| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgr0v0e | Structured version Visualization version GIF version | ||
| Description: The null graph, with no vertices, has no edges. (Contributed by AV, 21-Oct-2020.) |
| Ref | Expression |
|---|---|
| uhgr0v0e.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgr0v0e.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgr0v0e | ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → 𝐸 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgr0v0e.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | eqeq1i 2742 | . . . . 5 ⊢ (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅) |
| 3 | uhgr0vb 29089 | . . . . . . 7 ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) | |
| 4 | 3 | biimpd 229 | . . . . . 6 ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅)) |
| 5 | 4 | ex 412 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → ((Vtx‘𝐺) = ∅ → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅))) |
| 6 | 2, 5 | biimtrid 242 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝑉 = ∅ → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅))) |
| 7 | 6 | pm2.43a 54 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝑉 = ∅ → (iEdg‘𝐺) = ∅)) |
| 8 | 7 | imp 406 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → (iEdg‘𝐺) = ∅) |
| 9 | uhgr0v0e.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 10 | 9 | eqeq1i 2742 | . . . 4 ⊢ (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅) |
| 11 | uhgriedg0edg0 29144 | . . . 4 ⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) | |
| 12 | 10, 11 | bitrid 283 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅)) |
| 13 | 12 | adantr 480 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅)) |
| 14 | 8, 13 | mpbird 257 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → 𝐸 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∅c0 4333 ‘cfv 6561 Vtxcvtx 29013 iEdgciedg 29014 Edgcedg 29064 UHGraphcuhgr 29073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-edg 29065 df-uhgr 29075 |
| This theorem is referenced by: uhgr0vsize0 29256 uhgr0vusgr 29259 fusgrfisbase 29345 |
| Copyright terms: Public domain | W3C validator |