MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqlecan Structured version   Visualization version   GIF version

Theorem sqlecan 13853
Description: Cancel one factor of a square in a comparison. Unlike lemul1 11757, the common factor 𝐴 may be zero. (Contributed by NM, 17-Jan-2008.)
Assertion
Ref Expression
sqlecan (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))

Proof of Theorem sqlecan
StepHypRef Expression
1 0re 10908 . . . 4 0 ∈ ℝ
2 leloe 10992 . . . 4 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
31, 2mpan 686 . . 3 (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ (0 < 𝐴 ∨ 0 = 𝐴)))
4 recn 10892 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
5 sqval 13763 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
64, 5syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → (𝐴↑2) = (𝐴 · 𝐴))
76breq1d 5080 . . . . . . . . . . 11 (𝐴 ∈ ℝ → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐴)))
873ad2ant1 1131 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐴)))
9 lemul1 11757 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐴𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐴)))
108, 9bitr4d 281 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))
11103exp 1117 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
1211exp4a 431 . . . . . . 7 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (𝐴 ∈ ℝ → (0 < 𝐴 → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵)))))
1312pm2.43a 54 . . . . . 6 (𝐴 ∈ ℝ → (𝐵 ∈ ℝ → (0 < 𝐴 → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
1413adantrd 491 . . . . 5 (𝐴 ∈ ℝ → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → (0 < 𝐴 → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
1514com23 86 . . . 4 (𝐴 ∈ ℝ → (0 < 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
16 sq0 13837 . . . . . . . . . . . 12 (0↑2) = 0
17 0le0 12004 . . . . . . . . . . . 12 0 ≤ 0
1816, 17eqbrtri 5091 . . . . . . . . . . 11 (0↑2) ≤ 0
19 recn 10892 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
2019mul01d 11104 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (𝐵 · 0) = 0)
2118, 20breqtrrid 5108 . . . . . . . . . 10 (𝐵 ∈ ℝ → (0↑2) ≤ (𝐵 · 0))
2221adantl 481 . . . . . . . . 9 ((0 = 𝐴𝐵 ∈ ℝ) → (0↑2) ≤ (𝐵 · 0))
23 oveq1 7262 . . . . . . . . . . 11 (0 = 𝐴 → (0↑2) = (𝐴↑2))
24 oveq2 7263 . . . . . . . . . . 11 (0 = 𝐴 → (𝐵 · 0) = (𝐵 · 𝐴))
2523, 24breq12d 5083 . . . . . . . . . 10 (0 = 𝐴 → ((0↑2) ≤ (𝐵 · 0) ↔ (𝐴↑2) ≤ (𝐵 · 𝐴)))
2625adantr 480 . . . . . . . . 9 ((0 = 𝐴𝐵 ∈ ℝ) → ((0↑2) ≤ (𝐵 · 0) ↔ (𝐴↑2) ≤ (𝐵 · 𝐴)))
2722, 26mpbid 231 . . . . . . . 8 ((0 = 𝐴𝐵 ∈ ℝ) → (𝐴↑2) ≤ (𝐵 · 𝐴))
2827adantrr 713 . . . . . . 7 ((0 = 𝐴 ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴↑2) ≤ (𝐵 · 𝐴))
29 breq1 5073 . . . . . . . . 9 (0 = 𝐴 → (0 ≤ 𝐵𝐴𝐵))
3029biimpa 476 . . . . . . . 8 ((0 = 𝐴 ∧ 0 ≤ 𝐵) → 𝐴𝐵)
3130adantrl 712 . . . . . . 7 ((0 = 𝐴 ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴𝐵)
3228, 312thd 264 . . . . . 6 ((0 = 𝐴 ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))
3332ex 412 . . . . 5 (0 = 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵)))
3433a1i 11 . . . 4 (𝐴 ∈ ℝ → (0 = 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
3515, 34jaod 855 . . 3 (𝐴 ∈ ℝ → ((0 < 𝐴 ∨ 0 = 𝐴) → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
363, 35sylbid 239 . 2 (𝐴 ∈ ℝ → (0 ≤ 𝐴 → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))))
3736imp31 417 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) ≤ (𝐵 · 𝐴) ↔ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   · cmul 10807   < clt 10940  cle 10941  2c2 11958  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator