![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzind2 | Structured version Visualization version GIF version |
Description: Induction on the upper integers that start after an integer 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005.) |
Ref | Expression |
---|---|
uzind2.1 | ⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓)) |
uzind2.2 | ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) |
uzind2.3 | ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) |
uzind2.4 | ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) |
uzind2.5 | ⊢ (𝑀 ∈ ℤ → 𝜓) |
uzind2.6 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
uzind2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zltp1le 12554 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | |
2 | peano2z 12545 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ) | |
3 | uzind2.1 | . . . . . . . . . 10 ⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓)) | |
4 | 3 | imbi2d 341 | . . . . . . . . 9 ⊢ (𝑗 = (𝑀 + 1) → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜓))) |
5 | uzind2.2 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) | |
6 | 5 | imbi2d 341 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜒))) |
7 | uzind2.3 | . . . . . . . . . 10 ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) | |
8 | 7 | imbi2d 341 | . . . . . . . . 9 ⊢ (𝑗 = (𝑘 + 1) → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜃))) |
9 | uzind2.4 | . . . . . . . . . 10 ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) | |
10 | 9 | imbi2d 341 | . . . . . . . . 9 ⊢ (𝑗 = 𝑁 → ((𝑀 ∈ ℤ → 𝜑) ↔ (𝑀 ∈ ℤ → 𝜏))) |
11 | uzind2.5 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝜓) | |
12 | 11 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑀 + 1) ∈ ℤ → (𝑀 ∈ ℤ → 𝜓)) |
13 | zltp1le 12554 | . . . . . . . . . . . . . . 15 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀 < 𝑘 ↔ (𝑀 + 1) ≤ 𝑘)) | |
14 | uzind2.6 | . . . . . . . . . . . . . . . 16 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃)) | |
15 | 14 | 3expia 1122 | . . . . . . . . . . . . . . 15 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑀 < 𝑘 → (𝜒 → 𝜃))) |
16 | 13, 15 | sylbird 260 | . . . . . . . . . . . . . 14 ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑘 → (𝜒 → 𝜃))) |
17 | 16 | ex 414 | . . . . . . . . . . . . 13 ⊢ (𝑀 ∈ ℤ → (𝑘 ∈ ℤ → ((𝑀 + 1) ≤ 𝑘 → (𝜒 → 𝜃)))) |
18 | 17 | com3l 89 | . . . . . . . . . . . 12 ⊢ (𝑘 ∈ ℤ → ((𝑀 + 1) ≤ 𝑘 → (𝑀 ∈ ℤ → (𝜒 → 𝜃)))) |
19 | 18 | imp 408 | . . . . . . . . . . 11 ⊢ ((𝑘 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑘) → (𝑀 ∈ ℤ → (𝜒 → 𝜃))) |
20 | 19 | 3adant1 1131 | . . . . . . . . . 10 ⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑘) → (𝑀 ∈ ℤ → (𝜒 → 𝜃))) |
21 | 20 | a2d 29 | . . . . . . . . 9 ⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑘) → ((𝑀 ∈ ℤ → 𝜒) → (𝑀 ∈ ℤ → 𝜃))) |
22 | 4, 6, 8, 10, 12, 21 | uzind 12596 | . . . . . . . 8 ⊢ (((𝑀 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑀 + 1) ≤ 𝑁) → (𝑀 ∈ ℤ → 𝜏)) |
23 | 22 | 3exp 1120 | . . . . . . 7 ⊢ ((𝑀 + 1) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → (𝑀 ∈ ℤ → 𝜏)))) |
24 | 2, 23 | syl 17 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → (𝑀 ∈ ℤ → 𝜏)))) |
25 | 24 | com34 91 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → 𝜏)))) |
26 | 25 | pm2.43a 54 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → ((𝑀 + 1) ≤ 𝑁 → 𝜏))) |
27 | 26 | imp 408 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 1) ≤ 𝑁 → 𝜏)) |
28 | 1, 27 | sylbid 239 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 → 𝜏)) |
29 | 28 | 3impia 1118 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 class class class wbr 5106 (class class class)co 7358 1c1 11053 + caddc 11055 < clt 11190 ≤ cle 11191 ℤcz 12500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-nn 12155 df-n0 12415 df-z 12501 |
This theorem is referenced by: monotuz 41268 |
Copyright terms: Public domain | W3C validator |