Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uzind2 | Structured version Visualization version GIF version |
Description: Induction on the upper integers that start after an integer 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005.) |
Ref | Expression |
---|---|
uzind2.1 | ⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓)) |
uzind2.2 | ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) |
uzind2.3 | ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) |
uzind2.4 | ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) |
uzind2.5 | ⊢ (𝑀 ∈ ℤ → 𝜓) |
uzind2.6 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
uzind2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zltp1le 12300 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | |
2 | peano2z 12291 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ) | |
3 | uzind2.1 | . . . . . . . . . 10 ⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓)) | |
4 | 3 | imbi2d 340 | . . . . . . . . 9 ⊢ (𝑗 = (𝑀 + 1) → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜓))) |
5 | uzind2.2 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) | |
6 | 5 | imbi2d 340 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜒))) |
7 | uzind2.3 | . . . . . . . . . 10 ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) | |
8 | 7 | imbi2d 340 | . . . . . . . . 9 ⊢ (𝑗 = (𝑘 + 1) → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜃))) |
9 | uzind2.4 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) | |
10 | 9 | imbi2d 340 | . . . . . . . . 9 ⊢ (𝑗 = 𝑁 → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜏))) |
11 | uzind2.5 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝜓) | |
12 | 11 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑀 + 1) ∈ ℤ → (𝑀 ∈ ℤ → 𝜓)) |
13 | zltp1le 12300 | . . . . . . . . . . . . . . 15 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀 < 𝑘 ↔ (𝑀 + 1) ≤ 𝑘)) | |
14 | uzind2.6 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃)) | |
15 | 14 | 3expia 1119 | . . . . . . . . . . . . . . 15 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀 < 𝑘 → (𝜒 → 𝜃))) |
16 | 13, 15 | sylbird 259 | . . . . . . . . . . . . . 14 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑘 → (𝜒 → 𝜃))) |
17 | 16 | ex 412 | . . . . . . . . . . . . 13 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → ((𝑀 + 1) ≤ 𝑘 → (𝜒 → 𝜃)))) |
18 | 17 | com3l 89 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ ℤ → ((𝑀 + 1) ≤ 𝑘 → (𝑀 ∈ ℤ → (𝜒 → 𝜃)))) |
19 | 18 | imp 406 | . . . . . . . . . . 11 ⊢ ((𝑘 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑘) → (𝑀 ∈ ℤ → (𝜒 → 𝜃))) |
20 | 19 | 3adant1 1128 | . . . . . . . . . 10 ⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑘) → (𝑀 ∈ ℤ → (𝜒 → 𝜃))) |
21 | 20 | a2d 29 | . . . . . . . . 9 ⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑘) → ((𝑀 ∈ ℤ → 𝜒) → (𝑀 ∈ ℤ → 𝜃))) |
22 | 4, 6, 8, 10, 12, 21 | uzind 12342 | . . . . . . . 8 ⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 ∈ ℤ → 𝜏)) |
23 | 22 | 3exp 1117 | . . . . . . 7 ⊢ ((𝑀 + 1) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → (𝑀 ∈ ℤ → 𝜏)))) |
24 | 2, 23 | syl 17 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → (𝑀 ∈ ℤ → 𝜏)))) |
25 | 24 | com34 91 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → 𝜏)))) |
26 | 25 | pm2.43a 54 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → 𝜏))) |
27 | 26 | imp 406 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁 → 𝜏)) |
28 | 1, 27 | sylbid 239 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 → 𝜏)) |
29 | 28 | 3impia 1115 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 1c1 10803 + caddc 10805 < clt 10940 ≤ cle 10941 ℤcz 12249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 |
This theorem is referenced by: monotuz 40679 |
Copyright terms: Public domain | W3C validator |