MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzind2 Structured version   Visualization version   GIF version

Theorem uzind2 12713
Description: Induction on the upper integers that start after an integer 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005.)
Hypotheses
Ref Expression
uzind2.1 (𝑗 = (𝑀 + 1) → (𝜑𝜓))
uzind2.2 (𝑗 = 𝑘 → (𝜑𝜒))
uzind2.3 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
uzind2.4 (𝑗 = 𝑁 → (𝜑𝜏))
uzind2.5 (𝑀 ∈ ℤ → 𝜓)
uzind2.6 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒𝜃))
Assertion
Ref Expression
uzind2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏)
Distinct variable groups:   𝑗,𝑁   𝜓,𝑗   𝜒,𝑗   𝜃,𝑗   𝜏,𝑗   𝜑,𝑘   𝑗,𝑘,𝑀
Allowed substitution hints:   𝜑(𝑗)   𝜓(𝑘)   𝜒(𝑘)   𝜃(𝑘)   𝜏(𝑘)   𝑁(𝑘)

Proof of Theorem uzind2
StepHypRef Expression
1 zltp1le 12669 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁))
2 peano2z 12660 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
3 uzind2.1 . . . . . . . . . 10 (𝑗 = (𝑀 + 1) → (𝜑𝜓))
43imbi2d 340 . . . . . . . . 9 (𝑗 = (𝑀 + 1) → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜓)))
5 uzind2.2 . . . . . . . . . 10 (𝑗 = 𝑘 → (𝜑𝜒))
65imbi2d 340 . . . . . . . . 9 (𝑗 = 𝑘 → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜒)))
7 uzind2.3 . . . . . . . . . 10 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
87imbi2d 340 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜃)))
9 uzind2.4 . . . . . . . . . 10 (𝑗 = 𝑁 → (𝜑𝜏))
109imbi2d 340 . . . . . . . . 9 (𝑗 = 𝑁 → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜏)))
11 uzind2.5 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝜓)
1211a1i 11 . . . . . . . . 9 ((𝑀 + 1) ∈ ℤ → (𝑀 ∈ ℤ → 𝜓))
13 zltp1le 12669 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀 < 𝑘 ↔ (𝑀 + 1) ≤ 𝑘))
14 uzind2.6 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒𝜃))
15143expia 1121 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀 < 𝑘 → (𝜒𝜃)))
1613, 15sylbird 260 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑘 → (𝜒𝜃)))
1716ex 412 . . . . . . . . . . . . 13 (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → ((𝑀 + 1) ≤ 𝑘 → (𝜒𝜃))))
1817com3l 89 . . . . . . . . . . . 12 (𝑘 ∈ ℤ → ((𝑀 + 1) ≤ 𝑘 → (𝑀 ∈ ℤ → (𝜒𝜃))))
1918imp 406 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑘) → (𝑀 ∈ ℤ → (𝜒𝜃)))
20193adant1 1130 . . . . . . . . . 10 (((𝑀 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑘) → (𝑀 ∈ ℤ → (𝜒𝜃)))
2120a2d 29 . . . . . . . . 9 (((𝑀 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑘) → ((𝑀 ∈ ℤ → 𝜒) → (𝑀 ∈ ℤ → 𝜃)))
224, 6, 8, 10, 12, 21uzind 12712 . . . . . . . 8 (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 ∈ ℤ → 𝜏))
23223exp 1119 . . . . . . 7 ((𝑀 + 1) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → (𝑀 ∈ ℤ → 𝜏))))
242, 23syl 17 . . . . . 6 (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → (𝑀 ∈ ℤ → 𝜏))))
2524com34 91 . . . . 5 (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁𝜏))))
2625pm2.43a 54 . . . 4 (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁𝜏)))
2726imp 406 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁𝜏))
281, 27sylbid 240 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁𝜏))
29283impia 1117 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107   class class class wbr 5142  (class class class)co 7432  1c1 11157   + caddc 11159   < clt 11296  cle 11297  cz 12615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616
This theorem is referenced by:  monotuz  42958
  Copyright terms: Public domain W3C validator