MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem3a Structured version   Visualization version   GIF version

Theorem pgpfac1lem3a 19320
Description: Lemma for pgpfac1 19324. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.w (𝜑𝑊 ∈ (SubGrp‘𝐺))
pgpfac1.i (𝜑 → (𝑆𝑊) = { 0 })
pgpfac1.ss (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
pgpfac1.2 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
pgpfac1.c (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
pgpfac1.mg · = (.g𝐺)
pgpfac1.m (𝜑𝑀 ∈ ℤ)
pgpfac1.mw (𝜑 → ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)) ∈ 𝑊)
Assertion
Ref Expression
pgpfac1lem3a (𝜑 → (𝑃𝐸𝑃𝑀))
Distinct variable groups:   𝑤,𝐴   𝑤,   𝑤,𝑃   𝑤,𝐺   𝑤,𝑈   𝑤,𝐶   𝑤,𝑆   𝑤,𝑊   𝜑,𝑤   𝑤, ·   𝑤,𝐾
Allowed substitution hints:   𝐵(𝑤)   𝐸(𝑤)   𝑀(𝑤)   𝑂(𝑤)   0 (𝑤)

Proof of Theorem pgpfac1lem3a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 pgpfac1.c . . . 4 (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
21eldifbd 3857 . . 3 (𝜑 → ¬ 𝐶 ∈ (𝑆 𝑊))
3 pgpfac1.p . . . . . . . 8 (𝜑𝑃 pGrp 𝐺)
4 pgpprm 18839 . . . . . . . 8 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
53, 4syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
6 pgpfac1.g . . . . . . . . 9 (𝜑𝐺 ∈ Abel)
7 ablgrp 19032 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
86, 7syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
9 pgpfac1.n . . . . . . . 8 (𝜑𝐵 ∈ Fin)
10 pgpfac1.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
11 pgpfac1.e . . . . . . . . 9 𝐸 = (gEx‘𝐺)
1210, 11gexcl2 18835 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∈ ℕ)
138, 9, 12syl2anc 587 . . . . . . 7 (𝜑𝐸 ∈ ℕ)
14 pceq0 16310 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) → ((𝑃 pCnt 𝐸) = 0 ↔ ¬ 𝑃𝐸))
155, 13, 14syl2anc 587 . . . . . 6 (𝜑 → ((𝑃 pCnt 𝐸) = 0 ↔ ¬ 𝑃𝐸))
16 oveq2 7181 . . . . . 6 ((𝑃 pCnt 𝐸) = 0 → (𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0))
1715, 16syl6bir 257 . . . . 5 (𝜑 → (¬ 𝑃𝐸 → (𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0)))
1810grpbn0 18253 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
198, 18syl 17 . . . . . . . . . . . 12 (𝜑𝐵 ≠ ∅)
20 hashnncl 13822 . . . . . . . . . . . . 13 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
219, 20syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
2219, 21mpbird 260 . . . . . . . . . . 11 (𝜑 → (♯‘𝐵) ∈ ℕ)
235, 22pccld 16290 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0)
2410, 11gexdvds3 18836 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∥ (♯‘𝐵))
258, 9, 24syl2anc 587 . . . . . . . . . . 11 (𝜑𝐸 ∥ (♯‘𝐵))
2610pgphash 18853 . . . . . . . . . . . 12 ((𝑃 pGrp 𝐺𝐵 ∈ Fin) → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
273, 9, 26syl2anc 587 . . . . . . . . . . 11 (𝜑 → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
2825, 27breqtrd 5057 . . . . . . . . . 10 (𝜑𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵))))
29 oveq2 7181 . . . . . . . . . . . 12 (𝑘 = (𝑃 pCnt (♯‘𝐵)) → (𝑃𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
3029breq2d 5043 . . . . . . . . . . 11 (𝑘 = (𝑃 pCnt (♯‘𝐵)) → (𝐸 ∥ (𝑃𝑘) ↔ 𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
3130rspcev 3527 . . . . . . . . . 10 (((𝑃 pCnt (♯‘𝐵)) ∈ ℕ0𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))) → ∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘))
3223, 28, 31syl2anc 587 . . . . . . . . 9 (𝜑 → ∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘))
33 pcprmpw2 16321 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) → (∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘) ↔ 𝐸 = (𝑃↑(𝑃 pCnt 𝐸))))
345, 13, 33syl2anc 587 . . . . . . . . 9 (𝜑 → (∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘) ↔ 𝐸 = (𝑃↑(𝑃 pCnt 𝐸))))
3532, 34mpbid 235 . . . . . . . 8 (𝜑𝐸 = (𝑃↑(𝑃 pCnt 𝐸)))
3635eqcomd 2745 . . . . . . 7 (𝜑 → (𝑃↑(𝑃 pCnt 𝐸)) = 𝐸)
37 prmnn 16118 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
385, 37syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
3938nncnd 11735 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
4039exp0d 13599 . . . . . . 7 (𝜑 → (𝑃↑0) = 1)
4136, 40eqeq12d 2755 . . . . . 6 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0) ↔ 𝐸 = 1))
428grpmndd 18234 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
4310, 11gex1 18837 . . . . . . 7 (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝐵 ≈ 1o))
4442, 43syl 17 . . . . . 6 (𝜑 → (𝐸 = 1 ↔ 𝐵 ≈ 1o))
4541, 44bitrd 282 . . . . 5 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0) ↔ 𝐵 ≈ 1o))
4617, 45sylibd 242 . . . 4 (𝜑 → (¬ 𝑃𝐸𝐵 ≈ 1o))
47 pgpfac1.s . . . . . . . . . . 11 𝑆 = (𝐾‘{𝐴})
4810subgacs 18434 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
498, 48syl 17 . . . . . . . . . . . . 13 (𝜑 → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
5049acsmred 17033 . . . . . . . . . . . 12 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
51 pgpfac1.u . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ (SubGrp‘𝐺))
5210subgss 18401 . . . . . . . . . . . . . 14 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
5351, 52syl 17 . . . . . . . . . . . . 13 (𝜑𝑈𝐵)
54 pgpfac1.au . . . . . . . . . . . . 13 (𝜑𝐴𝑈)
5553, 54sseldd 3879 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
56 pgpfac1.k . . . . . . . . . . . . 13 𝐾 = (mrCls‘(SubGrp‘𝐺))
5756mrcsncl 16989 . . . . . . . . . . . 12 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
5850, 55, 57syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
5947, 58eqeltrid 2838 . . . . . . . . . 10 (𝜑𝑆 ∈ (SubGrp‘𝐺))
60 pgpfac1.w . . . . . . . . . 10 (𝜑𝑊 ∈ (SubGrp‘𝐺))
61 pgpfac1.l . . . . . . . . . . 11 = (LSSum‘𝐺)
6261lsmsubg2 19101 . . . . . . . . . 10 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
636, 59, 60, 62syl3anc 1372 . . . . . . . . 9 (𝜑 → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
64 pgpfac1.z . . . . . . . . . 10 0 = (0g𝐺)
6564subg0cl 18408 . . . . . . . . 9 ((𝑆 𝑊) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆 𝑊))
6663, 65syl 17 . . . . . . . 8 (𝜑0 ∈ (𝑆 𝑊))
6766snssd 4698 . . . . . . 7 (𝜑 → { 0 } ⊆ (𝑆 𝑊))
6867adantr 484 . . . . . 6 ((𝜑𝐵 ≈ 1o) → { 0 } ⊆ (𝑆 𝑊))
691eldifad 3856 . . . . . . . . 9 (𝜑𝐶𝑈)
7053, 69sseldd 3879 . . . . . . . 8 (𝜑𝐶𝐵)
7170adantr 484 . . . . . . 7 ((𝜑𝐵 ≈ 1o) → 𝐶𝐵)
7210, 64grpidcl 18252 . . . . . . . . 9 (𝐺 ∈ Grp → 0𝐵)
738, 72syl 17 . . . . . . . 8 (𝜑0𝐵)
74 en1eqsn 8828 . . . . . . . 8 (( 0𝐵𝐵 ≈ 1o) → 𝐵 = { 0 })
7573, 74sylan 583 . . . . . . 7 ((𝜑𝐵 ≈ 1o) → 𝐵 = { 0 })
7671, 75eleqtrd 2836 . . . . . 6 ((𝜑𝐵 ≈ 1o) → 𝐶 ∈ { 0 })
7768, 76sseldd 3879 . . . . 5 ((𝜑𝐵 ≈ 1o) → 𝐶 ∈ (𝑆 𝑊))
7877ex 416 . . . 4 (𝜑 → (𝐵 ≈ 1o𝐶 ∈ (𝑆 𝑊)))
7946, 78syld 47 . . 3 (𝜑 → (¬ 𝑃𝐸𝐶 ∈ (𝑆 𝑊)))
802, 79mt3d 150 . 2 (𝜑𝑃𝐸)
81 pgpfac1.oe . . . . 5 (𝜑 → (𝑂𝐴) = 𝐸)
8213nncnd 11735 . . . . . 6 (𝜑𝐸 ∈ ℂ)
8338nnne0d 11769 . . . . . 6 (𝜑𝑃 ≠ 0)
8482, 39, 83divcan1d 11498 . . . . 5 (𝜑 → ((𝐸 / 𝑃) · 𝑃) = 𝐸)
8581, 84eqtr4d 2777 . . . 4 (𝜑 → (𝑂𝐴) = ((𝐸 / 𝑃) · 𝑃))
86 nndivdvds 15711 . . . . . . . . . . . . 13 ((𝐸 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑃𝐸 ↔ (𝐸 / 𝑃) ∈ ℕ))
8713, 38, 86syl2anc 587 . . . . . . . . . . . 12 (𝜑 → (𝑃𝐸 ↔ (𝐸 / 𝑃) ∈ ℕ))
8880, 87mpbid 235 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑃) ∈ ℕ)
8988nnzd 12170 . . . . . . . . . 10 (𝜑 → (𝐸 / 𝑃) ∈ ℤ)
90 pgpfac1.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
9189, 90zmulcld 12177 . . . . . . . . 9 (𝜑 → ((𝐸 / 𝑃) · 𝑀) ∈ ℤ)
9255snssd 4698 . . . . . . . . . . . 12 (𝜑 → {𝐴} ⊆ 𝐵)
9350, 56, 92mrcssidd 17002 . . . . . . . . . . 11 (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴}))
9493, 47sseqtrrdi 3929 . . . . . . . . . 10 (𝜑 → {𝐴} ⊆ 𝑆)
95 snssg 4674 . . . . . . . . . . 11 (𝐴𝑈 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
9654, 95syl 17 . . . . . . . . . 10 (𝜑 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
9794, 96mpbird 260 . . . . . . . . 9 (𝜑𝐴𝑆)
98 pgpfac1.mg . . . . . . . . . 10 · = (.g𝐺)
9998subgmulgcl 18413 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ((𝐸 / 𝑃) · 𝑀) ∈ ℤ ∧ 𝐴𝑆) → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑆)
10059, 91, 97, 99syl3anc 1372 . . . . . . . 8 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑆)
101 prmz 16119 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1025, 101syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℤ)
10310, 98mulgcl 18366 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℤ ∧ 𝐶𝐵) → (𝑃 · 𝐶) ∈ 𝐵)
1048, 102, 70, 103syl3anc 1372 . . . . . . . . . . 11 (𝜑 → (𝑃 · 𝐶) ∈ 𝐵)
10510, 98mulgcl 18366 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝐴𝐵) → (𝑀 · 𝐴) ∈ 𝐵)
1068, 90, 55, 105syl3anc 1372 . . . . . . . . . . 11 (𝜑 → (𝑀 · 𝐴) ∈ 𝐵)
107 eqid 2739 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
10810, 98, 107mulgdi 19069 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ (𝑃 · 𝐶) ∈ 𝐵 ∧ (𝑀 · 𝐴) ∈ 𝐵)) → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴))))
1096, 89, 104, 106, 108syl13anc 1373 . . . . . . . . . 10 (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴))))
11084oveq1d 7188 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = (𝐸 · 𝐶))
11110, 98mulgass 18385 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝐶𝐵)) → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = ((𝐸 / 𝑃) · (𝑃 · 𝐶)))
1128, 89, 102, 70, 111syl13anc 1373 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = ((𝐸 / 𝑃) · (𝑃 · 𝐶)))
11310, 11, 98, 64gexid 18827 . . . . . . . . . . . . 13 (𝐶𝐵 → (𝐸 · 𝐶) = 0 )
11470, 113syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐸 · 𝐶) = 0 )
115110, 112, 1143eqtr3rd 2783 . . . . . . . . . . 11 (𝜑0 = ((𝐸 / 𝑃) · (𝑃 · 𝐶)))
11610, 98mulgass 18385 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐴𝐵)) → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = ((𝐸 / 𝑃) · (𝑀 · 𝐴)))
1178, 89, 90, 55, 116syl13anc 1373 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = ((𝐸 / 𝑃) · (𝑀 · 𝐴)))
118115, 117oveq12d 7191 . . . . . . . . . 10 (𝜑 → ( 0 (+g𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴))))
11910subgss 18401 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
12059, 119syl 17 . . . . . . . . . . . 12 (𝜑𝑆𝐵)
121120, 100sseldd 3879 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝐵)
12210, 107, 64grplid 18254 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝐵) → ( 0 (+g𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · 𝑀) · 𝐴))
1238, 121, 122syl2anc 587 . . . . . . . . . 10 (𝜑 → ( 0 (+g𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · 𝑀) · 𝐴))
124109, 118, 1233eqtr2d 2780 . . . . . . . . 9 (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · 𝑀) · 𝐴))
125 pgpfac1.mw . . . . . . . . . 10 (𝜑 → ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)) ∈ 𝑊)
12698subgmulgcl 18413 . . . . . . . . . 10 ((𝑊 ∈ (SubGrp‘𝐺) ∧ (𝐸 / 𝑃) ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)) ∈ 𝑊) → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) ∈ 𝑊)
12760, 89, 125, 126syl3anc 1372 . . . . . . . . 9 (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) ∈ 𝑊)
128124, 127eqeltrrd 2835 . . . . . . . 8 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑊)
129100, 128elind 4085 . . . . . . 7 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ (𝑆𝑊))
130 pgpfac1.i . . . . . . 7 (𝜑 → (𝑆𝑊) = { 0 })
131129, 130eleqtrd 2836 . . . . . 6 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ { 0 })
132 elsni 4534 . . . . . 6 ((((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ { 0 } → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 )
133131, 132syl 17 . . . . 5 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 )
134 pgpfac1.o . . . . . . 7 𝑂 = (od‘𝐺)
13510, 134, 98, 64oddvds 18796 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝐵 ∧ ((𝐸 / 𝑃) · 𝑀) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 ))
1368, 55, 91, 135syl3anc 1372 . . . . 5 (𝜑 → ((𝑂𝐴) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 ))
137133, 136mpbird 260 . . . 4 (𝜑 → (𝑂𝐴) ∥ ((𝐸 / 𝑃) · 𝑀))
13885, 137eqbrtrrd 5055 . . 3 (𝜑 → ((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀))
13988nnne0d 11769 . . . 4 (𝜑 → (𝐸 / 𝑃) ≠ 0)
140 dvdscmulr 15733 . . . 4 ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ (𝐸 / 𝑃) ≠ 0)) → (((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ 𝑃𝑀))
141102, 90, 89, 139, 140syl112anc 1375 . . 3 (𝜑 → (((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ 𝑃𝑀))
142138, 141mpbid 235 . 2 (𝜑𝑃𝑀)
14380, 142jca 515 1 (𝜑 → (𝑃𝐸𝑃𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114  wne 2935  wral 3054  wrex 3055  cdif 3841  cin 3843  wss 3844  wpss 3845  c0 4212  {csn 4517   class class class wbr 5031  cfv 6340  (class class class)co 7173  1oc1o 8127  cen 8555  Fincfn 8558  0cc0 10618  1c1 10619   · cmul 10623   / cdiv 11378  cn 11719  0cn0 11979  cz 12065  cexp 13524  chash 13785  cdvds 15702  cprime 16115   pCnt cpc 16276  Basecbs 16589  +gcplusg 16671  0gc0g 16819  Moorecmre 16959  mrClscmrc 16960  ACScacs 16962  Mndcmnd 18030  Grpcgrp 18222  .gcmg 18345  SubGrpcsubg 18394  odcod 18773  gExcgex 18774   pGrp cpgp 18775  LSSumclsm 18880  Abelcabl 19028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-inf2 9180  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-pre-sup 10696
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-iin 4885  df-disj 4997  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-om 7603  df-1st 7717  df-2nd 7718  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-2o 8135  df-oadd 8138  df-omul 8139  df-er 8323  df-ec 8325  df-qs 8329  df-map 8442  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-sup 8982  df-inf 8983  df-oi 9050  df-dju 9406  df-card 9444  df-acn 9447  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-nn 11720  df-2 11782  df-3 11783  df-n0 11980  df-xnn0 12052  df-z 12066  df-uz 12328  df-q 12434  df-rp 12476  df-fz 12985  df-fzo 13128  df-fl 13256  df-mod 13332  df-seq 13464  df-exp 13525  df-fac 13729  df-bc 13758  df-hash 13786  df-cj 14551  df-re 14552  df-im 14553  df-sqrt 14687  df-abs 14688  df-clim 14938  df-sum 15139  df-dvds 15703  df-gcd 15941  df-prm 16116  df-pc 16277  df-ndx 16592  df-slot 16593  df-base 16595  df-sets 16596  df-ress 16597  df-plusg 16684  df-0g 16821  df-mre 16963  df-mrc 16964  df-acs 16966  df-mgm 17971  df-sgrp 18020  df-mnd 18031  df-submnd 18076  df-grp 18225  df-minusg 18226  df-sbg 18227  df-mulg 18346  df-subg 18397  df-eqg 18399  df-ga 18541  df-cntz 18568  df-od 18777  df-gex 18778  df-pgp 18779  df-lsm 18882  df-cmn 19029  df-abl 19030
This theorem is referenced by:  pgpfac1lem3  19321
  Copyright terms: Public domain W3C validator