| Step | Hyp | Ref
| Expression |
| 1 | | pgpfac1.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) |
| 2 | 1 | eldifbd 3964 |
. . 3
⊢ (𝜑 → ¬ 𝐶 ∈ (𝑆 ⊕ 𝑊)) |
| 3 | | pgpfac1.p |
. . . . . . . 8
⊢ (𝜑 → 𝑃 pGrp 𝐺) |
| 4 | | pgpprm 19611 |
. . . . . . . 8
⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
| 5 | 3, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ ℙ) |
| 6 | | pgpfac1.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ Abel) |
| 7 | | ablgrp 19803 |
. . . . . . . . 9
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| 8 | 6, 7 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 9 | | pgpfac1.n |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 10 | | pgpfac1.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) |
| 11 | | pgpfac1.e |
. . . . . . . . 9
⊢ 𝐸 = (gEx‘𝐺) |
| 12 | 10, 11 | gexcl2 19607 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∈
ℕ) |
| 13 | 8, 9, 12 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ ℕ) |
| 14 | | pceq0 16909 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) → ((𝑃 pCnt 𝐸) = 0 ↔ ¬ 𝑃 ∥ 𝐸)) |
| 15 | 5, 13, 14 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → ((𝑃 pCnt 𝐸) = 0 ↔ ¬ 𝑃 ∥ 𝐸)) |
| 16 | | oveq2 7439 |
. . . . . 6
⊢ ((𝑃 pCnt 𝐸) = 0 → (𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0)) |
| 17 | 15, 16 | biimtrrdi 254 |
. . . . 5
⊢ (𝜑 → (¬ 𝑃 ∥ 𝐸 → (𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0))) |
| 18 | 10 | grpbn0 18984 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
| 19 | 8, 18 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ≠ ∅) |
| 20 | | hashnncl 14405 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ Fin →
((♯‘𝐵) ∈
ℕ ↔ 𝐵 ≠
∅)) |
| 21 | 9, 20 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅)) |
| 22 | 19, 21 | mpbird 257 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐵) ∈
ℕ) |
| 23 | 5, 22 | pccld 16888 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 pCnt (♯‘𝐵)) ∈
ℕ0) |
| 24 | 10, 11 | gexdvds3 19608 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∥ (♯‘𝐵)) |
| 25 | 8, 9, 24 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∥ (♯‘𝐵)) |
| 26 | 10 | pgphash 19625 |
. . . . . . . . . . . 12
⊢ ((𝑃 pGrp 𝐺 ∧ 𝐵 ∈ Fin) → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
| 27 | 3, 9, 26 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
| 28 | 25, 27 | breqtrd 5169 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
| 29 | | oveq2 7439 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑃 pCnt (♯‘𝐵)) → (𝑃↑𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
| 30 | 29 | breq2d 5155 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑃 pCnt (♯‘𝐵)) → (𝐸 ∥ (𝑃↑𝑘) ↔ 𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵))))) |
| 31 | 30 | rspcev 3622 |
. . . . . . . . . 10
⊢ (((𝑃 pCnt (♯‘𝐵)) ∈ ℕ0
∧ 𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))) → ∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃↑𝑘)) |
| 32 | 23, 28, 31 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃↑𝑘)) |
| 33 | | pcprmpw2 16920 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) →
(∃𝑘 ∈
ℕ0 𝐸
∥ (𝑃↑𝑘) ↔ 𝐸 = (𝑃↑(𝑃 pCnt 𝐸)))) |
| 34 | 5, 13, 33 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃↑𝑘) ↔ 𝐸 = (𝑃↑(𝑃 pCnt 𝐸)))) |
| 35 | 32, 34 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 = (𝑃↑(𝑃 pCnt 𝐸))) |
| 36 | 35 | eqcomd 2743 |
. . . . . . 7
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝐸)) = 𝐸) |
| 37 | | prmnn 16711 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
| 38 | 5, 37 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 39 | 38 | nncnd 12282 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℂ) |
| 40 | 39 | exp0d 14180 |
. . . . . . 7
⊢ (𝜑 → (𝑃↑0) = 1) |
| 41 | 36, 40 | eqeq12d 2753 |
. . . . . 6
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0) ↔ 𝐸 = 1)) |
| 42 | 8 | grpmndd 18964 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 43 | 10, 11 | gex1 19609 |
. . . . . . 7
⊢ (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝐵 ≈ 1o)) |
| 44 | 42, 43 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐸 = 1 ↔ 𝐵 ≈ 1o)) |
| 45 | 41, 44 | bitrd 279 |
. . . . 5
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0) ↔ 𝐵 ≈ 1o)) |
| 46 | 17, 45 | sylibd 239 |
. . . 4
⊢ (𝜑 → (¬ 𝑃 ∥ 𝐸 → 𝐵 ≈ 1o)) |
| 47 | | pgpfac1.s |
. . . . . . . . . . 11
⊢ 𝑆 = (𝐾‘{𝐴}) |
| 48 | 10 | subgacs 19179 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘𝐵)) |
| 49 | 8, 48 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (SubGrp‘𝐺) ∈ (ACS‘𝐵)) |
| 50 | 49 | acsmred 17699 |
. . . . . . . . . . . 12
⊢ (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵)) |
| 51 | | pgpfac1.u |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| 52 | 10 | subgss 19145 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ 𝐵) |
| 53 | 51, 52 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
| 54 | | pgpfac1.au |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| 55 | 53, 54 | sseldd 3984 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| 56 | | pgpfac1.k |
. . . . . . . . . . . . 13
⊢ 𝐾 =
(mrCls‘(SubGrp‘𝐺)) |
| 57 | 56 | mrcsncl 17655 |
. . . . . . . . . . . 12
⊢
(((SubGrp‘𝐺)
∈ (Moore‘𝐵)
∧ 𝐴 ∈ 𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
| 58 | 50, 55, 57 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
| 59 | 47, 58 | eqeltrid 2845 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| 60 | | pgpfac1.w |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) |
| 61 | | pgpfac1.l |
. . . . . . . . . . 11
⊢ ⊕ =
(LSSum‘𝐺) |
| 62 | 61 | lsmsubg2 19877 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 ⊕ 𝑊) ∈ (SubGrp‘𝐺)) |
| 63 | 6, 59, 60, 62 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ⊕ 𝑊) ∈ (SubGrp‘𝐺)) |
| 64 | | pgpfac1.z |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝐺) |
| 65 | 64 | subg0cl 19152 |
. . . . . . . . 9
⊢ ((𝑆 ⊕ 𝑊) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆 ⊕ 𝑊)) |
| 66 | 63, 65 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ (𝑆 ⊕ 𝑊)) |
| 67 | 66 | snssd 4809 |
. . . . . . 7
⊢ (𝜑 → { 0 } ⊆ (𝑆 ⊕ 𝑊)) |
| 68 | 67 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≈ 1o) → { 0 } ⊆
(𝑆 ⊕ 𝑊)) |
| 69 | 1 | eldifad 3963 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| 70 | 53, 69 | sseldd 3984 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ 𝐵) |
| 71 | 70 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ≈ 1o) → 𝐶 ∈ 𝐵) |
| 72 | 10, 64 | grpidcl 18983 |
. . . . . . . . 9
⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
| 73 | 8, 72 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ 𝐵) |
| 74 | | en1eqsn 9308 |
. . . . . . . 8
⊢ (( 0 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = { 0 }) |
| 75 | 73, 74 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ≈ 1o) → 𝐵 = { 0 }) |
| 76 | 71, 75 | eleqtrd 2843 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≈ 1o) → 𝐶 ∈ { 0 }) |
| 77 | 68, 76 | sseldd 3984 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ≈ 1o) → 𝐶 ∈ (𝑆 ⊕ 𝑊)) |
| 78 | 77 | ex 412 |
. . . 4
⊢ (𝜑 → (𝐵 ≈ 1o → 𝐶 ∈ (𝑆 ⊕ 𝑊))) |
| 79 | 46, 78 | syld 47 |
. . 3
⊢ (𝜑 → (¬ 𝑃 ∥ 𝐸 → 𝐶 ∈ (𝑆 ⊕ 𝑊))) |
| 80 | 2, 79 | mt3d 148 |
. 2
⊢ (𝜑 → 𝑃 ∥ 𝐸) |
| 81 | | pgpfac1.oe |
. . . . 5
⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) |
| 82 | 13 | nncnd 12282 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ ℂ) |
| 83 | 38 | nnne0d 12316 |
. . . . . 6
⊢ (𝜑 → 𝑃 ≠ 0) |
| 84 | 82, 39, 83 | divcan1d 12044 |
. . . . 5
⊢ (𝜑 → ((𝐸 / 𝑃) · 𝑃) = 𝐸) |
| 85 | 81, 84 | eqtr4d 2780 |
. . . 4
⊢ (𝜑 → (𝑂‘𝐴) = ((𝐸 / 𝑃) · 𝑃)) |
| 86 | | nndivdvds 16299 |
. . . . . . . . . . . . 13
⊢ ((𝐸 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑃 ∥ 𝐸 ↔ (𝐸 / 𝑃) ∈ ℕ)) |
| 87 | 13, 38, 86 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃 ∥ 𝐸 ↔ (𝐸 / 𝑃) ∈ ℕ)) |
| 88 | 80, 87 | mpbid 232 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸 / 𝑃) ∈ ℕ) |
| 89 | 88 | nnzd 12640 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 / 𝑃) ∈ ℤ) |
| 90 | | pgpfac1.m |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 91 | 89, 90 | zmulcld 12728 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸 / 𝑃) · 𝑀) ∈ ℤ) |
| 92 | 55 | snssd 4809 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
| 93 | 50, 56, 92 | mrcssidd 17668 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴})) |
| 94 | 93, 47 | sseqtrrdi 4025 |
. . . . . . . . . 10
⊢ (𝜑 → {𝐴} ⊆ 𝑆) |
| 95 | | snssg 4783 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑈 → (𝐴 ∈ 𝑆 ↔ {𝐴} ⊆ 𝑆)) |
| 96 | 54, 95 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∈ 𝑆 ↔ {𝐴} ⊆ 𝑆)) |
| 97 | 94, 96 | mpbird 257 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| 98 | | pgpfac1.mg |
. . . . . . . . . 10
⊢ · =
(.g‘𝐺) |
| 99 | 98 | subgmulgcl 19157 |
. . . . . . . . 9
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ ((𝐸 / 𝑃) · 𝑀) ∈ ℤ ∧ 𝐴 ∈ 𝑆) → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑆) |
| 100 | 59, 91, 97, 99 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑆) |
| 101 | | prmz 16712 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
| 102 | 5, 101 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ ℤ) |
| 103 | 10, 98 | mulgcl 19109 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℤ ∧ 𝐶 ∈ 𝐵) → (𝑃 · 𝐶) ∈ 𝐵) |
| 104 | 8, 102, 70, 103 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑃 · 𝐶) ∈ 𝐵) |
| 105 | 10, 98 | mulgcl 19109 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝐵) → (𝑀 · 𝐴) ∈ 𝐵) |
| 106 | 8, 90, 55, 105 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 · 𝐴) ∈ 𝐵) |
| 107 | | eqid 2737 |
. . . . . . . . . . . 12
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 108 | 10, 98, 107 | mulgdi 19844 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Abel ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ (𝑃 · 𝐶) ∈ 𝐵 ∧ (𝑀 · 𝐴) ∈ 𝐵)) → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g‘𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴)))) |
| 109 | 6, 89, 104, 106, 108 | syl13anc 1374 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g‘𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴)))) |
| 110 | 84 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = (𝐸 · 𝐶)) |
| 111 | 10, 98 | mulgass 19129 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝐶 ∈ 𝐵)) → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = ((𝐸 / 𝑃) · (𝑃 · 𝐶))) |
| 112 | 8, 89, 102, 70, 111 | syl13anc 1374 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = ((𝐸 / 𝑃) · (𝑃 · 𝐶))) |
| 113 | 10, 11, 98, 64 | gexid 19599 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ 𝐵 → (𝐸 · 𝐶) = 0 ) |
| 114 | 70, 113 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 · 𝐶) = 0 ) |
| 115 | 110, 112,
114 | 3eqtr3rd 2786 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 = ((𝐸 / 𝑃) · (𝑃 · 𝐶))) |
| 116 | 10, 98 | mulgass 19129 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝐵)) → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = ((𝐸 / 𝑃) · (𝑀 · 𝐴))) |
| 117 | 8, 89, 90, 55, 116 | syl13anc 1374 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = ((𝐸 / 𝑃) · (𝑀 · 𝐴))) |
| 118 | 115, 117 | oveq12d 7449 |
. . . . . . . . . 10
⊢ (𝜑 → ( 0 (+g‘𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g‘𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴)))) |
| 119 | 10 | subgss 19145 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
| 120 | 59, 119 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 121 | 120, 100 | sseldd 3984 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝐵) |
| 122 | 10, 107, 64 | grplid 18985 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝐵) → ( 0 (+g‘𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · 𝑀) · 𝐴)) |
| 123 | 8, 121, 122 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → ( 0 (+g‘𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · 𝑀) · 𝐴)) |
| 124 | 109, 118,
123 | 3eqtr2d 2783 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · 𝑀) · 𝐴)) |
| 125 | | pgpfac1.mw |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴)) ∈ 𝑊) |
| 126 | 98 | subgmulgcl 19157 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ (SubGrp‘𝐺) ∧ (𝐸 / 𝑃) ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴)) ∈ 𝑊) → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) ∈ 𝑊) |
| 127 | 60, 89, 125, 126 | syl3anc 1373 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) ∈ 𝑊) |
| 128 | 124, 127 | eqeltrrd 2842 |
. . . . . . . 8
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑊) |
| 129 | 100, 128 | elind 4200 |
. . . . . . 7
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ (𝑆 ∩ 𝑊)) |
| 130 | | pgpfac1.i |
. . . . . . 7
⊢ (𝜑 → (𝑆 ∩ 𝑊) = { 0 }) |
| 131 | 129, 130 | eleqtrd 2843 |
. . . . . 6
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ { 0 }) |
| 132 | | elsni 4643 |
. . . . . 6
⊢ ((((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ { 0 } → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 ) |
| 133 | 131, 132 | syl 17 |
. . . . 5
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 ) |
| 134 | | pgpfac1.o |
. . . . . . 7
⊢ 𝑂 = (od‘𝐺) |
| 135 | 10, 134, 98, 64 | oddvds 19565 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ∧ ((𝐸 / 𝑃) · 𝑀) ∈ ℤ) → ((𝑂‘𝐴) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 )) |
| 136 | 8, 55, 91, 135 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → ((𝑂‘𝐴) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 )) |
| 137 | 133, 136 | mpbird 257 |
. . . 4
⊢ (𝜑 → (𝑂‘𝐴) ∥ ((𝐸 / 𝑃) · 𝑀)) |
| 138 | 85, 137 | eqbrtrrd 5167 |
. . 3
⊢ (𝜑 → ((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀)) |
| 139 | 88 | nnne0d 12316 |
. . . 4
⊢ (𝜑 → (𝐸 / 𝑃) ≠ 0) |
| 140 | | dvdscmulr 16322 |
. . . 4
⊢ ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ (𝐸 / 𝑃) ≠ 0)) → (((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ 𝑃 ∥ 𝑀)) |
| 141 | 102, 90, 89, 139, 140 | syl112anc 1376 |
. . 3
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ 𝑃 ∥ 𝑀)) |
| 142 | 138, 141 | mpbid 232 |
. 2
⊢ (𝜑 → 𝑃 ∥ 𝑀) |
| 143 | 80, 142 | jca 511 |
1
⊢ (𝜑 → (𝑃 ∥ 𝐸 ∧ 𝑃 ∥ 𝑀)) |