MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem3a Structured version   Visualization version   GIF version

Theorem pgpfac1lem3a 20015
Description: Lemma for pgpfac1 20019. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.w (𝜑𝑊 ∈ (SubGrp‘𝐺))
pgpfac1.i (𝜑 → (𝑆𝑊) = { 0 })
pgpfac1.ss (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
pgpfac1.2 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
pgpfac1.c (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
pgpfac1.mg · = (.g𝐺)
pgpfac1.m (𝜑𝑀 ∈ ℤ)
pgpfac1.mw (𝜑 → ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)) ∈ 𝑊)
Assertion
Ref Expression
pgpfac1lem3a (𝜑 → (𝑃𝐸𝑃𝑀))
Distinct variable groups:   𝑤,𝐴   𝑤,   𝑤,𝑃   𝑤,𝐺   𝑤,𝑈   𝑤,𝐶   𝑤,𝑆   𝑤,𝑊   𝜑,𝑤   𝑤, ·   𝑤,𝐾
Allowed substitution hints:   𝐵(𝑤)   𝐸(𝑤)   𝑀(𝑤)   𝑂(𝑤)   0 (𝑤)

Proof of Theorem pgpfac1lem3a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 pgpfac1.c . . . 4 (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
21eldifbd 3930 . . 3 (𝜑 → ¬ 𝐶 ∈ (𝑆 𝑊))
3 pgpfac1.p . . . . . . . 8 (𝜑𝑃 pGrp 𝐺)
4 pgpprm 19530 . . . . . . . 8 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
53, 4syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
6 pgpfac1.g . . . . . . . . 9 (𝜑𝐺 ∈ Abel)
7 ablgrp 19722 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
86, 7syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
9 pgpfac1.n . . . . . . . 8 (𝜑𝐵 ∈ Fin)
10 pgpfac1.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
11 pgpfac1.e . . . . . . . . 9 𝐸 = (gEx‘𝐺)
1210, 11gexcl2 19526 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∈ ℕ)
138, 9, 12syl2anc 584 . . . . . . 7 (𝜑𝐸 ∈ ℕ)
14 pceq0 16849 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) → ((𝑃 pCnt 𝐸) = 0 ↔ ¬ 𝑃𝐸))
155, 13, 14syl2anc 584 . . . . . 6 (𝜑 → ((𝑃 pCnt 𝐸) = 0 ↔ ¬ 𝑃𝐸))
16 oveq2 7398 . . . . . 6 ((𝑃 pCnt 𝐸) = 0 → (𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0))
1715, 16biimtrrdi 254 . . . . 5 (𝜑 → (¬ 𝑃𝐸 → (𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0)))
1810grpbn0 18905 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
198, 18syl 17 . . . . . . . . . . . 12 (𝜑𝐵 ≠ ∅)
20 hashnncl 14338 . . . . . . . . . . . . 13 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
219, 20syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
2219, 21mpbird 257 . . . . . . . . . . 11 (𝜑 → (♯‘𝐵) ∈ ℕ)
235, 22pccld 16828 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0)
2410, 11gexdvds3 19527 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∥ (♯‘𝐵))
258, 9, 24syl2anc 584 . . . . . . . . . . 11 (𝜑𝐸 ∥ (♯‘𝐵))
2610pgphash 19544 . . . . . . . . . . . 12 ((𝑃 pGrp 𝐺𝐵 ∈ Fin) → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
273, 9, 26syl2anc 584 . . . . . . . . . . 11 (𝜑 → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
2825, 27breqtrd 5136 . . . . . . . . . 10 (𝜑𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵))))
29 oveq2 7398 . . . . . . . . . . . 12 (𝑘 = (𝑃 pCnt (♯‘𝐵)) → (𝑃𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
3029breq2d 5122 . . . . . . . . . . 11 (𝑘 = (𝑃 pCnt (♯‘𝐵)) → (𝐸 ∥ (𝑃𝑘) ↔ 𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
3130rspcev 3591 . . . . . . . . . 10 (((𝑃 pCnt (♯‘𝐵)) ∈ ℕ0𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))) → ∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘))
3223, 28, 31syl2anc 584 . . . . . . . . 9 (𝜑 → ∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘))
33 pcprmpw2 16860 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) → (∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘) ↔ 𝐸 = (𝑃↑(𝑃 pCnt 𝐸))))
345, 13, 33syl2anc 584 . . . . . . . . 9 (𝜑 → (∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘) ↔ 𝐸 = (𝑃↑(𝑃 pCnt 𝐸))))
3532, 34mpbid 232 . . . . . . . 8 (𝜑𝐸 = (𝑃↑(𝑃 pCnt 𝐸)))
3635eqcomd 2736 . . . . . . 7 (𝜑 → (𝑃↑(𝑃 pCnt 𝐸)) = 𝐸)
37 prmnn 16651 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
385, 37syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
3938nncnd 12209 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
4039exp0d 14112 . . . . . . 7 (𝜑 → (𝑃↑0) = 1)
4136, 40eqeq12d 2746 . . . . . 6 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0) ↔ 𝐸 = 1))
428grpmndd 18885 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
4310, 11gex1 19528 . . . . . . 7 (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝐵 ≈ 1o))
4442, 43syl 17 . . . . . 6 (𝜑 → (𝐸 = 1 ↔ 𝐵 ≈ 1o))
4541, 44bitrd 279 . . . . 5 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0) ↔ 𝐵 ≈ 1o))
4617, 45sylibd 239 . . . 4 (𝜑 → (¬ 𝑃𝐸𝐵 ≈ 1o))
47 pgpfac1.s . . . . . . . . . . 11 𝑆 = (𝐾‘{𝐴})
4810subgacs 19100 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
498, 48syl 17 . . . . . . . . . . . . 13 (𝜑 → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
5049acsmred 17624 . . . . . . . . . . . 12 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
51 pgpfac1.u . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ (SubGrp‘𝐺))
5210subgss 19066 . . . . . . . . . . . . . 14 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
5351, 52syl 17 . . . . . . . . . . . . 13 (𝜑𝑈𝐵)
54 pgpfac1.au . . . . . . . . . . . . 13 (𝜑𝐴𝑈)
5553, 54sseldd 3950 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
56 pgpfac1.k . . . . . . . . . . . . 13 𝐾 = (mrCls‘(SubGrp‘𝐺))
5756mrcsncl 17580 . . . . . . . . . . . 12 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
5850, 55, 57syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
5947, 58eqeltrid 2833 . . . . . . . . . 10 (𝜑𝑆 ∈ (SubGrp‘𝐺))
60 pgpfac1.w . . . . . . . . . 10 (𝜑𝑊 ∈ (SubGrp‘𝐺))
61 pgpfac1.l . . . . . . . . . . 11 = (LSSum‘𝐺)
6261lsmsubg2 19796 . . . . . . . . . 10 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
636, 59, 60, 62syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
64 pgpfac1.z . . . . . . . . . 10 0 = (0g𝐺)
6564subg0cl 19073 . . . . . . . . 9 ((𝑆 𝑊) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆 𝑊))
6663, 65syl 17 . . . . . . . 8 (𝜑0 ∈ (𝑆 𝑊))
6766snssd 4776 . . . . . . 7 (𝜑 → { 0 } ⊆ (𝑆 𝑊))
6867adantr 480 . . . . . 6 ((𝜑𝐵 ≈ 1o) → { 0 } ⊆ (𝑆 𝑊))
691eldifad 3929 . . . . . . . . 9 (𝜑𝐶𝑈)
7053, 69sseldd 3950 . . . . . . . 8 (𝜑𝐶𝐵)
7170adantr 480 . . . . . . 7 ((𝜑𝐵 ≈ 1o) → 𝐶𝐵)
7210, 64grpidcl 18904 . . . . . . . . 9 (𝐺 ∈ Grp → 0𝐵)
738, 72syl 17 . . . . . . . 8 (𝜑0𝐵)
74 en1eqsn 9226 . . . . . . . 8 (( 0𝐵𝐵 ≈ 1o) → 𝐵 = { 0 })
7573, 74sylan 580 . . . . . . 7 ((𝜑𝐵 ≈ 1o) → 𝐵 = { 0 })
7671, 75eleqtrd 2831 . . . . . 6 ((𝜑𝐵 ≈ 1o) → 𝐶 ∈ { 0 })
7768, 76sseldd 3950 . . . . 5 ((𝜑𝐵 ≈ 1o) → 𝐶 ∈ (𝑆 𝑊))
7877ex 412 . . . 4 (𝜑 → (𝐵 ≈ 1o𝐶 ∈ (𝑆 𝑊)))
7946, 78syld 47 . . 3 (𝜑 → (¬ 𝑃𝐸𝐶 ∈ (𝑆 𝑊)))
802, 79mt3d 148 . 2 (𝜑𝑃𝐸)
81 pgpfac1.oe . . . . 5 (𝜑 → (𝑂𝐴) = 𝐸)
8213nncnd 12209 . . . . . 6 (𝜑𝐸 ∈ ℂ)
8338nnne0d 12243 . . . . . 6 (𝜑𝑃 ≠ 0)
8482, 39, 83divcan1d 11966 . . . . 5 (𝜑 → ((𝐸 / 𝑃) · 𝑃) = 𝐸)
8581, 84eqtr4d 2768 . . . 4 (𝜑 → (𝑂𝐴) = ((𝐸 / 𝑃) · 𝑃))
86 nndivdvds 16238 . . . . . . . . . . . . 13 ((𝐸 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑃𝐸 ↔ (𝐸 / 𝑃) ∈ ℕ))
8713, 38, 86syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑃𝐸 ↔ (𝐸 / 𝑃) ∈ ℕ))
8880, 87mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑃) ∈ ℕ)
8988nnzd 12563 . . . . . . . . . 10 (𝜑 → (𝐸 / 𝑃) ∈ ℤ)
90 pgpfac1.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
9189, 90zmulcld 12651 . . . . . . . . 9 (𝜑 → ((𝐸 / 𝑃) · 𝑀) ∈ ℤ)
9255snssd 4776 . . . . . . . . . . . 12 (𝜑 → {𝐴} ⊆ 𝐵)
9350, 56, 92mrcssidd 17593 . . . . . . . . . . 11 (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴}))
9493, 47sseqtrrdi 3991 . . . . . . . . . 10 (𝜑 → {𝐴} ⊆ 𝑆)
95 snssg 4750 . . . . . . . . . . 11 (𝐴𝑈 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
9654, 95syl 17 . . . . . . . . . 10 (𝜑 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
9794, 96mpbird 257 . . . . . . . . 9 (𝜑𝐴𝑆)
98 pgpfac1.mg . . . . . . . . . 10 · = (.g𝐺)
9998subgmulgcl 19078 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ((𝐸 / 𝑃) · 𝑀) ∈ ℤ ∧ 𝐴𝑆) → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑆)
10059, 91, 97, 99syl3anc 1373 . . . . . . . 8 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑆)
101 prmz 16652 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1025, 101syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℤ)
10310, 98mulgcl 19030 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℤ ∧ 𝐶𝐵) → (𝑃 · 𝐶) ∈ 𝐵)
1048, 102, 70, 103syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑃 · 𝐶) ∈ 𝐵)
10510, 98mulgcl 19030 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝐴𝐵) → (𝑀 · 𝐴) ∈ 𝐵)
1068, 90, 55, 105syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑀 · 𝐴) ∈ 𝐵)
107 eqid 2730 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
10810, 98, 107mulgdi 19763 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ (𝑃 · 𝐶) ∈ 𝐵 ∧ (𝑀 · 𝐴) ∈ 𝐵)) → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴))))
1096, 89, 104, 106, 108syl13anc 1374 . . . . . . . . . 10 (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴))))
11084oveq1d 7405 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = (𝐸 · 𝐶))
11110, 98mulgass 19050 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝐶𝐵)) → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = ((𝐸 / 𝑃) · (𝑃 · 𝐶)))
1128, 89, 102, 70, 111syl13anc 1374 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = ((𝐸 / 𝑃) · (𝑃 · 𝐶)))
11310, 11, 98, 64gexid 19518 . . . . . . . . . . . . 13 (𝐶𝐵 → (𝐸 · 𝐶) = 0 )
11470, 113syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐸 · 𝐶) = 0 )
115110, 112, 1143eqtr3rd 2774 . . . . . . . . . . 11 (𝜑0 = ((𝐸 / 𝑃) · (𝑃 · 𝐶)))
11610, 98mulgass 19050 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐴𝐵)) → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = ((𝐸 / 𝑃) · (𝑀 · 𝐴)))
1178, 89, 90, 55, 116syl13anc 1374 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = ((𝐸 / 𝑃) · (𝑀 · 𝐴)))
118115, 117oveq12d 7408 . . . . . . . . . 10 (𝜑 → ( 0 (+g𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴))))
11910subgss 19066 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
12059, 119syl 17 . . . . . . . . . . . 12 (𝜑𝑆𝐵)
121120, 100sseldd 3950 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝐵)
12210, 107, 64grplid 18906 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝐵) → ( 0 (+g𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · 𝑀) · 𝐴))
1238, 121, 122syl2anc 584 . . . . . . . . . 10 (𝜑 → ( 0 (+g𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · 𝑀) · 𝐴))
124109, 118, 1233eqtr2d 2771 . . . . . . . . 9 (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · 𝑀) · 𝐴))
125 pgpfac1.mw . . . . . . . . . 10 (𝜑 → ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)) ∈ 𝑊)
12698subgmulgcl 19078 . . . . . . . . . 10 ((𝑊 ∈ (SubGrp‘𝐺) ∧ (𝐸 / 𝑃) ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)) ∈ 𝑊) → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) ∈ 𝑊)
12760, 89, 125, 126syl3anc 1373 . . . . . . . . 9 (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) ∈ 𝑊)
128124, 127eqeltrrd 2830 . . . . . . . 8 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑊)
129100, 128elind 4166 . . . . . . 7 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ (𝑆𝑊))
130 pgpfac1.i . . . . . . 7 (𝜑 → (𝑆𝑊) = { 0 })
131129, 130eleqtrd 2831 . . . . . 6 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ { 0 })
132 elsni 4609 . . . . . 6 ((((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ { 0 } → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 )
133131, 132syl 17 . . . . 5 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 )
134 pgpfac1.o . . . . . . 7 𝑂 = (od‘𝐺)
13510, 134, 98, 64oddvds 19484 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝐵 ∧ ((𝐸 / 𝑃) · 𝑀) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 ))
1368, 55, 91, 135syl3anc 1373 . . . . 5 (𝜑 → ((𝑂𝐴) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 ))
137133, 136mpbird 257 . . . 4 (𝜑 → (𝑂𝐴) ∥ ((𝐸 / 𝑃) · 𝑀))
13885, 137eqbrtrrd 5134 . . 3 (𝜑 → ((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀))
13988nnne0d 12243 . . . 4 (𝜑 → (𝐸 / 𝑃) ≠ 0)
140 dvdscmulr 16261 . . . 4 ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ (𝐸 / 𝑃) ≠ 0)) → (((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ 𝑃𝑀))
141102, 90, 89, 139, 140syl112anc 1376 . . 3 (𝜑 → (((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ 𝑃𝑀))
142138, 141mpbid 232 . 2 (𝜑𝑃𝑀)
14380, 142jca 511 1 (𝜑 → (𝑃𝐸𝑃𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  cin 3916  wss 3917  wpss 3918  c0 4299  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  1oc1o 8430  cen 8918  Fincfn 8921  0cc0 11075  1c1 11076   · cmul 11080   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  cexp 14033  chash 14302  cdvds 16229  cprime 16648   pCnt cpc 16814  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Moorecmre 17550  mrClscmrc 17551  ACScacs 17553  Mndcmnd 18668  Grpcgrp 18872  .gcmg 19006  SubGrpcsubg 19059  odcod 19461  gExcgex 19462   pGrp cpgp 19463  LSSumclsm 19571  Abelcabl 19718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-eqg 19064  df-ga 19229  df-cntz 19256  df-od 19465  df-gex 19466  df-pgp 19467  df-lsm 19573  df-cmn 19719  df-abl 19720
This theorem is referenced by:  pgpfac1lem3  20016
  Copyright terms: Public domain W3C validator