MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqlecan Structured version   Visualization version   GIF version

Theorem sqlecan 13777
Description: Cancel one factor of a square in a comparison. Unlike lemul1 11684, the common factor 𝐴 may be zero. (Contributed by NM, 17-Jan-2008.)
Assertion
Ref Expression
sqlecan (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))

Proof of Theorem sqlecan
StepHypRef Expression
1 0re 10835 . . . 4 0 ∈ ℝ
2 leloe 10919 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
31, 2mpan 690 . . 3 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
4 recn 10819 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
5 sqval 13687 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
64, 5syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (𝐴↑2) = (𝐴 · 𝐴))
76breq1d 5063 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐴)))
873ad2ant1 1135 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐴)))
9 lemul1 11684 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐴𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐴)))
108, 9bitr4d 285 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))
11103exp 1121 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
1211exp4a 435 . . . . . . 7 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → (0 < 𝐴 → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵)))))
1312pm2.43a 54 . . . . . 6 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐴 → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
1413adantrd 495 . . . . 5 (𝐴 ∈ ℝ → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (0 < 𝐴 → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
1514com23 86 . . . 4 (𝐴 ∈ ℝ → (0 < 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
16 sq0 13761 . . . . . . . . . . . 12 (0↑2) = 0
17 0le0 11931 . . . . . . . . . . . 12 0 ≤ 0
1816, 17eqbrtri 5074 . . . . . . . . . . 11 (0↑2) ≤ 0
19 recn 10819 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
2019mul01d 11031 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐵 · 0) = 0)
2118, 20breqtrrid 5091 . . . . . . . . . 10 (𝐵 ∈ ℝ → (0↑2) ≤ (𝐵 · 0))
2221adantl 485 . . . . . . . . 9 ((0 = 𝐴𝐵 ∈ ℝ) → (0↑2) ≤ (𝐵 · 0))
23 oveq1 7220 . . . . . . . . . . 11 (0 = 𝐴 → (0↑2) = (𝐴↑2))
24 oveq2 7221 . . . . . . . . . . 11 (0 = 𝐴 → (𝐵 · 0) = (𝐵 · 𝐴))
2523, 24breq12d 5066 . . . . . . . . . 10 (0 = 𝐴 → ((0↑2) ≤ (𝐵 · 0) ↔ (𝐴↑2) ≤ (𝐵 · 𝐴)))
2625adantr 484 . . . . . . . . 9 ((0 = 𝐴𝐵 ∈ ℝ) → ((0↑2) ≤ (𝐵 · 0) ↔ (𝐴↑2) ≤ (𝐵 · 𝐴)))
2722, 26mpbid 235 . . . . . . . 8 ((0 = 𝐴𝐵 ∈ ℝ) → (𝐴↑2) ≤ (𝐵 · 𝐴))
2827adantrr 717 . . . . . . 7 ((0 = 𝐴 ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴↑2) ≤ (𝐵 · 𝐴))
29 breq1 5056 . . . . . . . . 9 (0 = 𝐴 → (0 ≤ 𝐵𝐴𝐵))
3029biimpa 480 . . . . . . . 8 ((0 = 𝐴 ∧ 0 ≤ 𝐵) → 𝐴𝐵)
3130adantrl 716 . . . . . . 7 ((0 = 𝐴 ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴𝐵)
3228, 312thd 268 . . . . . 6 ((0 = 𝐴 ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))
3332ex 416 . . . . 5 (0 = 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵)))
3433a1i 11 . . . 4 (𝐴 ∈ ℝ → (0 = 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
3515, 34jaod 859 . . 3 (𝐴 ∈ ℝ → ((0 < 𝐴 ∨ 0 = 𝐴) → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
363, 35sylbid 243 . 2 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
3736imp31 421 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wcel 2110   class class class wbr 5053  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729   · cmul 10734   < clt 10867  cle 10868  2c2 11885  cexp 13635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-n0 12091  df-z 12177  df-uz 12439  df-seq 13575  df-exp 13636
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator