MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramerimplem2 Structured version   Visualization version   GIF version

Theorem cramerimplem2 22627
Description: Lemma 2 for cramerimp 22629: The matrix of a system of linear equations multiplied with the identity matrix with the ith column replaced by the solution vector of the system of linear equations equals the matrix of the system of linear equations with the ith column replaced by the right-hand side vector of the system of linear equations. (Contributed by AV, 19-Feb-2019.) (Revised by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
cramerimp.a 𝐴 = (𝑁 Mat 𝑅)
cramerimp.b 𝐵 = (Base‘𝐴)
cramerimp.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
cramerimp.e 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
cramerimp.h 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼)
cramerimp.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
cramerimp.m × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
Assertion
Ref Expression
cramerimplem2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 × 𝐸) = 𝐻)

Proof of Theorem cramerimplem2
Dummy variables 𝑙 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cramerimp.m . . 3 × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
2 eqid 2736 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2736 . . 3 (.r𝑅) = (.r𝑅)
4 simpl 482 . . . 4 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑅 ∈ CRing)
543ad2ant1 1133 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑅 ∈ CRing)
6 cramerimp.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
7 cramerimp.b . . . . . . 7 𝐵 = (Base‘𝐴)
86, 7matrcl 22355 . . . . . 6 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
98simpld 494 . . . . 5 (𝑋𝐵𝑁 ∈ Fin)
109adantr 480 . . . 4 ((𝑋𝐵𝑌𝑉) → 𝑁 ∈ Fin)
11103ad2ant2 1134 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑁 ∈ Fin)
129anim2i 617 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑅 ∈ CRing ∧ 𝑁 ∈ Fin))
1312ancomd 461 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
146, 2matbas2 22364 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
1513, 14syl 17 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
167, 15eqtr4id 2790 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐵 = ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
1716eleq2d 2821 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))))
1817biimpd 229 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))))
1918ex 412 . . . . . . . . 9 (𝑅 ∈ CRing → (𝑋𝐵 → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))))
2019adantr 480 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → (𝑋𝐵 → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))))
2120com12 32 . . . . . . 7 (𝑋𝐵 → ((𝑅 ∈ CRing ∧ 𝐼𝑁) → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))))
2221pm2.43a 54 . . . . . 6 (𝑋𝐵 → ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))))
2322adantr 480 . . . . 5 ((𝑋𝐵𝑌𝑉) → ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))))
2423impcom 407 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
25243adant3 1132 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
26 crngring 20210 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2726adantr 480 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑅 ∈ Ring)
2827, 10anim12i 613 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
29283adant3 1132 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
30 ne0i 4321 . . . . . . . . 9 (𝐼𝑁𝑁 ≠ ∅)
3130adantl 481 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑁 ≠ ∅)
32313ad2ant1 1133 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑁 ≠ ∅)
3311, 11, 323jca 1128 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
34 cramerimp.v . . . . . . . . . . 11 𝑉 = ((Base‘𝑅) ↑m 𝑁)
3534eleq2i 2827 . . . . . . . . . 10 (𝑌𝑉𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
3635biimpi 216 . . . . . . . . 9 (𝑌𝑉𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
3736adantl 481 . . . . . . . 8 ((𝑋𝐵𝑌𝑉) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
384, 37anim12i 613 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)))
39383adant3 1132 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)))
40 simp3 1138 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 · 𝑍) = 𝑌)
41 eqid 2736 . . . . . . . 8 ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = ((Base‘𝑅) ↑m (𝑁 × 𝑁))
42 cramerimp.x . . . . . . . 8 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
43 eqid 2736 . . . . . . . 8 ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m 𝑁)
442, 41, 34, 42, 43mavmulsolcl 22494 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ∧ (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
4544imp 406 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ∧ (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑍𝑉)
4633, 39, 40, 45syl21anc 837 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑍𝑉)
47 simpr 484 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝐼𝑁)
48473ad2ant1 1133 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝐼𝑁)
49 cramerimp.e . . . . . 6 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
50 eqid 2736 . . . . . . 7 (1r𝐴) = (1r𝐴)
516, 7, 34, 50ma1repvcl 22513 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ 𝐵)
5249, 51eqeltrid 2839 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → 𝐸𝐵)
5329, 46, 48, 52syl12anc 836 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝐸𝐵)
5416eqcomd 2742 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 𝐵)
5554ad2ant2r 747 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 𝐵)
56553adant3 1132 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 𝐵)
5753, 56eleqtrrd 2838 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝐸 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
581, 2, 3, 5, 11, 11, 11, 25, 57mamuval 22336 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 × 𝐸) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗))))))
59273ad2ant1 1133 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑅 ∈ Ring)
60593ad2ant1 1133 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
61 simpl 482 . . . . . . 7 ((𝑋𝐵𝑌𝑉) → 𝑋𝐵)
62613ad2ant2 1134 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑋𝐵)
6362, 46, 483jca 1128 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋𝐵𝑍𝑉𝐼𝑁))
64633ad2ant1 1133 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → (𝑋𝐵𝑍𝑉𝐼𝑁))
65 simp2 1137 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
66 simp3 1138 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
67403ad2ant1 1133 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → (𝑋 · 𝑍) = 𝑌)
68 eqid 2736 . . . . 5 (0g𝑅) = (0g𝑅)
696, 7, 34, 50, 68, 49, 42mulmarep1gsum2 22517 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁 ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗)))) = if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗)))
7060, 64, 65, 66, 67, 69syl113anc 1384 . . 3 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗)))) = if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗)))
7170mpoeq3dva 7489 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗))))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))))
72 cramerimp.h . . 3 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼)
73 simpr 484 . . . . 5 ((𝑋𝐵𝑌𝑉) → 𝑌𝑉)
74733ad2ant2 1134 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑌𝑉)
75 eqid 2736 . . . . 5 (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅)
766, 7, 75, 34marepvval 22510 . . . 4 ((𝑋𝐵𝑌𝑉𝐼𝑁) → ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))))
7762, 74, 48, 76syl3anc 1373 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))))
7872, 77eqtr2id 2784 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))) = 𝐻)
7958, 71, 783eqtrd 2775 1 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 × 𝐸) = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  c0 4313  ifcif 4505  cop 4612  cotp 4614  cmpt 5206   × cxp 5657  cfv 6536  (class class class)co 7410  cmpo 7412  m cmap 8845  Fincfn 8964  Basecbs 17233  .rcmulr 17277  0gc0g 17458   Σg cgsu 17459  1rcur 20146  Ringcrg 20198  CRingccrg 20199   maMul cmmul 22333   Mat cmat 22350   maVecMul cmvmul 22483   matRepV cmatrepV 22500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-subrg 20535  df-lmod 20824  df-lss 20894  df-sra 21136  df-rgmod 21137  df-dsmm 21697  df-frlm 21712  df-mamu 22334  df-mat 22351  df-mvmul 22484  df-marepv 22502
This theorem is referenced by:  cramerimplem3  22628
  Copyright terms: Public domain W3C validator