MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem3a Structured version   Visualization version   GIF version

Theorem pgpfac1lem3a 18830
Description: Lemma for pgpfac1 18834. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.w (𝜑𝑊 ∈ (SubGrp‘𝐺))
pgpfac1.i (𝜑 → (𝑆𝑊) = { 0 })
pgpfac1.ss (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
pgpfac1.2 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
pgpfac1.c (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
pgpfac1.mg · = (.g𝐺)
pgpfac1.m (𝜑𝑀 ∈ ℤ)
pgpfac1.mw (𝜑 → ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)) ∈ 𝑊)
Assertion
Ref Expression
pgpfac1lem3a (𝜑 → (𝑃𝐸𝑃𝑀))
Distinct variable groups:   𝑤,𝐴   𝑤,   𝑤,𝑃   𝑤,𝐺   𝑤,𝑈   𝑤,𝐶   𝑤,𝑆   𝑤,𝑊   𝜑,𝑤   𝑤, ·   𝑤,𝐾
Allowed substitution hints:   𝐵(𝑤)   𝐸(𝑤)   𝑀(𝑤)   𝑂(𝑤)   0 (𝑤)

Proof of Theorem pgpfac1lem3a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 pgpfac1.c . . . 4 (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
21eldifbd 3812 . . 3 (𝜑 → ¬ 𝐶 ∈ (𝑆 𝑊))
3 pgpfac1.p . . . . . . . 8 (𝜑𝑃 pGrp 𝐺)
4 pgpprm 18360 . . . . . . . 8 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
53, 4syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
6 pgpfac1.g . . . . . . . . 9 (𝜑𝐺 ∈ Abel)
7 ablgrp 18552 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
86, 7syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
9 pgpfac1.n . . . . . . . 8 (𝜑𝐵 ∈ Fin)
10 pgpfac1.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
11 pgpfac1.e . . . . . . . . 9 𝐸 = (gEx‘𝐺)
1210, 11gexcl2 18356 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∈ ℕ)
138, 9, 12syl2anc 581 . . . . . . 7 (𝜑𝐸 ∈ ℕ)
14 pceq0 15947 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) → ((𝑃 pCnt 𝐸) = 0 ↔ ¬ 𝑃𝐸))
155, 13, 14syl2anc 581 . . . . . 6 (𝜑 → ((𝑃 pCnt 𝐸) = 0 ↔ ¬ 𝑃𝐸))
16 oveq2 6914 . . . . . 6 ((𝑃 pCnt 𝐸) = 0 → (𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0))
1715, 16syl6bir 246 . . . . 5 (𝜑 → (¬ 𝑃𝐸 → (𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0)))
1810grpbn0 17806 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
198, 18syl 17 . . . . . . . . . . . 12 (𝜑𝐵 ≠ ∅)
20 hashnncl 13448 . . . . . . . . . . . . 13 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
219, 20syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
2219, 21mpbird 249 . . . . . . . . . . 11 (𝜑 → (♯‘𝐵) ∈ ℕ)
235, 22pccld 15927 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0)
2410, 11gexdvds3 18357 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∥ (♯‘𝐵))
258, 9, 24syl2anc 581 . . . . . . . . . . 11 (𝜑𝐸 ∥ (♯‘𝐵))
2610pgphash 18374 . . . . . . . . . . . 12 ((𝑃 pGrp 𝐺𝐵 ∈ Fin) → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
273, 9, 26syl2anc 581 . . . . . . . . . . 11 (𝜑 → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
2825, 27breqtrd 4900 . . . . . . . . . 10 (𝜑𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵))))
29 oveq2 6914 . . . . . . . . . . . 12 (𝑘 = (𝑃 pCnt (♯‘𝐵)) → (𝑃𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
3029breq2d 4886 . . . . . . . . . . 11 (𝑘 = (𝑃 pCnt (♯‘𝐵)) → (𝐸 ∥ (𝑃𝑘) ↔ 𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
3130rspcev 3527 . . . . . . . . . 10 (((𝑃 pCnt (♯‘𝐵)) ∈ ℕ0𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))) → ∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘))
3223, 28, 31syl2anc 581 . . . . . . . . 9 (𝜑 → ∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘))
33 pcprmpw2 15958 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) → (∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘) ↔ 𝐸 = (𝑃↑(𝑃 pCnt 𝐸))))
345, 13, 33syl2anc 581 . . . . . . . . 9 (𝜑 → (∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘) ↔ 𝐸 = (𝑃↑(𝑃 pCnt 𝐸))))
3532, 34mpbid 224 . . . . . . . 8 (𝜑𝐸 = (𝑃↑(𝑃 pCnt 𝐸)))
3635eqcomd 2832 . . . . . . 7 (𝜑 → (𝑃↑(𝑃 pCnt 𝐸)) = 𝐸)
37 prmnn 15761 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
385, 37syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
3938nncnd 11369 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
4039exp0d 13297 . . . . . . 7 (𝜑 → (𝑃↑0) = 1)
4136, 40eqeq12d 2841 . . . . . 6 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0) ↔ 𝐸 = 1))
42 grpmnd 17784 . . . . . . . 8 (𝐺 ∈ Grp → 𝐺 ∈ Mnd)
438, 42syl 17 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
4410, 11gex1 18358 . . . . . . 7 (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝐵 ≈ 1o))
4543, 44syl 17 . . . . . 6 (𝜑 → (𝐸 = 1 ↔ 𝐵 ≈ 1o))
4641, 45bitrd 271 . . . . 5 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0) ↔ 𝐵 ≈ 1o))
4717, 46sylibd 231 . . . 4 (𝜑 → (¬ 𝑃𝐸𝐵 ≈ 1o))
48 pgpfac1.s . . . . . . . . . . 11 𝑆 = (𝐾‘{𝐴})
4910subgacs 17981 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
508, 49syl 17 . . . . . . . . . . . . 13 (𝜑 → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
5150acsmred 16670 . . . . . . . . . . . 12 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
52 pgpfac1.u . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ (SubGrp‘𝐺))
5310subgss 17947 . . . . . . . . . . . . . 14 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
5452, 53syl 17 . . . . . . . . . . . . 13 (𝜑𝑈𝐵)
55 pgpfac1.au . . . . . . . . . . . . 13 (𝜑𝐴𝑈)
5654, 55sseldd 3829 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
57 pgpfac1.k . . . . . . . . . . . . 13 𝐾 = (mrCls‘(SubGrp‘𝐺))
5857mrcsncl 16626 . . . . . . . . . . . 12 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
5951, 56, 58syl2anc 581 . . . . . . . . . . 11 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
6048, 59syl5eqel 2911 . . . . . . . . . 10 (𝜑𝑆 ∈ (SubGrp‘𝐺))
61 pgpfac1.w . . . . . . . . . 10 (𝜑𝑊 ∈ (SubGrp‘𝐺))
62 pgpfac1.l . . . . . . . . . . 11 = (LSSum‘𝐺)
6362lsmsubg2 18616 . . . . . . . . . 10 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
646, 60, 61, 63syl3anc 1496 . . . . . . . . 9 (𝜑 → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
65 pgpfac1.z . . . . . . . . . 10 0 = (0g𝐺)
6665subg0cl 17954 . . . . . . . . 9 ((𝑆 𝑊) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆 𝑊))
6764, 66syl 17 . . . . . . . 8 (𝜑0 ∈ (𝑆 𝑊))
6867snssd 4559 . . . . . . 7 (𝜑 → { 0 } ⊆ (𝑆 𝑊))
6968adantr 474 . . . . . 6 ((𝜑𝐵 ≈ 1o) → { 0 } ⊆ (𝑆 𝑊))
701eldifad 3811 . . . . . . . . 9 (𝜑𝐶𝑈)
7154, 70sseldd 3829 . . . . . . . 8 (𝜑𝐶𝐵)
7271adantr 474 . . . . . . 7 ((𝜑𝐵 ≈ 1o) → 𝐶𝐵)
7310, 65grpidcl 17805 . . . . . . . . 9 (𝐺 ∈ Grp → 0𝐵)
748, 73syl 17 . . . . . . . 8 (𝜑0𝐵)
75 en1eqsn 8460 . . . . . . . 8 (( 0𝐵𝐵 ≈ 1o) → 𝐵 = { 0 })
7674, 75sylan 577 . . . . . . 7 ((𝜑𝐵 ≈ 1o) → 𝐵 = { 0 })
7772, 76eleqtrd 2909 . . . . . 6 ((𝜑𝐵 ≈ 1o) → 𝐶 ∈ { 0 })
7869, 77sseldd 3829 . . . . 5 ((𝜑𝐵 ≈ 1o) → 𝐶 ∈ (𝑆 𝑊))
7978ex 403 . . . 4 (𝜑 → (𝐵 ≈ 1o𝐶 ∈ (𝑆 𝑊)))
8047, 79syld 47 . . 3 (𝜑 → (¬ 𝑃𝐸𝐶 ∈ (𝑆 𝑊)))
812, 80mt3d 143 . 2 (𝜑𝑃𝐸)
82 pgpfac1.oe . . . . 5 (𝜑 → (𝑂𝐴) = 𝐸)
8313nncnd 11369 . . . . . 6 (𝜑𝐸 ∈ ℂ)
8438nnne0d 11402 . . . . . 6 (𝜑𝑃 ≠ 0)
8583, 39, 84divcan1d 11129 . . . . 5 (𝜑 → ((𝐸 / 𝑃) · 𝑃) = 𝐸)
8682, 85eqtr4d 2865 . . . 4 (𝜑 → (𝑂𝐴) = ((𝐸 / 𝑃) · 𝑃))
87 nndivdvds 15367 . . . . . . . . . . . . 13 ((𝐸 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑃𝐸 ↔ (𝐸 / 𝑃) ∈ ℕ))
8813, 38, 87syl2anc 581 . . . . . . . . . . . 12 (𝜑 → (𝑃𝐸 ↔ (𝐸 / 𝑃) ∈ ℕ))
8981, 88mpbid 224 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑃) ∈ ℕ)
9089nnzd 11810 . . . . . . . . . 10 (𝜑 → (𝐸 / 𝑃) ∈ ℤ)
91 pgpfac1.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
9290, 91zmulcld 11817 . . . . . . . . 9 (𝜑 → ((𝐸 / 𝑃) · 𝑀) ∈ ℤ)
9356snssd 4559 . . . . . . . . . . . 12 (𝜑 → {𝐴} ⊆ 𝐵)
9451, 57, 93mrcssidd 16639 . . . . . . . . . . 11 (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴}))
9594, 48syl6sseqr 3878 . . . . . . . . . 10 (𝜑 → {𝐴} ⊆ 𝑆)
96 snssg 4535 . . . . . . . . . . 11 (𝐴𝑈 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
9755, 96syl 17 . . . . . . . . . 10 (𝜑 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
9895, 97mpbird 249 . . . . . . . . 9 (𝜑𝐴𝑆)
99 pgpfac1.mg . . . . . . . . . 10 · = (.g𝐺)
10099subgmulgcl 17959 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ((𝐸 / 𝑃) · 𝑀) ∈ ℤ ∧ 𝐴𝑆) → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑆)
10160, 92, 98, 100syl3anc 1496 . . . . . . . 8 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑆)
102 prmz 15762 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1035, 102syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℤ)
10410, 99mulgcl 17913 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℤ ∧ 𝐶𝐵) → (𝑃 · 𝐶) ∈ 𝐵)
1058, 103, 71, 104syl3anc 1496 . . . . . . . . . . 11 (𝜑 → (𝑃 · 𝐶) ∈ 𝐵)
10610, 99mulgcl 17913 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝐴𝐵) → (𝑀 · 𝐴) ∈ 𝐵)
1078, 91, 56, 106syl3anc 1496 . . . . . . . . . . 11 (𝜑 → (𝑀 · 𝐴) ∈ 𝐵)
108 eqid 2826 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
10910, 99, 108mulgdi 18586 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ (𝑃 · 𝐶) ∈ 𝐵 ∧ (𝑀 · 𝐴) ∈ 𝐵)) → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴))))
1106, 90, 105, 107, 109syl13anc 1497 . . . . . . . . . 10 (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴))))
11185oveq1d 6921 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = (𝐸 · 𝐶))
11210, 99mulgass 17931 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝐶𝐵)) → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = ((𝐸 / 𝑃) · (𝑃 · 𝐶)))
1138, 90, 103, 71, 112syl13anc 1497 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = ((𝐸 / 𝑃) · (𝑃 · 𝐶)))
11410, 11, 99, 65gexid 18348 . . . . . . . . . . . . 13 (𝐶𝐵 → (𝐸 · 𝐶) = 0 )
11571, 114syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐸 · 𝐶) = 0 )
116111, 113, 1153eqtr3rd 2871 . . . . . . . . . . 11 (𝜑0 = ((𝐸 / 𝑃) · (𝑃 · 𝐶)))
11710, 99mulgass 17931 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐴𝐵)) → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = ((𝐸 / 𝑃) · (𝑀 · 𝐴)))
1188, 90, 91, 56, 117syl13anc 1497 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = ((𝐸 / 𝑃) · (𝑀 · 𝐴)))
119116, 118oveq12d 6924 . . . . . . . . . 10 (𝜑 → ( 0 (+g𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴))))
12010subgss 17947 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
12160, 120syl 17 . . . . . . . . . . . 12 (𝜑𝑆𝐵)
122121, 101sseldd 3829 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝐵)
12310, 108, 65grplid 17807 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝐵) → ( 0 (+g𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · 𝑀) · 𝐴))
1248, 122, 123syl2anc 581 . . . . . . . . . 10 (𝜑 → ( 0 (+g𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · 𝑀) · 𝐴))
125110, 119, 1243eqtr2d 2868 . . . . . . . . 9 (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · 𝑀) · 𝐴))
126 pgpfac1.mw . . . . . . . . . 10 (𝜑 → ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)) ∈ 𝑊)
12799subgmulgcl 17959 . . . . . . . . . 10 ((𝑊 ∈ (SubGrp‘𝐺) ∧ (𝐸 / 𝑃) ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)) ∈ 𝑊) → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) ∈ 𝑊)
12861, 90, 126, 127syl3anc 1496 . . . . . . . . 9 (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) ∈ 𝑊)
129125, 128eqeltrrd 2908 . . . . . . . 8 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑊)
130101, 129elind 4026 . . . . . . 7 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ (𝑆𝑊))
131 pgpfac1.i . . . . . . 7 (𝜑 → (𝑆𝑊) = { 0 })
132130, 131eleqtrd 2909 . . . . . 6 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ { 0 })
133 elsni 4415 . . . . . 6 ((((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ { 0 } → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 )
134132, 133syl 17 . . . . 5 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 )
135 pgpfac1.o . . . . . . 7 𝑂 = (od‘𝐺)
13610, 135, 99, 65oddvds 18318 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝐵 ∧ ((𝐸 / 𝑃) · 𝑀) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 ))
1378, 56, 92, 136syl3anc 1496 . . . . 5 (𝜑 → ((𝑂𝐴) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 ))
138134, 137mpbird 249 . . . 4 (𝜑 → (𝑂𝐴) ∥ ((𝐸 / 𝑃) · 𝑀))
13986, 138eqbrtrrd 4898 . . 3 (𝜑 → ((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀))
14089nnne0d 11402 . . . 4 (𝜑 → (𝐸 / 𝑃) ≠ 0)
141 dvdscmulr 15388 . . . 4 ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ (𝐸 / 𝑃) ≠ 0)) → (((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ 𝑃𝑀))
142103, 91, 90, 140, 141syl112anc 1499 . . 3 (𝜑 → (((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ 𝑃𝑀))
143139, 142mpbid 224 . 2 (𝜑𝑃𝑀)
14481, 143jca 509 1 (𝜑 → (𝑃𝐸𝑃𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wne 3000  wral 3118  wrex 3119  cdif 3796  cin 3798  wss 3799  wpss 3800  c0 4145  {csn 4398   class class class wbr 4874  cfv 6124  (class class class)co 6906  1oc1o 7820  cen 8220  Fincfn 8223  0cc0 10253  1c1 10254   · cmul 10258   / cdiv 11010  cn 11351  0cn0 11619  cz 11705  cexp 13155  chash 13411  cdvds 15358  cprime 15758   pCnt cpc 15913  Basecbs 16223  +gcplusg 16306  0gc0g 16454  Moorecmre 16596  mrClscmrc 16597  ACScacs 16599  Mndcmnd 17648  Grpcgrp 17777  .gcmg 17895  SubGrpcsubg 17940  odcod 18296  gExcgex 18297   pGrp cpgp 18298  LSSumclsm 18401  Abelcabl 18548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-inf2 8816  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330  ax-pre-sup 10331
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-iin 4744  df-disj 4843  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-se 5303  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-isom 6133  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-2o 7828  df-oadd 7831  df-omul 7832  df-er 8010  df-ec 8012  df-qs 8016  df-map 8125  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-sup 8618  df-inf 8619  df-oi 8685  df-card 9079  df-acn 9082  df-cda 9306  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-div 11011  df-nn 11352  df-2 11415  df-3 11416  df-n0 11620  df-xnn0 11692  df-z 11706  df-uz 11970  df-q 12073  df-rp 12114  df-fz 12621  df-fzo 12762  df-fl 12889  df-mod 12965  df-seq 13097  df-exp 13156  df-fac 13355  df-bc 13384  df-hash 13412  df-cj 14217  df-re 14218  df-im 14219  df-sqrt 14353  df-abs 14354  df-clim 14597  df-sum 14795  df-dvds 15359  df-gcd 15591  df-prm 15759  df-pc 15914  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-ress 16231  df-plusg 16319  df-0g 16456  df-mre 16600  df-mrc 16601  df-acs 16603  df-mgm 17596  df-sgrp 17638  df-mnd 17649  df-submnd 17690  df-grp 17780  df-minusg 17781  df-sbg 17782  df-mulg 17896  df-subg 17943  df-eqg 17945  df-ga 18074  df-cntz 18101  df-od 18300  df-gex 18301  df-pgp 18302  df-lsm 18403  df-cmn 18549  df-abl 18550
This theorem is referenced by:  pgpfac1lem3  18831
  Copyright terms: Public domain W3C validator