MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqlecan Structured version   Visualization version   GIF version

Theorem sqlecan 14169
Description: Cancel one factor of a square in a comparison. Unlike lemul1 12062, the common factor 𝐴 may be zero. (Contributed by NM, 17-Jan-2008.)
Assertion
Ref Expression
sqlecan (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))

Proof of Theorem sqlecan
StepHypRef Expression
1 0re 11212 . . . 4 0 ∈ ℝ
2 leloe 11296 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
31, 2mpan 689 . . 3 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
4 recn 11196 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
5 sqval 14076 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
64, 5syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (𝐴↑2) = (𝐴 · 𝐴))
76breq1d 5157 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐴)))
873ad2ant1 1134 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐴)))
9 lemul1 12062 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐴𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐴)))
108, 9bitr4d 282 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))
11103exp 1120 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
1211exp4a 433 . . . . . . 7 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → (0 < 𝐴 → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵)))))
1312pm2.43a 54 . . . . . 6 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐴 → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
1413adantrd 493 . . . . 5 (𝐴 ∈ ℝ → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (0 < 𝐴 → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
1514com23 86 . . . 4 (𝐴 ∈ ℝ → (0 < 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
16 sq0 14152 . . . . . . . . . . . 12 (0↑2) = 0
17 0le0 12309 . . . . . . . . . . . 12 0 ≤ 0
1816, 17eqbrtri 5168 . . . . . . . . . . 11 (0↑2) ≤ 0
19 recn 11196 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
2019mul01d 11409 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐵 · 0) = 0)
2118, 20breqtrrid 5185 . . . . . . . . . 10 (𝐵 ∈ ℝ → (0↑2) ≤ (𝐵 · 0))
2221adantl 483 . . . . . . . . 9 ((0 = 𝐴𝐵 ∈ ℝ) → (0↑2) ≤ (𝐵 · 0))
23 oveq1 7411 . . . . . . . . . . 11 (0 = 𝐴 → (0↑2) = (𝐴↑2))
24 oveq2 7412 . . . . . . . . . . 11 (0 = 𝐴 → (𝐵 · 0) = (𝐵 · 𝐴))
2523, 24breq12d 5160 . . . . . . . . . 10 (0 = 𝐴 → ((0↑2) ≤ (𝐵 · 0) ↔ (𝐴↑2) ≤ (𝐵 · 𝐴)))
2625adantr 482 . . . . . . . . 9 ((0 = 𝐴𝐵 ∈ ℝ) → ((0↑2) ≤ (𝐵 · 0) ↔ (𝐴↑2) ≤ (𝐵 · 𝐴)))
2722, 26mpbid 231 . . . . . . . 8 ((0 = 𝐴𝐵 ∈ ℝ) → (𝐴↑2) ≤ (𝐵 · 𝐴))
2827adantrr 716 . . . . . . 7 ((0 = 𝐴 ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴↑2) ≤ (𝐵 · 𝐴))
29 breq1 5150 . . . . . . . . 9 (0 = 𝐴 → (0 ≤ 𝐵𝐴𝐵))
3029biimpa 478 . . . . . . . 8 ((0 = 𝐴 ∧ 0 ≤ 𝐵) → 𝐴𝐵)
3130adantrl 715 . . . . . . 7 ((0 = 𝐴 ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴𝐵)
3228, 312thd 265 . . . . . 6 ((0 = 𝐴 ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))
3332ex 414 . . . . 5 (0 = 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵)))
3433a1i 11 . . . 4 (𝐴 ∈ ℝ → (0 = 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
3515, 34jaod 858 . . 3 (𝐴 ∈ ℝ → ((0 < 𝐴 ∨ 0 = 𝐴) → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
363, 35sylbid 239 . 2 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
3736imp31 419 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107   class class class wbr 5147  (class class class)co 7404  cc 11104  cr 11105  0cc0 11106   · cmul 11111   < clt 11244  cle 11245  2c2 12263  cexp 14023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-seq 13963  df-exp 14024
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator