MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramerimplem2 Structured version   Visualization version   GIF version

Theorem cramerimplem2 21741
Description: Lemma 2 for cramerimp 21743: The matrix of a system of linear equations multiplied with the identity matrix with the ith column replaced by the solution vector of the system of linear equations equals the matrix of the system of linear equations with the ith column replaced by the right-hand side vector of the system of linear equations. (Contributed by AV, 19-Feb-2019.) (Revised by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
cramerimp.a 𝐴 = (𝑁 Mat 𝑅)
cramerimp.b 𝐵 = (Base‘𝐴)
cramerimp.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
cramerimp.e 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
cramerimp.h 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼)
cramerimp.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
cramerimp.m × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
Assertion
Ref Expression
cramerimplem2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 × 𝐸) = 𝐻)

Proof of Theorem cramerimplem2
Dummy variables 𝑙 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cramerimp.m . . 3 × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
2 eqid 2738 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2738 . . 3 (.r𝑅) = (.r𝑅)
4 simpl 482 . . . 4 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑅 ∈ CRing)
543ad2ant1 1131 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑅 ∈ CRing)
6 cramerimp.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
7 cramerimp.b . . . . . . 7 𝐵 = (Base‘𝐴)
86, 7matrcl 21469 . . . . . 6 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
98simpld 494 . . . . 5 (𝑋𝐵𝑁 ∈ Fin)
109adantr 480 . . . 4 ((𝑋𝐵𝑌𝑉) → 𝑁 ∈ Fin)
11103ad2ant2 1132 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑁 ∈ Fin)
129anim2i 616 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑅 ∈ CRing ∧ 𝑁 ∈ Fin))
1312ancomd 461 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
146, 2matbas2 21478 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
1513, 14syl 17 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
167, 15eqtr4id 2798 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐵 = ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
1716eleq2d 2824 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))))
1817biimpd 228 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))))
1918ex 412 . . . . . . . . 9 (𝑅 ∈ CRing → (𝑋𝐵 → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))))
2019adantr 480 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → (𝑋𝐵 → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))))
2120com12 32 . . . . . . 7 (𝑋𝐵 → ((𝑅 ∈ CRing ∧ 𝐼𝑁) → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))))
2221pm2.43a 54 . . . . . 6 (𝑋𝐵 → ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))))
2322adantr 480 . . . . 5 ((𝑋𝐵𝑌𝑉) → ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))))
2423impcom 407 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
25243adant3 1130 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
26 crngring 19710 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2726adantr 480 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑅 ∈ Ring)
2827, 10anim12i 612 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
29283adant3 1130 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
30 ne0i 4265 . . . . . . . . 9 (𝐼𝑁𝑁 ≠ ∅)
3130adantl 481 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑁 ≠ ∅)
32313ad2ant1 1131 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑁 ≠ ∅)
3311, 11, 323jca 1126 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
34 cramerimp.v . . . . . . . . . . 11 𝑉 = ((Base‘𝑅) ↑m 𝑁)
3534eleq2i 2830 . . . . . . . . . 10 (𝑌𝑉𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
3635biimpi 215 . . . . . . . . 9 (𝑌𝑉𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
3736adantl 481 . . . . . . . 8 ((𝑋𝐵𝑌𝑉) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
384, 37anim12i 612 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)))
39383adant3 1130 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)))
40 simp3 1136 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 · 𝑍) = 𝑌)
41 eqid 2738 . . . . . . . 8 ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = ((Base‘𝑅) ↑m (𝑁 × 𝑁))
42 cramerimp.x . . . . . . . 8 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
43 eqid 2738 . . . . . . . 8 ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m 𝑁)
442, 41, 34, 42, 43mavmulsolcl 21608 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ∧ (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
4544imp 406 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ∧ (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑍𝑉)
4633, 39, 40, 45syl21anc 834 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑍𝑉)
47 simpr 484 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝐼𝑁)
48473ad2ant1 1131 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝐼𝑁)
49 cramerimp.e . . . . . 6 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
50 eqid 2738 . . . . . . 7 (1r𝐴) = (1r𝐴)
516, 7, 34, 50ma1repvcl 21627 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ 𝐵)
5249, 51eqeltrid 2843 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → 𝐸𝐵)
5329, 46, 48, 52syl12anc 833 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝐸𝐵)
5416eqcomd 2744 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 𝐵)
5554ad2ant2r 743 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 𝐵)
56553adant3 1130 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 𝐵)
5753, 56eleqtrrd 2842 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝐸 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
581, 2, 3, 5, 11, 11, 11, 25, 57mamuval 21445 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 × 𝐸) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗))))))
59273ad2ant1 1131 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑅 ∈ Ring)
60593ad2ant1 1131 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
61 simpl 482 . . . . . . 7 ((𝑋𝐵𝑌𝑉) → 𝑋𝐵)
62613ad2ant2 1132 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑋𝐵)
6362, 46, 483jca 1126 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋𝐵𝑍𝑉𝐼𝑁))
64633ad2ant1 1131 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → (𝑋𝐵𝑍𝑉𝐼𝑁))
65 simp2 1135 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
66 simp3 1136 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
67403ad2ant1 1131 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → (𝑋 · 𝑍) = 𝑌)
68 eqid 2738 . . . . 5 (0g𝑅) = (0g𝑅)
696, 7, 34, 50, 68, 49, 42mulmarep1gsum2 21631 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁 ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗)))) = if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗)))
7060, 64, 65, 66, 67, 69syl113anc 1380 . . 3 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗)))) = if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗)))
7170mpoeq3dva 7330 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗))))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))))
72 cramerimp.h . . 3 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼)
73 simpr 484 . . . . 5 ((𝑋𝐵𝑌𝑉) → 𝑌𝑉)
74733ad2ant2 1132 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑌𝑉)
75 eqid 2738 . . . . 5 (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅)
766, 7, 75, 34marepvval 21624 . . . 4 ((𝑋𝐵𝑌𝑉𝐼𝑁) → ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))))
7762, 74, 48, 76syl3anc 1369 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))))
7872, 77eqtr2id 2792 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))) = 𝐻)
7958, 71, 783eqtrd 2782 1 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 × 𝐸) = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  c0 4253  ifcif 4456  cop 4564  cotp 4566  cmpt 5153   × cxp 5578  cfv 6418  (class class class)co 7255  cmpo 7257  m cmap 8573  Fincfn 8691  Basecbs 16840  .rcmulr 16889  0gc0g 17067   Σg cgsu 17068  1rcur 19652  Ringcrg 19698  CRingccrg 19699   maMul cmmul 21442   Mat cmat 21464   maVecMul cmvmul 21597   matRepV cmatrepV 21614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-dsmm 20849  df-frlm 20864  df-mamu 21443  df-mat 21465  df-mvmul 21598  df-marepv 21616
This theorem is referenced by:  cramerimplem3  21742
  Copyright terms: Public domain W3C validator