Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uhgr0v0e | Structured version Visualization version GIF version |
Description: The null graph, with no vertices, has no edges. (Contributed by AV, 21-Oct-2020.) |
Ref | Expression |
---|---|
uhgr0v0e.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgr0v0e.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
uhgr0v0e | ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → 𝐸 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgr0v0e.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | eqeq1i 2743 | . . . . 5 ⊢ (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅) |
3 | uhgr0vb 27345 | . . . . . . 7 ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) | |
4 | 3 | biimpd 228 | . . . . . 6 ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅)) |
5 | 4 | ex 412 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → ((Vtx‘𝐺) = ∅ → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅))) |
6 | 2, 5 | syl5bi 241 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝑉 = ∅ → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅))) |
7 | 6 | pm2.43a 54 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝑉 = ∅ → (iEdg‘𝐺) = ∅)) |
8 | 7 | imp 406 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → (iEdg‘𝐺) = ∅) |
9 | uhgr0v0e.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
10 | 9 | eqeq1i 2743 | . . . 4 ⊢ (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅) |
11 | uhgriedg0edg0 27400 | . . . 4 ⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) | |
12 | 10, 11 | syl5bb 282 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅)) |
13 | 12 | adantr 480 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅)) |
14 | 8, 13 | mpbird 256 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → 𝐸 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∅c0 4253 ‘cfv 6418 Vtxcvtx 27269 iEdgciedg 27270 Edgcedg 27320 UHGraphcuhgr 27329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-edg 27321 df-uhgr 27331 |
This theorem is referenced by: uhgr0vsize0 27509 uhgr0vusgr 27512 fusgrfisbase 27598 |
Copyright terms: Public domain | W3C validator |