![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uhgr0v0e | Structured version Visualization version GIF version |
Description: The null graph, with no vertices, has no edges. (Contributed by AV, 21-Oct-2020.) |
Ref | Expression |
---|---|
uhgr0v0e.v | ⊢ 𝑉 = (Vtx‘𝐺) |
uhgr0v0e.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
uhgr0v0e | ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → 𝐸 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgr0v0e.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | 1 | eqeq1i 2740 | . . . . 5 ⊢ (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅) |
3 | uhgr0vb 29104 | . . . . . . 7 ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅)) | |
4 | 3 | biimpd 229 | . . . . . 6 ⊢ ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅)) |
5 | 4 | ex 412 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → ((Vtx‘𝐺) = ∅ → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅))) |
6 | 2, 5 | biimtrid 242 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝑉 = ∅ → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅))) |
7 | 6 | pm2.43a 54 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝑉 = ∅ → (iEdg‘𝐺) = ∅)) |
8 | 7 | imp 406 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → (iEdg‘𝐺) = ∅) |
9 | uhgr0v0e.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
10 | 9 | eqeq1i 2740 | . . . 4 ⊢ (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅) |
11 | uhgriedg0edg0 29159 | . . . 4 ⊢ (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅)) | |
12 | 10, 11 | bitrid 283 | . . 3 ⊢ (𝐺 ∈ UHGraph → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅)) |
13 | 12 | adantr 480 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅)) |
14 | 8, 13 | mpbird 257 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → 𝐸 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∅c0 4339 ‘cfv 6563 Vtxcvtx 29028 iEdgciedg 29029 Edgcedg 29079 UHGraphcuhgr 29088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-edg 29080 df-uhgr 29090 |
This theorem is referenced by: uhgr0vsize0 29271 uhgr0vusgr 29274 fusgrfisbase 29360 |
Copyright terms: Public domain | W3C validator |