wrex 3082  Vcvv 3408  cdif 3819  cin 3821  wss 3822  wpss 3823  {csn 4435   class class class wbr 4925  cmpt 5004  ran crn 5404  cfv 6185  (class class class)co 6974  Fincfn 8304   / cdiv 11096  cz 11791  cprime 15869  Basecbs 16337  +gcplusg 16419  0gc0g 16567  Moorecmre 16723  mrClscmrc 16724  ACScacs 16726  Grpcgrp 17903  -gcsg 17905  .gcmg 18023  SubGrpcsubg 18069  odcod 18426  gExcgex 18427   pGrp cpgp 18428  LSSumclsm 18532  Abelcabl 18679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-inf2 8896  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-pre-sup 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-iin 4791  df-disj 4894  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-se 5363  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-isom 6194  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-2o 7904  df-oadd 7907  df-omul 7908  df-er 8087  df-ec 8089  df-qs 8093  df-map 8206  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-sup 8699  df-inf 8700  df-oi 8767  df-dju 9122  df-card 9160  df-acn 9163  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-2 11501  df-3 11502  df-n0 11706  df-xnn0 11778  df-z 11792  df-uz 12057  df-q 12161  df-rp 12203  df-fz 12707  df-fzo 12848  df-fl 12975  df-mod 13051  df-seq 13183  df-exp 13243  df-fac 13447  df-bc 13476  df-hash 13504  df-cj 14317  df-re 14318  df-im 14319  df-sqrt 14453  df-abs 14454  df-clim 14704  df-sum 14902  df-dvds 15466  df-gcd 15702  df-prm 15870  df-pc 16028  df-ndx 16340  df-slot 16341  df-base 16343  df-sets 16344  df-ress 16345  df-plusg 16432  df-0g 16569  df-mre 16727  df-mrc 16728  df-acs 16730  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-submnd 17816  df-grp 17906  df-minusg 17907  df-sbg 17908  df-mulg 18024  df-subg 18072  df-eqg 18074  df-ga 18203  df-cntz 18230  df-od 18430  df-gex 18431  df-pgp 18432  df-lsm 18534  df-cmn 18680  df-abl 18681
This theorem is referenced by:  pgpfac1lem5  18963
  Copyright terms: Public domain W3C validator