Step | Hyp | Ref
| Expression |
1 | | pgpfac1.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) |
2 | 1 | eldifbd 3812 |
. . 3
⊢ (𝜑 → ¬ 𝐶 ∈ (𝑆 ⊕ 𝑊)) |
3 | | pgpfac1.p |
. . . . . . . 8
⊢ (𝜑 → 𝑃 pGrp 𝐺) |
4 | | pgpprm 18360 |
. . . . . . . 8
⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
5 | 3, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ ℙ) |
6 | | pgpfac1.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ Abel) |
7 | | ablgrp 18552 |
. . . . . . . . 9
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
8 | 6, 7 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Grp) |
9 | | pgpfac1.n |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ Fin) |
10 | | pgpfac1.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) |
11 | | pgpfac1.e |
. . . . . . . . 9
⊢ 𝐸 = (gEx‘𝐺) |
12 | 10, 11 | gexcl2 18356 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∈
ℕ) |
13 | 8, 9, 12 | syl2anc 581 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ ℕ) |
14 | | pceq0 15947 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) → ((𝑃 pCnt 𝐸) = 0 ↔ ¬ 𝑃 ∥ 𝐸)) |
15 | 5, 13, 14 | syl2anc 581 |
. . . . . 6
⊢ (𝜑 → ((𝑃 pCnt 𝐸) = 0 ↔ ¬ 𝑃 ∥ 𝐸)) |
16 | | oveq2 6914 |
. . . . . 6
⊢ ((𝑃 pCnt 𝐸) = 0 → (𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0)) |
17 | 15, 16 | syl6bir 246 |
. . . . 5
⊢ (𝜑 → (¬ 𝑃 ∥ 𝐸 → (𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0))) |
18 | 10 | grpbn0 17806 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
19 | 8, 18 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ≠ ∅) |
20 | | hashnncl 13448 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ Fin →
((♯‘𝐵) ∈
ℕ ↔ 𝐵 ≠
∅)) |
21 | 9, 20 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅)) |
22 | 19, 21 | mpbird 249 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐵) ∈
ℕ) |
23 | 5, 22 | pccld 15927 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 pCnt (♯‘𝐵)) ∈
ℕ0) |
24 | 10, 11 | gexdvds3 18357 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∥ (♯‘𝐵)) |
25 | 8, 9, 24 | syl2anc 581 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∥ (♯‘𝐵)) |
26 | 10 | pgphash 18374 |
. . . . . . . . . . . 12
⊢ ((𝑃 pGrp 𝐺 ∧ 𝐵 ∈ Fin) → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
27 | 3, 9, 26 | syl2anc 581 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
28 | 25, 27 | breqtrd 4900 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
29 | | oveq2 6914 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑃 pCnt (♯‘𝐵)) → (𝑃↑𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
30 | 29 | breq2d 4886 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑃 pCnt (♯‘𝐵)) → (𝐸 ∥ (𝑃↑𝑘) ↔ 𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵))))) |
31 | 30 | rspcev 3527 |
. . . . . . . . . 10
⊢ (((𝑃 pCnt (♯‘𝐵)) ∈ ℕ0
∧ 𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))) → ∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃↑𝑘)) |
32 | 23, 28, 31 | syl2anc 581 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃↑𝑘)) |
33 | | pcprmpw2 15958 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) →
(∃𝑘 ∈
ℕ0 𝐸
∥ (𝑃↑𝑘) ↔ 𝐸 = (𝑃↑(𝑃 pCnt 𝐸)))) |
34 | 5, 13, 33 | syl2anc 581 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃↑𝑘) ↔ 𝐸 = (𝑃↑(𝑃 pCnt 𝐸)))) |
35 | 32, 34 | mpbid 224 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 = (𝑃↑(𝑃 pCnt 𝐸))) |
36 | 35 | eqcomd 2832 |
. . . . . . 7
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝐸)) = 𝐸) |
37 | | prmnn 15761 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
38 | 5, 37 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℕ) |
39 | 38 | nncnd 11369 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℂ) |
40 | 39 | exp0d 13297 |
. . . . . . 7
⊢ (𝜑 → (𝑃↑0) = 1) |
41 | 36, 40 | eqeq12d 2841 |
. . . . . 6
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0) ↔ 𝐸 = 1)) |
42 | | grpmnd 17784 |
. . . . . . . 8
⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) |
43 | 8, 42 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Mnd) |
44 | 10, 11 | gex1 18358 |
. . . . . . 7
⊢ (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝐵 ≈ 1o)) |
45 | 43, 44 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐸 = 1 ↔ 𝐵 ≈ 1o)) |
46 | 41, 45 | bitrd 271 |
. . . . 5
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0) ↔ 𝐵 ≈ 1o)) |
47 | 17, 46 | sylibd 231 |
. . . 4
⊢ (𝜑 → (¬ 𝑃 ∥ 𝐸 → 𝐵 ≈ 1o)) |
48 | | pgpfac1.s |
. . . . . . . . . . 11
⊢ 𝑆 = (𝐾‘{𝐴}) |
49 | 10 | subgacs 17981 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘𝐵)) |
50 | 8, 49 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (SubGrp‘𝐺) ∈ (ACS‘𝐵)) |
51 | 50 | acsmred 16670 |
. . . . . . . . . . . 12
⊢ (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵)) |
52 | | pgpfac1.u |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
53 | 10 | subgss 17947 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ 𝐵) |
54 | 52, 53 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
55 | | pgpfac1.au |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
56 | 54, 55 | sseldd 3829 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
57 | | pgpfac1.k |
. . . . . . . . . . . . 13
⊢ 𝐾 =
(mrCls‘(SubGrp‘𝐺)) |
58 | 57 | mrcsncl 16626 |
. . . . . . . . . . . 12
⊢
(((SubGrp‘𝐺)
∈ (Moore‘𝐵)
∧ 𝐴 ∈ 𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
59 | 51, 56, 58 | syl2anc 581 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
60 | 48, 59 | syl5eqel 2911 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
61 | | pgpfac1.w |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) |
62 | | pgpfac1.l |
. . . . . . . . . . 11
⊢ ⊕ =
(LSSum‘𝐺) |
63 | 62 | lsmsubg2 18616 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 ⊕ 𝑊) ∈ (SubGrp‘𝐺)) |
64 | 6, 60, 61, 63 | syl3anc 1496 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ⊕ 𝑊) ∈ (SubGrp‘𝐺)) |
65 | | pgpfac1.z |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝐺) |
66 | 65 | subg0cl 17954 |
. . . . . . . . 9
⊢ ((𝑆 ⊕ 𝑊) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆 ⊕ 𝑊)) |
67 | 64, 66 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ (𝑆 ⊕ 𝑊)) |
68 | 67 | snssd 4559 |
. . . . . . 7
⊢ (𝜑 → { 0 } ⊆ (𝑆 ⊕ 𝑊)) |
69 | 68 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≈ 1o) → { 0 } ⊆
(𝑆 ⊕ 𝑊)) |
70 | 1 | eldifad 3811 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ 𝑈) |
71 | 54, 70 | sseldd 3829 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ 𝐵) |
72 | 71 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ≈ 1o) → 𝐶 ∈ 𝐵) |
73 | 10, 65 | grpidcl 17805 |
. . . . . . . . 9
⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
74 | 8, 73 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ 𝐵) |
75 | | en1eqsn 8460 |
. . . . . . . 8
⊢ (( 0 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = { 0 }) |
76 | 74, 75 | sylan 577 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ≈ 1o) → 𝐵 = { 0 }) |
77 | 72, 76 | eleqtrd 2909 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≈ 1o) → 𝐶 ∈ { 0 }) |
78 | 69, 77 | sseldd 3829 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ≈ 1o) → 𝐶 ∈ (𝑆 ⊕ 𝑊)) |
79 | 78 | ex 403 |
. . . 4
⊢ (𝜑 → (𝐵 ≈ 1o → 𝐶 ∈ (𝑆 ⊕ 𝑊))) |
80 | 47, 79 | syld 47 |
. . 3
⊢ (𝜑 → (¬ 𝑃 ∥ 𝐸 → 𝐶 ∈ (𝑆 ⊕ 𝑊))) |
81 | 2, 80 | mt3d 143 |
. 2
⊢ (𝜑 → 𝑃 ∥ 𝐸) |
82 | | pgpfac1.oe |
. . . . 5
⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) |
83 | 13 | nncnd 11369 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ ℂ) |
84 | 38 | nnne0d 11402 |
. . . . . 6
⊢ (𝜑 → 𝑃 ≠ 0) |
85 | 83, 39, 84 | divcan1d 11129 |
. . . . 5
⊢ (𝜑 → ((𝐸 / 𝑃) · 𝑃) = 𝐸) |
86 | 82, 85 | eqtr4d 2865 |
. . . 4
⊢ (𝜑 → (𝑂‘𝐴) = ((𝐸 / 𝑃) · 𝑃)) |
87 | | nndivdvds 15367 |
. . . . . . . . . . . . 13
⊢ ((𝐸 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑃 ∥ 𝐸 ↔ (𝐸 / 𝑃) ∈ ℕ)) |
88 | 13, 38, 87 | syl2anc 581 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃 ∥ 𝐸 ↔ (𝐸 / 𝑃) ∈ ℕ)) |
89 | 81, 88 | mpbid 224 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸 / 𝑃) ∈ ℕ) |
90 | 89 | nnzd 11810 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 / 𝑃) ∈ ℤ) |
91 | | pgpfac1.m |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) |
92 | 90, 91 | zmulcld 11817 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸 / 𝑃) · 𝑀) ∈ ℤ) |
93 | 56 | snssd 4559 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
94 | 51, 57, 93 | mrcssidd 16639 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴})) |
95 | 94, 48 | syl6sseqr 3878 |
. . . . . . . . . 10
⊢ (𝜑 → {𝐴} ⊆ 𝑆) |
96 | | snssg 4535 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑈 → (𝐴 ∈ 𝑆 ↔ {𝐴} ⊆ 𝑆)) |
97 | 55, 96 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∈ 𝑆 ↔ {𝐴} ⊆ 𝑆)) |
98 | 95, 97 | mpbird 249 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
99 | | pgpfac1.mg |
. . . . . . . . . 10
⊢ · =
(.g‘𝐺) |
100 | 99 | subgmulgcl 17959 |
. . . . . . . . 9
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ ((𝐸 / 𝑃) · 𝑀) ∈ ℤ ∧ 𝐴 ∈ 𝑆) → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑆) |
101 | 60, 92, 98, 100 | syl3anc 1496 |
. . . . . . . 8
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑆) |
102 | | prmz 15762 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
103 | 5, 102 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ ℤ) |
104 | 10, 99 | mulgcl 17913 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℤ ∧ 𝐶 ∈ 𝐵) → (𝑃 · 𝐶) ∈ 𝐵) |
105 | 8, 103, 71, 104 | syl3anc 1496 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑃 · 𝐶) ∈ 𝐵) |
106 | 10, 99 | mulgcl 17913 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝐵) → (𝑀 · 𝐴) ∈ 𝐵) |
107 | 8, 91, 56, 106 | syl3anc 1496 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 · 𝐴) ∈ 𝐵) |
108 | | eqid 2826 |
. . . . . . . . . . . 12
⊢
(+g‘𝐺) = (+g‘𝐺) |
109 | 10, 99, 108 | mulgdi 18586 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Abel ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ (𝑃 · 𝐶) ∈ 𝐵 ∧ (𝑀 · 𝐴) ∈ 𝐵)) → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g‘𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴)))) |
110 | 6, 90, 105, 107, 109 | syl13anc 1497 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g‘𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴)))) |
111 | 85 | oveq1d 6921 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = (𝐸 · 𝐶)) |
112 | 10, 99 | mulgass 17931 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝐶 ∈ 𝐵)) → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = ((𝐸 / 𝑃) · (𝑃 · 𝐶))) |
113 | 8, 90, 103, 71, 112 | syl13anc 1497 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = ((𝐸 / 𝑃) · (𝑃 · 𝐶))) |
114 | 10, 11, 99, 65 | gexid 18348 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ 𝐵 → (𝐸 · 𝐶) = 0 ) |
115 | 71, 114 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 · 𝐶) = 0 ) |
116 | 111, 113,
115 | 3eqtr3rd 2871 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 = ((𝐸 / 𝑃) · (𝑃 · 𝐶))) |
117 | 10, 99 | mulgass 17931 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝐵)) → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = ((𝐸 / 𝑃) · (𝑀 · 𝐴))) |
118 | 8, 90, 91, 56, 117 | syl13anc 1497 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = ((𝐸 / 𝑃) · (𝑀 · 𝐴))) |
119 | 116, 118 | oveq12d 6924 |
. . . . . . . . . 10
⊢ (𝜑 → ( 0 (+g‘𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g‘𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴)))) |
120 | 10 | subgss 17947 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
121 | 60, 120 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
122 | 121, 101 | sseldd 3829 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝐵) |
123 | 10, 108, 65 | grplid 17807 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝐵) → ( 0 (+g‘𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · 𝑀) · 𝐴)) |
124 | 8, 122, 123 | syl2anc 581 |
. . . . . . . . . 10
⊢ (𝜑 → ( 0 (+g‘𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · 𝑀) · 𝐴)) |
125 | 110, 119,
124 | 3eqtr2d 2868 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · 𝑀) · 𝐴)) |
126 | | pgpfac1.mw |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴)) ∈ 𝑊) |
127 | 99 | subgmulgcl 17959 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ (SubGrp‘𝐺) ∧ (𝐸 / 𝑃) ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴)) ∈ 𝑊) → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) ∈ 𝑊) |
128 | 61, 90, 126, 127 | syl3anc 1496 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) ∈ 𝑊) |
129 | 125, 128 | eqeltrrd 2908 |
. . . . . . . 8
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑊) |
130 | 101, 129 | elind 4026 |
. . . . . . 7
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ (𝑆 ∩ 𝑊)) |
131 | | pgpfac1.i |
. . . . . . 7
⊢ (𝜑 → (𝑆 ∩ 𝑊) = { 0 }) |
132 | 130, 131 | eleqtrd 2909 |
. . . . . 6
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ { 0 }) |
133 | | elsni 4415 |
. . . . . 6
⊢ ((((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ { 0 } → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 ) |
134 | 132, 133 | syl 17 |
. . . . 5
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 ) |
135 | | pgpfac1.o |
. . . . . . 7
⊢ 𝑂 = (od‘𝐺) |
136 | 10, 135, 99, 65 | oddvds 18318 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ∧ ((𝐸 / 𝑃) · 𝑀) ∈ ℤ) → ((𝑂‘𝐴) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 )) |
137 | 8, 56, 92, 136 | syl3anc 1496 |
. . . . 5
⊢ (𝜑 → ((𝑂‘𝐴) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 )) |
138 | 134, 137 | mpbird 249 |
. . . 4
⊢ (𝜑 → (𝑂‘𝐴) ∥ ((𝐸 / 𝑃) · 𝑀)) |
139 | 86, 138 | eqbrtrrd 4898 |
. . 3
⊢ (𝜑 → ((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀)) |
140 | 89 | nnne0d 11402 |
. . . 4
⊢ (𝜑 → (𝐸 / 𝑃) ≠ 0) |
141 | | dvdscmulr 15388 |
. . . 4
⊢ ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ (𝐸 / 𝑃) ≠ 0)) → (((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ 𝑃 ∥ 𝑀)) |
142 | 103, 91, 90, 140, 141 | syl112anc 1499 |
. . 3
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ 𝑃 ∥ 𝑀)) |
143 | 139, 142 | mpbid 224 |
. 2
⊢ (𝜑 → 𝑃 ∥ 𝑀) |
144 | 81, 143 | jca 509 |
1
⊢ (𝜑 → (𝑃 ∥ 𝐸 ∧ 𝑃 ∥ 𝑀)) |