MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgr0v0e Structured version   Visualization version   GIF version

Theorem uhgr0v0e 27605
Description: The null graph, with no vertices, has no edges. (Contributed by AV, 21-Oct-2020.)
Hypotheses
Ref Expression
uhgr0v0e.v 𝑉 = (Vtx‘𝐺)
uhgr0v0e.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uhgr0v0e ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → 𝐸 = ∅)

Proof of Theorem uhgr0v0e
StepHypRef Expression
1 uhgr0v0e.v . . . . . 6 𝑉 = (Vtx‘𝐺)
21eqeq1i 2743 . . . . 5 (𝑉 = ∅ ↔ (Vtx‘𝐺) = ∅)
3 uhgr0vb 27442 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅))
43biimpd 228 . . . . . 6 ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅))
54ex 413 . . . . 5 (𝐺 ∈ UHGraph → ((Vtx‘𝐺) = ∅ → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅)))
62, 5syl5bi 241 . . . 4 (𝐺 ∈ UHGraph → (𝑉 = ∅ → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅)))
76pm2.43a 54 . . 3 (𝐺 ∈ UHGraph → (𝑉 = ∅ → (iEdg‘𝐺) = ∅))
87imp 407 . 2 ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → (iEdg‘𝐺) = ∅)
9 uhgr0v0e.e . . . . 5 𝐸 = (Edg‘𝐺)
109eqeq1i 2743 . . . 4 (𝐸 = ∅ ↔ (Edg‘𝐺) = ∅)
11 uhgriedg0edg0 27497 . . . 4 (𝐺 ∈ UHGraph → ((Edg‘𝐺) = ∅ ↔ (iEdg‘𝐺) = ∅))
1210, 11bitrid 282 . . 3 (𝐺 ∈ UHGraph → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅))
1312adantr 481 . 2 ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → (𝐸 = ∅ ↔ (iEdg‘𝐺) = ∅))
148, 13mpbird 256 1 ((𝐺 ∈ UHGraph ∧ 𝑉 = ∅) → 𝐸 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  c0 4256  cfv 6433  Vtxcvtx 27366  iEdgciedg 27367  Edgcedg 27417  UHGraphcuhgr 27426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-edg 27418  df-uhgr 27428
This theorem is referenced by:  uhgr0vsize0  27606  uhgr0vusgr  27609  fusgrfisbase  27695
  Copyright terms: Public domain W3C validator