MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramerimplem2 Structured version   Visualization version   GIF version

Theorem cramerimplem2 21939
Description: Lemma 2 for cramerimp 21941: The matrix of a system of linear equations multiplied with the identity matrix with the ith column replaced by the solution vector of the system of linear equations equals the matrix of the system of linear equations with the ith column replaced by the right-hand side vector of the system of linear equations. (Contributed by AV, 19-Feb-2019.) (Revised by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
cramerimp.a 𝐴 = (𝑁 Mat 𝑅)
cramerimp.b 𝐵 = (Base‘𝐴)
cramerimp.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
cramerimp.e 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
cramerimp.h 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼)
cramerimp.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
cramerimp.m × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
Assertion
Ref Expression
cramerimplem2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 × 𝐸) = 𝐻)

Proof of Theorem cramerimplem2
Dummy variables 𝑙 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cramerimp.m . . 3 × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
2 eqid 2736 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2736 . . 3 (.r𝑅) = (.r𝑅)
4 simpl 483 . . . 4 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑅 ∈ CRing)
543ad2ant1 1132 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑅 ∈ CRing)
6 cramerimp.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
7 cramerimp.b . . . . . . 7 𝐵 = (Base‘𝐴)
86, 7matrcl 21665 . . . . . 6 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
98simpld 495 . . . . 5 (𝑋𝐵𝑁 ∈ Fin)
109adantr 481 . . . 4 ((𝑋𝐵𝑌𝑉) → 𝑁 ∈ Fin)
11103ad2ant2 1133 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑁 ∈ Fin)
129anim2i 617 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑅 ∈ CRing ∧ 𝑁 ∈ Fin))
1312ancomd 462 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
146, 2matbas2 21676 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
1513, 14syl 17 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
167, 15eqtr4id 2795 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐵 = ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
1716eleq2d 2822 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))))
1817biimpd 228 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))))
1918ex 413 . . . . . . . . 9 (𝑅 ∈ CRing → (𝑋𝐵 → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))))
2019adantr 481 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → (𝑋𝐵 → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))))
2120com12 32 . . . . . . 7 (𝑋𝐵 → ((𝑅 ∈ CRing ∧ 𝐼𝑁) → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))))
2221pm2.43a 54 . . . . . 6 (𝑋𝐵 → ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))))
2322adantr 481 . . . . 5 ((𝑋𝐵𝑌𝑉) → ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))))
2423impcom 408 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
25243adant3 1131 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
26 crngring 19890 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2726adantr 481 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑅 ∈ Ring)
2827, 10anim12i 613 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
29283adant3 1131 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
30 ne0i 4281 . . . . . . . . 9 (𝐼𝑁𝑁 ≠ ∅)
3130adantl 482 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑁 ≠ ∅)
32313ad2ant1 1132 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑁 ≠ ∅)
3311, 11, 323jca 1127 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
34 cramerimp.v . . . . . . . . . . 11 𝑉 = ((Base‘𝑅) ↑m 𝑁)
3534eleq2i 2828 . . . . . . . . . 10 (𝑌𝑉𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
3635biimpi 215 . . . . . . . . 9 (𝑌𝑉𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
3736adantl 482 . . . . . . . 8 ((𝑋𝐵𝑌𝑉) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
384, 37anim12i 613 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)))
39383adant3 1131 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)))
40 simp3 1137 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 · 𝑍) = 𝑌)
41 eqid 2736 . . . . . . . 8 ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = ((Base‘𝑅) ↑m (𝑁 × 𝑁))
42 cramerimp.x . . . . . . . 8 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
43 eqid 2736 . . . . . . . 8 ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m 𝑁)
442, 41, 34, 42, 43mavmulsolcl 21806 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ∧ (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
4544imp 407 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ∧ (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑍𝑉)
4633, 39, 40, 45syl21anc 835 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑍𝑉)
47 simpr 485 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝐼𝑁)
48473ad2ant1 1132 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝐼𝑁)
49 cramerimp.e . . . . . 6 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
50 eqid 2736 . . . . . . 7 (1r𝐴) = (1r𝐴)
516, 7, 34, 50ma1repvcl 21825 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ 𝐵)
5249, 51eqeltrid 2841 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → 𝐸𝐵)
5329, 46, 48, 52syl12anc 834 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝐸𝐵)
5416eqcomd 2742 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 𝐵)
5554ad2ant2r 744 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 𝐵)
56553adant3 1131 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 𝐵)
5753, 56eleqtrrd 2840 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝐸 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
581, 2, 3, 5, 11, 11, 11, 25, 57mamuval 21641 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 × 𝐸) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗))))))
59273ad2ant1 1132 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑅 ∈ Ring)
60593ad2ant1 1132 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
61 simpl 483 . . . . . . 7 ((𝑋𝐵𝑌𝑉) → 𝑋𝐵)
62613ad2ant2 1133 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑋𝐵)
6362, 46, 483jca 1127 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋𝐵𝑍𝑉𝐼𝑁))
64633ad2ant1 1132 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → (𝑋𝐵𝑍𝑉𝐼𝑁))
65 simp2 1136 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
66 simp3 1137 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
67403ad2ant1 1132 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → (𝑋 · 𝑍) = 𝑌)
68 eqid 2736 . . . . 5 (0g𝑅) = (0g𝑅)
696, 7, 34, 50, 68, 49, 42mulmarep1gsum2 21829 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁 ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗)))) = if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗)))
7060, 64, 65, 66, 67, 69syl113anc 1381 . . 3 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗)))) = if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗)))
7170mpoeq3dva 7414 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗))))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))))
72 cramerimp.h . . 3 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼)
73 simpr 485 . . . . 5 ((𝑋𝐵𝑌𝑉) → 𝑌𝑉)
74733ad2ant2 1133 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑌𝑉)
75 eqid 2736 . . . . 5 (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅)
766, 7, 75, 34marepvval 21822 . . . 4 ((𝑋𝐵𝑌𝑉𝐼𝑁) → ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))))
7762, 74, 48, 76syl3anc 1370 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))))
7872, 77eqtr2id 2789 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))) = 𝐻)
7958, 71, 783eqtrd 2780 1 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 × 𝐸) = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  Vcvv 3441  c0 4269  ifcif 4473  cop 4579  cotp 4581  cmpt 5175   × cxp 5618  cfv 6479  (class class class)co 7337  cmpo 7339  m cmap 8686  Fincfn 8804  Basecbs 17009  .rcmulr 17060  0gc0g 17247   Σg cgsu 17248  1rcur 19832  Ringcrg 19878  CRingccrg 19879   maMul cmmul 21638   Mat cmat 21660   maVecMul cmvmul 21795   matRepV cmatrepV 21812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4853  df-int 4895  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-map 8688  df-ixp 8757  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fsupp 9227  df-sup 9299  df-oi 9367  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-z 12421  df-dec 12539  df-uz 12684  df-fz 13341  df-fzo 13484  df-seq 13823  df-hash 14146  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-sca 17075  df-vsca 17076  df-ip 17077  df-tset 17078  df-ple 17079  df-ds 17081  df-hom 17083  df-cco 17084  df-0g 17249  df-gsum 17250  df-prds 17255  df-pws 17257  df-mre 17392  df-mrc 17393  df-acs 17395  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-mhm 18527  df-submnd 18528  df-grp 18676  df-minusg 18677  df-sbg 18678  df-mulg 18797  df-subg 18848  df-ghm 18928  df-cntz 19019  df-cmn 19483  df-abl 19484  df-mgp 19816  df-ur 19833  df-ring 19880  df-cring 19881  df-subrg 20127  df-lmod 20231  df-lss 20300  df-sra 20540  df-rgmod 20541  df-dsmm 21045  df-frlm 21060  df-mamu 21639  df-mat 21661  df-mvmul 21796  df-marepv 21814
This theorem is referenced by:  cramerimplem3  21940
  Copyright terms: Public domain W3C validator