| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uhgr0v0e | Structured version Visualization version GIF version | ||
| Description: The null graph, with no vertices, has no edges. (Contributed by AV, 21-Oct-2020.) |
| Ref | Expression |
|---|---|
| uhgr0v0e.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| uhgr0v0e.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| uhgr0v0e | ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → 𝐸 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgr0v0e.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | 1 | eqeq1i 2736 | . . . . 5 ⊢ (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅) |
| 3 | uhgr0vb 29048 | . . . . . . 7 ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) | |
| 4 | 3 | biimpd 229 | . . . . . 6 ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅)) |
| 5 | 4 | ex 412 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → ((Vtx‘𝐺) = ∅ → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅))) |
| 6 | 2, 5 | biimtrid 242 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝑉 = ∅ → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅))) |
| 7 | 6 | pm2.43a 54 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝑉 = ∅ → (iEdg‘𝐺) = ∅)) |
| 8 | 7 | imp 406 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → (iEdg‘𝐺) = ∅) |
| 9 | uhgr0v0e.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 10 | 9 | eqeq1i 2736 | . . . 4 ⊢ (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅) |
| 11 | uhgriedg0edg0 29103 | . . . 4 ⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) | |
| 12 | 10, 11 | bitrid 283 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅)) |
| 13 | 12 | adantr 480 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅)) |
| 14 | 8, 13 | mpbird 257 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → 𝐸 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∅c0 4283 ‘cfv 6481 Vtxcvtx 28972 iEdgciedg 28973 Edgcedg 29023 UHGraphcuhgr 29032 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-edg 29024 df-uhgr 29034 |
| This theorem is referenced by: uhgr0vsize0 29215 uhgr0vusgr 29218 fusgrfisbase 29304 |
| Copyright terms: Public domain | W3C validator |