MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr0v0e Structured version   Visualization version   GIF version

Theorem uhgr0v0e 28492
Description: The null graph, with no vertices, has no edges. (Contributed by AV, 21-Oct-2020.)
Hypotheses
Ref Expression
uhgr0v0e.v 𝑉 = (Vtx‘𝐺)
uhgr0v0e.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uhgr0v0e ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → 𝐸 = ∅)

Proof of Theorem uhgr0v0e
StepHypRef Expression
1 uhgr0v0e.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21eqeq1i 2737 . . . . 5 (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅)
3 uhgr0vb 28329 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅))
43biimpd 228 . . . . . 6 ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅))
54ex 413 . . . . 5 (𝐺 ∈ UHGraph → ((Vtx‘𝐺) = ∅ → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅)))
62, 5biimtrid 241 . . . 4 (𝐺 ∈ UHGraph → (𝑉 = ∅ → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅)))
76pm2.43a 54 . . 3 (𝐺 ∈ UHGraph → (𝑉 = ∅ → (iEdg‘𝐺) = ∅))
87imp 407 . 2 ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → (iEdg‘𝐺) = ∅)
9 uhgr0v0e.e . . . . 5 𝐸 = (Edg‘𝐺)
109eqeq1i 2737 . . . 4 (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅)
11 uhgriedg0edg0 28384 . . . 4 (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
1210, 11bitrid 282 . . 3 (𝐺 ∈ UHGraph → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅))
1312adantr 481 . 2 ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅))
148, 13mpbird 256 1 ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → 𝐸 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  c0 4322  cfv 6543  Vtxcvtx 28253  iEdgciedg 28254  Edgcedg 28304  UHGraphcuhgr 28313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-edg 28305  df-uhgr 28315
This theorem is referenced by:  uhgr0vsize0  28493  uhgr0vusgr  28496  fusgrfisbase  28582
  Copyright terms: Public domain W3C validator