MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqlecan Structured version   Visualization version   GIF version

Theorem sqlecan 13925
Description: Cancel one factor of a square in a comparison. Unlike lemul1 11827, the common factor 𝐴 may be zero. (Contributed by NM, 17-Jan-2008.)
Assertion
Ref Expression
sqlecan (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))

Proof of Theorem sqlecan
StepHypRef Expression
1 0re 10977 . . . 4 0 ∈ ℝ
2 leloe 11061 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
31, 2mpan 687 . . 3 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
4 recn 10961 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
5 sqval 13835 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
64, 5syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (𝐴↑2) = (𝐴 · 𝐴))
76breq1d 5084 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐴)))
873ad2ant1 1132 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐴)))
9 lemul1 11827 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐴𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐴)))
108, 9bitr4d 281 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))
11103exp 1118 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
1211exp4a 432 . . . . . . 7 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → (0 < 𝐴 → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵)))))
1312pm2.43a 54 . . . . . 6 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐴 → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
1413adantrd 492 . . . . 5 (𝐴 ∈ ℝ → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (0 < 𝐴 → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
1514com23 86 . . . 4 (𝐴 ∈ ℝ → (0 < 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
16 sq0 13909 . . . . . . . . . . . 12 (0↑2) = 0
17 0le0 12074 . . . . . . . . . . . 12 0 ≤ 0
1816, 17eqbrtri 5095 . . . . . . . . . . 11 (0↑2) ≤ 0
19 recn 10961 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
2019mul01d 11174 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐵 · 0) = 0)
2118, 20breqtrrid 5112 . . . . . . . . . 10 (𝐵 ∈ ℝ → (0↑2) ≤ (𝐵 · 0))
2221adantl 482 . . . . . . . . 9 ((0 = 𝐴𝐵 ∈ ℝ) → (0↑2) ≤ (𝐵 · 0))
23 oveq1 7282 . . . . . . . . . . 11 (0 = 𝐴 → (0↑2) = (𝐴↑2))
24 oveq2 7283 . . . . . . . . . . 11 (0 = 𝐴 → (𝐵 · 0) = (𝐵 · 𝐴))
2523, 24breq12d 5087 . . . . . . . . . 10 (0 = 𝐴 → ((0↑2) ≤ (𝐵 · 0) ↔ (𝐴↑2) ≤ (𝐵 · 𝐴)))
2625adantr 481 . . . . . . . . 9 ((0 = 𝐴𝐵 ∈ ℝ) → ((0↑2) ≤ (𝐵 · 0) ↔ (𝐴↑2) ≤ (𝐵 · 𝐴)))
2722, 26mpbid 231 . . . . . . . 8 ((0 = 𝐴𝐵 ∈ ℝ) → (𝐴↑2) ≤ (𝐵 · 𝐴))
2827adantrr 714 . . . . . . 7 ((0 = 𝐴 ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴↑2) ≤ (𝐵 · 𝐴))
29 breq1 5077 . . . . . . . . 9 (0 = 𝐴 → (0 ≤ 𝐵𝐴𝐵))
3029biimpa 477 . . . . . . . 8 ((0 = 𝐴 ∧ 0 ≤ 𝐵) → 𝐴𝐵)
3130adantrl 713 . . . . . . 7 ((0 = 𝐴 ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴𝐵)
3228, 312thd 264 . . . . . 6 ((0 = 𝐴 ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))
3332ex 413 . . . . 5 (0 = 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵)))
3433a1i 11 . . . 4 (𝐴 ∈ ℝ → (0 = 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
3515, 34jaod 856 . . 3 (𝐴 ∈ ℝ → ((0 < 𝐴 ∨ 0 = 𝐴) → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
363, 35sylbid 239 . 2 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
3736imp31 418 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   · cmul 10876   < clt 11009  cle 11010  2c2 12028  cexp 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-exp 13783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator