MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgpfac1lem3a Structured version   Visualization version   GIF version

Theorem pgpfac1lem3a 19975
Description: Lemma for pgpfac1 19979. (Contributed by Mario Carneiro, 4-Jun-2016.)
Hypotheses
Ref Expression
pgpfac1.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
pgpfac1.s 𝑆 = (𝐾‘{𝐴})
pgpfac1.b 𝐵 = (Base‘𝐺)
pgpfac1.o 𝑂 = (od‘𝐺)
pgpfac1.e 𝐸 = (gEx‘𝐺)
pgpfac1.z 0 = (0g𝐺)
pgpfac1.l = (LSSum‘𝐺)
pgpfac1.p (𝜑𝑃 pGrp 𝐺)
pgpfac1.g (𝜑𝐺 ∈ Abel)
pgpfac1.n (𝜑𝐵 ∈ Fin)
pgpfac1.oe (𝜑 → (𝑂𝐴) = 𝐸)
pgpfac1.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
pgpfac1.au (𝜑𝐴𝑈)
pgpfac1.w (𝜑𝑊 ∈ (SubGrp‘𝐺))
pgpfac1.i (𝜑 → (𝑆𝑊) = { 0 })
pgpfac1.ss (𝜑 → (𝑆 𝑊) ⊆ 𝑈)
pgpfac1.2 (𝜑 → ∀𝑤 ∈ (SubGrp‘𝐺)((𝑤𝑈𝐴𝑤) → ¬ (𝑆 𝑊) ⊊ 𝑤))
pgpfac1.c (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
pgpfac1.mg · = (.g𝐺)
pgpfac1.m (𝜑𝑀 ∈ ℤ)
pgpfac1.mw (𝜑 → ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)) ∈ 𝑊)
Assertion
Ref Expression
pgpfac1lem3a (𝜑 → (𝑃𝐸𝑃𝑀))
Distinct variable groups:   𝑤,𝐴   𝑤,   𝑤,𝑃   𝑤,𝐺   𝑤,𝑈   𝑤,𝐶   𝑤,𝑆   𝑤,𝑊   𝜑,𝑤   𝑤, ·   𝑤,𝐾
Allowed substitution hints:   𝐵(𝑤)   𝐸(𝑤)   𝑀(𝑤)   𝑂(𝑤)   0 (𝑤)

Proof of Theorem pgpfac1lem3a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 pgpfac1.c . . . 4 (𝜑𝐶 ∈ (𝑈 ∖ (𝑆 𝑊)))
21eldifbd 3918 . . 3 (𝜑 → ¬ 𝐶 ∈ (𝑆 𝑊))
3 pgpfac1.p . . . . . . . 8 (𝜑𝑃 pGrp 𝐺)
4 pgpprm 19490 . . . . . . . 8 (𝑃 pGrp 𝐺𝑃 ∈ ℙ)
53, 4syl 17 . . . . . . 7 (𝜑𝑃 ∈ ℙ)
6 pgpfac1.g . . . . . . . . 9 (𝜑𝐺 ∈ Abel)
7 ablgrp 19682 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
86, 7syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Grp)
9 pgpfac1.n . . . . . . . 8 (𝜑𝐵 ∈ Fin)
10 pgpfac1.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
11 pgpfac1.e . . . . . . . . 9 𝐸 = (gEx‘𝐺)
1210, 11gexcl2 19486 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∈ ℕ)
138, 9, 12syl2anc 584 . . . . . . 7 (𝜑𝐸 ∈ ℕ)
14 pceq0 16801 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) → ((𝑃 pCnt 𝐸) = 0 ↔ ¬ 𝑃𝐸))
155, 13, 14syl2anc 584 . . . . . 6 (𝜑 → ((𝑃 pCnt 𝐸) = 0 ↔ ¬ 𝑃𝐸))
16 oveq2 7361 . . . . . 6 ((𝑃 pCnt 𝐸) = 0 → (𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0))
1715, 16biimtrrdi 254 . . . . 5 (𝜑 → (¬ 𝑃𝐸 → (𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0)))
1810grpbn0 18863 . . . . . . . . . . . . 13 (𝐺 ∈ Grp → 𝐵 ≠ ∅)
198, 18syl 17 . . . . . . . . . . . 12 (𝜑𝐵 ≠ ∅)
20 hashnncl 14291 . . . . . . . . . . . . 13 (𝐵 ∈ Fin → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
219, 20syl 17 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅))
2219, 21mpbird 257 . . . . . . . . . . 11 (𝜑 → (♯‘𝐵) ∈ ℕ)
235, 22pccld 16780 . . . . . . . . . 10 (𝜑 → (𝑃 pCnt (♯‘𝐵)) ∈ ℕ0)
2410, 11gexdvds3 19487 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∥ (♯‘𝐵))
258, 9, 24syl2anc 584 . . . . . . . . . . 11 (𝜑𝐸 ∥ (♯‘𝐵))
2610pgphash 19504 . . . . . . . . . . . 12 ((𝑃 pGrp 𝐺𝐵 ∈ Fin) → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
273, 9, 26syl2anc 584 . . . . . . . . . . 11 (𝜑 → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
2825, 27breqtrd 5121 . . . . . . . . . 10 (𝜑𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵))))
29 oveq2 7361 . . . . . . . . . . . 12 (𝑘 = (𝑃 pCnt (♯‘𝐵)) → (𝑃𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝐵))))
3029breq2d 5107 . . . . . . . . . . 11 (𝑘 = (𝑃 pCnt (♯‘𝐵)) → (𝐸 ∥ (𝑃𝑘) ↔ 𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))))
3130rspcev 3579 . . . . . . . . . 10 (((𝑃 pCnt (♯‘𝐵)) ∈ ℕ0𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))) → ∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘))
3223, 28, 31syl2anc 584 . . . . . . . . 9 (𝜑 → ∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘))
33 pcprmpw2 16812 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) → (∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘) ↔ 𝐸 = (𝑃↑(𝑃 pCnt 𝐸))))
345, 13, 33syl2anc 584 . . . . . . . . 9 (𝜑 → (∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃𝑘) ↔ 𝐸 = (𝑃↑(𝑃 pCnt 𝐸))))
3532, 34mpbid 232 . . . . . . . 8 (𝜑𝐸 = (𝑃↑(𝑃 pCnt 𝐸)))
3635eqcomd 2735 . . . . . . 7 (𝜑 → (𝑃↑(𝑃 pCnt 𝐸)) = 𝐸)
37 prmnn 16603 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
385, 37syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℕ)
3938nncnd 12162 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
4039exp0d 14065 . . . . . . 7 (𝜑 → (𝑃↑0) = 1)
4136, 40eqeq12d 2745 . . . . . 6 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0) ↔ 𝐸 = 1))
428grpmndd 18843 . . . . . . 7 (𝜑𝐺 ∈ Mnd)
4310, 11gex1 19488 . . . . . . 7 (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝐵 ≈ 1o))
4442, 43syl 17 . . . . . 6 (𝜑 → (𝐸 = 1 ↔ 𝐵 ≈ 1o))
4541, 44bitrd 279 . . . . 5 (𝜑 → ((𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0) ↔ 𝐵 ≈ 1o))
4617, 45sylibd 239 . . . 4 (𝜑 → (¬ 𝑃𝐸𝐵 ≈ 1o))
47 pgpfac1.s . . . . . . . . . . 11 𝑆 = (𝐾‘{𝐴})
4810subgacs 19058 . . . . . . . . . . . . . 14 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
498, 48syl 17 . . . . . . . . . . . . 13 (𝜑 → (SubGrp‘𝐺) ∈ (ACS‘𝐵))
5049acsmred 17580 . . . . . . . . . . . 12 (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵))
51 pgpfac1.u . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ (SubGrp‘𝐺))
5210subgss 19024 . . . . . . . . . . . . . 14 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈𝐵)
5351, 52syl 17 . . . . . . . . . . . . 13 (𝜑𝑈𝐵)
54 pgpfac1.au . . . . . . . . . . . . 13 (𝜑𝐴𝑈)
5553, 54sseldd 3938 . . . . . . . . . . . 12 (𝜑𝐴𝐵)
56 pgpfac1.k . . . . . . . . . . . . 13 𝐾 = (mrCls‘(SubGrp‘𝐺))
5756mrcsncl 17536 . . . . . . . . . . . 12 (((SubGrp‘𝐺) ∈ (Moore‘𝐵) ∧ 𝐴𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
5850, 55, 57syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
5947, 58eqeltrid 2832 . . . . . . . . . 10 (𝜑𝑆 ∈ (SubGrp‘𝐺))
60 pgpfac1.w . . . . . . . . . 10 (𝜑𝑊 ∈ (SubGrp‘𝐺))
61 pgpfac1.l . . . . . . . . . . 11 = (LSSum‘𝐺)
6261lsmsubg2 19756 . . . . . . . . . 10 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
636, 59, 60, 62syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑆 𝑊) ∈ (SubGrp‘𝐺))
64 pgpfac1.z . . . . . . . . . 10 0 = (0g𝐺)
6564subg0cl 19031 . . . . . . . . 9 ((𝑆 𝑊) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆 𝑊))
6663, 65syl 17 . . . . . . . 8 (𝜑0 ∈ (𝑆 𝑊))
6766snssd 4763 . . . . . . 7 (𝜑 → { 0 } ⊆ (𝑆 𝑊))
6867adantr 480 . . . . . 6 ((𝜑𝐵 ≈ 1o) → { 0 } ⊆ (𝑆 𝑊))
691eldifad 3917 . . . . . . . . 9 (𝜑𝐶𝑈)
7053, 69sseldd 3938 . . . . . . . 8 (𝜑𝐶𝐵)
7170adantr 480 . . . . . . 7 ((𝜑𝐵 ≈ 1o) → 𝐶𝐵)
7210, 64grpidcl 18862 . . . . . . . . 9 (𝐺 ∈ Grp → 0𝐵)
738, 72syl 17 . . . . . . . 8 (𝜑0𝐵)
74 en1eqsn 9177 . . . . . . . 8 (( 0𝐵𝐵 ≈ 1o) → 𝐵 = { 0 })
7573, 74sylan 580 . . . . . . 7 ((𝜑𝐵 ≈ 1o) → 𝐵 = { 0 })
7671, 75eleqtrd 2830 . . . . . 6 ((𝜑𝐵 ≈ 1o) → 𝐶 ∈ { 0 })
7768, 76sseldd 3938 . . . . 5 ((𝜑𝐵 ≈ 1o) → 𝐶 ∈ (𝑆 𝑊))
7877ex 412 . . . 4 (𝜑 → (𝐵 ≈ 1o𝐶 ∈ (𝑆 𝑊)))
7946, 78syld 47 . . 3 (𝜑 → (¬ 𝑃𝐸𝐶 ∈ (𝑆 𝑊)))
802, 79mt3d 148 . 2 (𝜑𝑃𝐸)
81 pgpfac1.oe . . . . 5 (𝜑 → (𝑂𝐴) = 𝐸)
8213nncnd 12162 . . . . . 6 (𝜑𝐸 ∈ ℂ)
8338nnne0d 12196 . . . . . 6 (𝜑𝑃 ≠ 0)
8482, 39, 83divcan1d 11919 . . . . 5 (𝜑 → ((𝐸 / 𝑃) · 𝑃) = 𝐸)
8581, 84eqtr4d 2767 . . . 4 (𝜑 → (𝑂𝐴) = ((𝐸 / 𝑃) · 𝑃))
86 nndivdvds 16190 . . . . . . . . . . . . 13 ((𝐸 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑃𝐸 ↔ (𝐸 / 𝑃) ∈ ℕ))
8713, 38, 86syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝑃𝐸 ↔ (𝐸 / 𝑃) ∈ ℕ))
8880, 87mpbid 232 . . . . . . . . . . 11 (𝜑 → (𝐸 / 𝑃) ∈ ℕ)
8988nnzd 12516 . . . . . . . . . 10 (𝜑 → (𝐸 / 𝑃) ∈ ℤ)
90 pgpfac1.m . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
9189, 90zmulcld 12604 . . . . . . . . 9 (𝜑 → ((𝐸 / 𝑃) · 𝑀) ∈ ℤ)
9255snssd 4763 . . . . . . . . . . . 12 (𝜑 → {𝐴} ⊆ 𝐵)
9350, 56, 92mrcssidd 17549 . . . . . . . . . . 11 (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴}))
9493, 47sseqtrrdi 3979 . . . . . . . . . 10 (𝜑 → {𝐴} ⊆ 𝑆)
95 snssg 4737 . . . . . . . . . . 11 (𝐴𝑈 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
9654, 95syl 17 . . . . . . . . . 10 (𝜑 → (𝐴𝑆 ↔ {𝐴} ⊆ 𝑆))
9794, 96mpbird 257 . . . . . . . . 9 (𝜑𝐴𝑆)
98 pgpfac1.mg . . . . . . . . . 10 · = (.g𝐺)
9998subgmulgcl 19036 . . . . . . . . 9 ((𝑆 ∈ (SubGrp‘𝐺) ∧ ((𝐸 / 𝑃) · 𝑀) ∈ ℤ ∧ 𝐴𝑆) → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑆)
10059, 91, 97, 99syl3anc 1373 . . . . . . . 8 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑆)
101 prmz 16604 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1025, 101syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℤ)
10310, 98mulgcl 18988 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℤ ∧ 𝐶𝐵) → (𝑃 · 𝐶) ∈ 𝐵)
1048, 102, 70, 103syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑃 · 𝐶) ∈ 𝐵)
10510, 98mulgcl 18988 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝐴𝐵) → (𝑀 · 𝐴) ∈ 𝐵)
1068, 90, 55, 105syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑀 · 𝐴) ∈ 𝐵)
107 eqid 2729 . . . . . . . . . . . 12 (+g𝐺) = (+g𝐺)
10810, 98, 107mulgdi 19723 . . . . . . . . . . 11 ((𝐺 ∈ Abel ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ (𝑃 · 𝐶) ∈ 𝐵 ∧ (𝑀 · 𝐴) ∈ 𝐵)) → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴))))
1096, 89, 104, 106, 108syl13anc 1374 . . . . . . . . . 10 (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴))))
11084oveq1d 7368 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = (𝐸 · 𝐶))
11110, 98mulgass 19008 . . . . . . . . . . . . 13 ((𝐺 ∈ Grp ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝐶𝐵)) → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = ((𝐸 / 𝑃) · (𝑃 · 𝐶)))
1128, 89, 102, 70, 111syl13anc 1374 . . . . . . . . . . . 12 (𝜑 → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = ((𝐸 / 𝑃) · (𝑃 · 𝐶)))
11310, 11, 98, 64gexid 19478 . . . . . . . . . . . . 13 (𝐶𝐵 → (𝐸 · 𝐶) = 0 )
11470, 113syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐸 · 𝐶) = 0 )
115110, 112, 1143eqtr3rd 2773 . . . . . . . . . . 11 (𝜑0 = ((𝐸 / 𝑃) · (𝑃 · 𝐶)))
11610, 98mulgass 19008 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐴𝐵)) → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = ((𝐸 / 𝑃) · (𝑀 · 𝐴)))
1178, 89, 90, 55, 116syl13anc 1374 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = ((𝐸 / 𝑃) · (𝑀 · 𝐴)))
118115, 117oveq12d 7371 . . . . . . . . . 10 (𝜑 → ( 0 (+g𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴))))
11910subgss 19024 . . . . . . . . . . . . 13 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
12059, 119syl 17 . . . . . . . . . . . 12 (𝜑𝑆𝐵)
121120, 100sseldd 3938 . . . . . . . . . . 11 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝐵)
12210, 107, 64grplid 18864 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝐵) → ( 0 (+g𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · 𝑀) · 𝐴))
1238, 121, 122syl2anc 584 . . . . . . . . . 10 (𝜑 → ( 0 (+g𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · 𝑀) · 𝐴))
124109, 118, 1233eqtr2d 2770 . . . . . . . . 9 (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · 𝑀) · 𝐴))
125 pgpfac1.mw . . . . . . . . . 10 (𝜑 → ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)) ∈ 𝑊)
12698subgmulgcl 19036 . . . . . . . . . 10 ((𝑊 ∈ (SubGrp‘𝐺) ∧ (𝐸 / 𝑃) ∈ ℤ ∧ ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴)) ∈ 𝑊) → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) ∈ 𝑊)
12760, 89, 125, 126syl3anc 1373 . . . . . . . . 9 (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g𝐺)(𝑀 · 𝐴))) ∈ 𝑊)
128124, 127eqeltrrd 2829 . . . . . . . 8 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑊)
129100, 128elind 4153 . . . . . . 7 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ (𝑆𝑊))
130 pgpfac1.i . . . . . . 7 (𝜑 → (𝑆𝑊) = { 0 })
131129, 130eleqtrd 2830 . . . . . 6 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ { 0 })
132 elsni 4596 . . . . . 6 ((((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ { 0 } → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 )
133131, 132syl 17 . . . . 5 (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 )
134 pgpfac1.o . . . . . . 7 𝑂 = (od‘𝐺)
13510, 134, 98, 64oddvds 19444 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝐵 ∧ ((𝐸 / 𝑃) · 𝑀) ∈ ℤ) → ((𝑂𝐴) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 ))
1368, 55, 91, 135syl3anc 1373 . . . . 5 (𝜑 → ((𝑂𝐴) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 ))
137133, 136mpbird 257 . . . 4 (𝜑 → (𝑂𝐴) ∥ ((𝐸 / 𝑃) · 𝑀))
13885, 137eqbrtrrd 5119 . . 3 (𝜑 → ((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀))
13988nnne0d 12196 . . . 4 (𝜑 → (𝐸 / 𝑃) ≠ 0)
140 dvdscmulr 16213 . . . 4 ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ (𝐸 / 𝑃) ≠ 0)) → (((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ 𝑃𝑀))
141102, 90, 89, 139, 140syl112anc 1376 . . 3 (𝜑 → (((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ 𝑃𝑀))
142138, 141mpbid 232 . 2 (𝜑𝑃𝑀)
14380, 142jca 511 1 (𝜑 → (𝑃𝐸𝑃𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3902  cin 3904  wss 3905  wpss 3906  c0 4286  {csn 4579   class class class wbr 5095  cfv 6486  (class class class)co 7353  1oc1o 8388  cen 8876  Fincfn 8879  0cc0 11028  1c1 11029   · cmul 11033   / cdiv 11795  cn 12146  0cn0 12402  cz 12489  cexp 13986  chash 14255  cdvds 16181  cprime 16600   pCnt cpc 16766  Basecbs 17138  +gcplusg 17179  0gc0g 17361  Moorecmre 17502  mrClscmrc 17503  ACScacs 17505  Mndcmnd 18626  Grpcgrp 18830  .gcmg 18964  SubGrpcsubg 19017  odcod 19421  gExcgex 19422   pGrp cpgp 19423  LSSumclsm 19531  Abelcabl 19678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-q 12868  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-dvds 16182  df-gcd 16424  df-prm 16601  df-pc 16767  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-eqg 19022  df-ga 19187  df-cntz 19214  df-od 19425  df-gex 19426  df-pgp 19427  df-lsm 19533  df-cmn 19679  df-abl 19680
This theorem is referenced by:  pgpfac1lem3  19976
  Copyright terms: Public domain W3C validator