Step | Hyp | Ref
| Expression |
1 | | pgpfac1.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ (𝑈 ∖ (𝑆 ⊕ 𝑊))) |
2 | 1 | eldifbd 3896 |
. . 3
⊢ (𝜑 → ¬ 𝐶 ∈ (𝑆 ⊕ 𝑊)) |
3 | | pgpfac1.p |
. . . . . . . 8
⊢ (𝜑 → 𝑃 pGrp 𝐺) |
4 | | pgpprm 19113 |
. . . . . . . 8
⊢ (𝑃 pGrp 𝐺 → 𝑃 ∈ ℙ) |
5 | 3, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ ℙ) |
6 | | pgpfac1.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ Abel) |
7 | | ablgrp 19306 |
. . . . . . . . 9
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
8 | 6, 7 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Grp) |
9 | | pgpfac1.n |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ Fin) |
10 | | pgpfac1.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) |
11 | | pgpfac1.e |
. . . . . . . . 9
⊢ 𝐸 = (gEx‘𝐺) |
12 | 10, 11 | gexcl2 19109 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∈
ℕ) |
13 | 8, 9, 12 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ∈ ℕ) |
14 | | pceq0 16500 |
. . . . . . 7
⊢ ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) → ((𝑃 pCnt 𝐸) = 0 ↔ ¬ 𝑃 ∥ 𝐸)) |
15 | 5, 13, 14 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → ((𝑃 pCnt 𝐸) = 0 ↔ ¬ 𝑃 ∥ 𝐸)) |
16 | | oveq2 7263 |
. . . . . 6
⊢ ((𝑃 pCnt 𝐸) = 0 → (𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0)) |
17 | 15, 16 | syl6bir 253 |
. . . . 5
⊢ (𝜑 → (¬ 𝑃 ∥ 𝐸 → (𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0))) |
18 | 10 | grpbn0 18523 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ Grp → 𝐵 ≠ ∅) |
19 | 8, 18 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ≠ ∅) |
20 | | hashnncl 14009 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ Fin →
((♯‘𝐵) ∈
ℕ ↔ 𝐵 ≠
∅)) |
21 | 9, 20 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((♯‘𝐵) ∈ ℕ ↔ 𝐵 ≠ ∅)) |
22 | 19, 21 | mpbird 256 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐵) ∈
ℕ) |
23 | 5, 22 | pccld 16479 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑃 pCnt (♯‘𝐵)) ∈
ℕ0) |
24 | 10, 11 | gexdvds3 19110 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin) → 𝐸 ∥ (♯‘𝐵)) |
25 | 8, 9, 24 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐸 ∥ (♯‘𝐵)) |
26 | 10 | pgphash 19127 |
. . . . . . . . . . . 12
⊢ ((𝑃 pGrp 𝐺 ∧ 𝐵 ∈ Fin) → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
27 | 3, 9, 26 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → (♯‘𝐵) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
28 | 25, 27 | breqtrd 5096 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
29 | | oveq2 7263 |
. . . . . . . . . . . 12
⊢ (𝑘 = (𝑃 pCnt (♯‘𝐵)) → (𝑃↑𝑘) = (𝑃↑(𝑃 pCnt (♯‘𝐵)))) |
30 | 29 | breq2d 5082 |
. . . . . . . . . . 11
⊢ (𝑘 = (𝑃 pCnt (♯‘𝐵)) → (𝐸 ∥ (𝑃↑𝑘) ↔ 𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵))))) |
31 | 30 | rspcev 3552 |
. . . . . . . . . 10
⊢ (((𝑃 pCnt (♯‘𝐵)) ∈ ℕ0
∧ 𝐸 ∥ (𝑃↑(𝑃 pCnt (♯‘𝐵)))) → ∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃↑𝑘)) |
32 | 23, 28, 31 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃↑𝑘)) |
33 | | pcprmpw2 16511 |
. . . . . . . . . 10
⊢ ((𝑃 ∈ ℙ ∧ 𝐸 ∈ ℕ) →
(∃𝑘 ∈
ℕ0 𝐸
∥ (𝑃↑𝑘) ↔ 𝐸 = (𝑃↑(𝑃 pCnt 𝐸)))) |
34 | 5, 13, 33 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑘 ∈ ℕ0 𝐸 ∥ (𝑃↑𝑘) ↔ 𝐸 = (𝑃↑(𝑃 pCnt 𝐸)))) |
35 | 32, 34 | mpbid 231 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 = (𝑃↑(𝑃 pCnt 𝐸))) |
36 | 35 | eqcomd 2744 |
. . . . . . 7
⊢ (𝜑 → (𝑃↑(𝑃 pCnt 𝐸)) = 𝐸) |
37 | | prmnn 16307 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
38 | 5, 37 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑃 ∈ ℕ) |
39 | 38 | nncnd 11919 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ ℂ) |
40 | 39 | exp0d 13786 |
. . . . . . 7
⊢ (𝜑 → (𝑃↑0) = 1) |
41 | 36, 40 | eqeq12d 2754 |
. . . . . 6
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0) ↔ 𝐸 = 1)) |
42 | 8 | grpmndd 18504 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ Mnd) |
43 | 10, 11 | gex1 19111 |
. . . . . . 7
⊢ (𝐺 ∈ Mnd → (𝐸 = 1 ↔ 𝐵 ≈ 1o)) |
44 | 42, 43 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐸 = 1 ↔ 𝐵 ≈ 1o)) |
45 | 41, 44 | bitrd 278 |
. . . . 5
⊢ (𝜑 → ((𝑃↑(𝑃 pCnt 𝐸)) = (𝑃↑0) ↔ 𝐵 ≈ 1o)) |
46 | 17, 45 | sylibd 238 |
. . . 4
⊢ (𝜑 → (¬ 𝑃 ∥ 𝐸 → 𝐵 ≈ 1o)) |
47 | | pgpfac1.s |
. . . . . . . . . . 11
⊢ 𝑆 = (𝐾‘{𝐴}) |
48 | 10 | subgacs 18704 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘𝐵)) |
49 | 8, 48 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (SubGrp‘𝐺) ∈ (ACS‘𝐵)) |
50 | 49 | acsmred 17282 |
. . . . . . . . . . . 12
⊢ (𝜑 → (SubGrp‘𝐺) ∈ (Moore‘𝐵)) |
51 | | pgpfac1.u |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
52 | 10 | subgss 18671 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ 𝐵) |
53 | 51, 52 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈 ⊆ 𝐵) |
54 | | pgpfac1.au |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
55 | 53, 54 | sseldd 3918 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ 𝐵) |
56 | | pgpfac1.k |
. . . . . . . . . . . . 13
⊢ 𝐾 =
(mrCls‘(SubGrp‘𝐺)) |
57 | 56 | mrcsncl 17238 |
. . . . . . . . . . . 12
⊢
(((SubGrp‘𝐺)
∈ (Moore‘𝐵)
∧ 𝐴 ∈ 𝐵) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
58 | 50, 55, 57 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
59 | 47, 58 | eqeltrid 2843 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
60 | | pgpfac1.w |
. . . . . . . . . 10
⊢ (𝜑 → 𝑊 ∈ (SubGrp‘𝐺)) |
61 | | pgpfac1.l |
. . . . . . . . . . 11
⊢ ⊕ =
(LSSum‘𝐺) |
62 | 61 | lsmsubg2 19375 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑊 ∈ (SubGrp‘𝐺)) → (𝑆 ⊕ 𝑊) ∈ (SubGrp‘𝐺)) |
63 | 6, 59, 60, 62 | syl3anc 1369 |
. . . . . . . . 9
⊢ (𝜑 → (𝑆 ⊕ 𝑊) ∈ (SubGrp‘𝐺)) |
64 | | pgpfac1.z |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝐺) |
65 | 64 | subg0cl 18678 |
. . . . . . . . 9
⊢ ((𝑆 ⊕ 𝑊) ∈ (SubGrp‘𝐺) → 0 ∈ (𝑆 ⊕ 𝑊)) |
66 | 63, 65 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ (𝑆 ⊕ 𝑊)) |
67 | 66 | snssd 4739 |
. . . . . . 7
⊢ (𝜑 → { 0 } ⊆ (𝑆 ⊕ 𝑊)) |
68 | 67 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≈ 1o) → { 0 } ⊆
(𝑆 ⊕ 𝑊)) |
69 | 1 | eldifad 3895 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ 𝑈) |
70 | 53, 69 | sseldd 3918 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ 𝐵) |
71 | 70 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ≈ 1o) → 𝐶 ∈ 𝐵) |
72 | 10, 64 | grpidcl 18522 |
. . . . . . . . 9
⊢ (𝐺 ∈ Grp → 0 ∈ 𝐵) |
73 | 8, 72 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ 𝐵) |
74 | | en1eqsn 8977 |
. . . . . . . 8
⊢ (( 0 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = { 0 }) |
75 | 73, 74 | sylan 579 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ≈ 1o) → 𝐵 = { 0 }) |
76 | 71, 75 | eleqtrd 2841 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≈ 1o) → 𝐶 ∈ { 0 }) |
77 | 68, 76 | sseldd 3918 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ≈ 1o) → 𝐶 ∈ (𝑆 ⊕ 𝑊)) |
78 | 77 | ex 412 |
. . . 4
⊢ (𝜑 → (𝐵 ≈ 1o → 𝐶 ∈ (𝑆 ⊕ 𝑊))) |
79 | 46, 78 | syld 47 |
. . 3
⊢ (𝜑 → (¬ 𝑃 ∥ 𝐸 → 𝐶 ∈ (𝑆 ⊕ 𝑊))) |
80 | 2, 79 | mt3d 148 |
. 2
⊢ (𝜑 → 𝑃 ∥ 𝐸) |
81 | | pgpfac1.oe |
. . . . 5
⊢ (𝜑 → (𝑂‘𝐴) = 𝐸) |
82 | 13 | nncnd 11919 |
. . . . . 6
⊢ (𝜑 → 𝐸 ∈ ℂ) |
83 | 38 | nnne0d 11953 |
. . . . . 6
⊢ (𝜑 → 𝑃 ≠ 0) |
84 | 82, 39, 83 | divcan1d 11682 |
. . . . 5
⊢ (𝜑 → ((𝐸 / 𝑃) · 𝑃) = 𝐸) |
85 | 81, 84 | eqtr4d 2781 |
. . . 4
⊢ (𝜑 → (𝑂‘𝐴) = ((𝐸 / 𝑃) · 𝑃)) |
86 | | nndivdvds 15900 |
. . . . . . . . . . . . 13
⊢ ((𝐸 ∈ ℕ ∧ 𝑃 ∈ ℕ) → (𝑃 ∥ 𝐸 ↔ (𝐸 / 𝑃) ∈ ℕ)) |
87 | 13, 38, 86 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑃 ∥ 𝐸 ↔ (𝐸 / 𝑃) ∈ ℕ)) |
88 | 80, 87 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐸 / 𝑃) ∈ ℕ) |
89 | 88 | nnzd 12354 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐸 / 𝑃) ∈ ℤ) |
90 | | pgpfac1.m |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℤ) |
91 | 89, 90 | zmulcld 12361 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸 / 𝑃) · 𝑀) ∈ ℤ) |
92 | 55 | snssd 4739 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝐴} ⊆ 𝐵) |
93 | 50, 56, 92 | mrcssidd 17251 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝐴} ⊆ (𝐾‘{𝐴})) |
94 | 93, 47 | sseqtrrdi 3968 |
. . . . . . . . . 10
⊢ (𝜑 → {𝐴} ⊆ 𝑆) |
95 | | snssg 4715 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ 𝑈 → (𝐴 ∈ 𝑆 ↔ {𝐴} ⊆ 𝑆)) |
96 | 54, 95 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∈ 𝑆 ↔ {𝐴} ⊆ 𝑆)) |
97 | 94, 96 | mpbird 256 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
98 | | pgpfac1.mg |
. . . . . . . . . 10
⊢ · =
(.g‘𝐺) |
99 | 98 | subgmulgcl 18683 |
. . . . . . . . 9
⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ ((𝐸 / 𝑃) · 𝑀) ∈ ℤ ∧ 𝐴 ∈ 𝑆) → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑆) |
100 | 59, 91, 97, 99 | syl3anc 1369 |
. . . . . . . 8
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑆) |
101 | | prmz 16308 |
. . . . . . . . . . . . 13
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
102 | 5, 101 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ ℤ) |
103 | 10, 98 | mulgcl 18636 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℤ ∧ 𝐶 ∈ 𝐵) → (𝑃 · 𝐶) ∈ 𝐵) |
104 | 8, 102, 70, 103 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑃 · 𝐶) ∈ 𝐵) |
105 | 10, 98 | mulgcl 18636 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝐵) → (𝑀 · 𝐴) ∈ 𝐵) |
106 | 8, 90, 55, 105 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑀 · 𝐴) ∈ 𝐵) |
107 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(+g‘𝐺) = (+g‘𝐺) |
108 | 10, 98, 107 | mulgdi 19343 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Abel ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ (𝑃 · 𝐶) ∈ 𝐵 ∧ (𝑀 · 𝐴) ∈ 𝐵)) → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g‘𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴)))) |
109 | 6, 89, 104, 106, 108 | syl13anc 1370 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g‘𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴)))) |
110 | 84 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = (𝐸 · 𝐶)) |
111 | 10, 98 | mulgass 18655 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ Grp ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝐶 ∈ 𝐵)) → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = ((𝐸 / 𝑃) · (𝑃 · 𝐶))) |
112 | 8, 89, 102, 70, 111 | syl13anc 1370 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑃) · 𝐶) = ((𝐸 / 𝑃) · (𝑃 · 𝐶))) |
113 | 10, 11, 98, 64 | gexid 19101 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ 𝐵 → (𝐸 · 𝐶) = 0 ) |
114 | 70, 113 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐸 · 𝐶) = 0 ) |
115 | 110, 112,
114 | 3eqtr3rd 2787 |
. . . . . . . . . . 11
⊢ (𝜑 → 0 = ((𝐸 / 𝑃) · (𝑃 · 𝐶))) |
116 | 10, 98 | mulgass 18655 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝐵)) → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = ((𝐸 / 𝑃) · (𝑀 · 𝐴))) |
117 | 8, 89, 90, 55, 116 | syl13anc 1370 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = ((𝐸 / 𝑃) · (𝑀 · 𝐴))) |
118 | 115, 117 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝜑 → ( 0 (+g‘𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · (𝑃 · 𝐶))(+g‘𝐺)((𝐸 / 𝑃) · (𝑀 · 𝐴)))) |
119 | 10 | subgss 18671 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
120 | 59, 119 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
121 | 120, 100 | sseldd 3918 |
. . . . . . . . . . 11
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝐵) |
122 | 10, 107, 64 | grplid 18524 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Grp ∧ (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝐵) → ( 0 (+g‘𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · 𝑀) · 𝐴)) |
123 | 8, 121, 122 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → ( 0 (+g‘𝐺)(((𝐸 / 𝑃) · 𝑀) · 𝐴)) = (((𝐸 / 𝑃) · 𝑀) · 𝐴)) |
124 | 109, 118,
123 | 3eqtr2d 2784 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) = (((𝐸 / 𝑃) · 𝑀) · 𝐴)) |
125 | | pgpfac1.mw |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴)) ∈ 𝑊) |
126 | 98 | subgmulgcl 18683 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ (SubGrp‘𝐺) ∧ (𝐸 / 𝑃) ∈ ℤ ∧ ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴)) ∈ 𝑊) → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) ∈ 𝑊) |
127 | 60, 89, 125, 126 | syl3anc 1369 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐸 / 𝑃) · ((𝑃 · 𝐶)(+g‘𝐺)(𝑀 · 𝐴))) ∈ 𝑊) |
128 | 124, 127 | eqeltrrd 2840 |
. . . . . . . 8
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ 𝑊) |
129 | 100, 128 | elind 4124 |
. . . . . . 7
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ (𝑆 ∩ 𝑊)) |
130 | | pgpfac1.i |
. . . . . . 7
⊢ (𝜑 → (𝑆 ∩ 𝑊) = { 0 }) |
131 | 129, 130 | eleqtrd 2841 |
. . . . . 6
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ { 0 }) |
132 | | elsni 4575 |
. . . . . 6
⊢ ((((𝐸 / 𝑃) · 𝑀) · 𝐴) ∈ { 0 } → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 ) |
133 | 131, 132 | syl 17 |
. . . . 5
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 ) |
134 | | pgpfac1.o |
. . . . . . 7
⊢ 𝑂 = (od‘𝐺) |
135 | 10, 134, 98, 64 | oddvds 19070 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝐵 ∧ ((𝐸 / 𝑃) · 𝑀) ∈ ℤ) → ((𝑂‘𝐴) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 )) |
136 | 8, 55, 91, 135 | syl3anc 1369 |
. . . . 5
⊢ (𝜑 → ((𝑂‘𝐴) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ (((𝐸 / 𝑃) · 𝑀) · 𝐴) = 0 )) |
137 | 133, 136 | mpbird 256 |
. . . 4
⊢ (𝜑 → (𝑂‘𝐴) ∥ ((𝐸 / 𝑃) · 𝑀)) |
138 | 85, 137 | eqbrtrrd 5094 |
. . 3
⊢ (𝜑 → ((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀)) |
139 | 88 | nnne0d 11953 |
. . . 4
⊢ (𝜑 → (𝐸 / 𝑃) ≠ 0) |
140 | | dvdscmulr 15922 |
. . . 4
⊢ ((𝑃 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ ((𝐸 / 𝑃) ∈ ℤ ∧ (𝐸 / 𝑃) ≠ 0)) → (((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ 𝑃 ∥ 𝑀)) |
141 | 102, 90, 89, 139, 140 | syl112anc 1372 |
. . 3
⊢ (𝜑 → (((𝐸 / 𝑃) · 𝑃) ∥ ((𝐸 / 𝑃) · 𝑀) ↔ 𝑃 ∥ 𝑀)) |
142 | 138, 141 | mpbid 231 |
. 2
⊢ (𝜑 → 𝑃 ∥ 𝑀) |
143 | 80, 142 | jca 511 |
1
⊢ (𝜑 → (𝑃 ∥ 𝐸 ∧ 𝑃 ∥ 𝑀)) |