MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cramerimplem2 Structured version   Visualization version   GIF version

Theorem cramerimplem2 21292
Description: Lemma 2 for cramerimp 21294: The matrix of a system of linear equations multiplied with the identity matrix with the ith column replaced by the solution vector of the system of linear equations equals the matrix of the system of linear equations with the ith column replaced by the right-hand side vector of the system of linear equations. (Contributed by AV, 19-Feb-2019.) (Revised by AV, 1-Mar-2019.)
Hypotheses
Ref Expression
cramerimp.a 𝐴 = (𝑁 Mat 𝑅)
cramerimp.b 𝐵 = (Base‘𝐴)
cramerimp.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
cramerimp.e 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
cramerimp.h 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼)
cramerimp.x · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
cramerimp.m × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
Assertion
Ref Expression
cramerimplem2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 × 𝐸) = 𝐻)

Proof of Theorem cramerimplem2
Dummy variables 𝑙 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cramerimp.m . . 3 × = (𝑅 maMul ⟨𝑁, 𝑁, 𝑁⟩)
2 eqid 2801 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2801 . . 3 (.r𝑅) = (.r𝑅)
4 simpl 486 . . . 4 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑅 ∈ CRing)
543ad2ant1 1130 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑅 ∈ CRing)
6 cramerimp.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
7 cramerimp.b . . . . . . 7 𝐵 = (Base‘𝐴)
86, 7matrcl 21020 . . . . . 6 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
98simpld 498 . . . . 5 (𝑋𝐵𝑁 ∈ Fin)
109adantr 484 . . . 4 ((𝑋𝐵𝑌𝑉) → 𝑁 ∈ Fin)
11103ad2ant2 1131 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑁 ∈ Fin)
129anim2i 619 . . . . . . . . . . . . . . 15 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑅 ∈ CRing ∧ 𝑁 ∈ Fin))
1312ancomd 465 . . . . . . . . . . . . . 14 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ CRing))
146, 2matbas2 21029 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
1513, 14syl 17 . . . . . . . . . . . . 13 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = (Base‘𝐴))
167, 15eqtr4id 2855 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → 𝐵 = ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
1716eleq2d 2878 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))))
1817biimpd 232 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))))
1918ex 416 . . . . . . . . 9 (𝑅 ∈ CRing → (𝑋𝐵 → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))))
2019adantr 484 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → (𝑋𝐵 → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))))
2120com12 32 . . . . . . 7 (𝑋𝐵 → ((𝑅 ∈ CRing ∧ 𝐼𝑁) → (𝑋𝐵𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))))
2221pm2.43a 54 . . . . . 6 (𝑋𝐵 → ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))))
2322adantr 484 . . . . 5 ((𝑋𝐵𝑌𝑉) → ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))))
2423impcom 411 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
25243adant3 1129 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑋 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
26 crngring 19305 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2726adantr 484 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑅 ∈ Ring)
2827, 10anim12i 615 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
29283adant3 1129 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑅 ∈ Ring ∧ 𝑁 ∈ Fin))
30 ne0i 4253 . . . . . . . . 9 (𝐼𝑁𝑁 ≠ ∅)
3130adantl 485 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝑁 ≠ ∅)
32313ad2ant1 1130 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑁 ≠ ∅)
3311, 11, 323jca 1125 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅))
34 cramerimp.v . . . . . . . . . . 11 𝑉 = ((Base‘𝑅) ↑m 𝑁)
3534eleq2i 2884 . . . . . . . . . 10 (𝑌𝑉𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
3635biimpi 219 . . . . . . . . 9 (𝑌𝑉𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
3736adantl 485 . . . . . . . 8 ((𝑋𝐵𝑌𝑉) → 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))
384, 37anim12i 615 . . . . . . 7 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)))
39383adant3 1129 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁)))
40 simp3 1135 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 · 𝑍) = 𝑌)
41 eqid 2801 . . . . . . . 8 ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = ((Base‘𝑅) ↑m (𝑁 × 𝑁))
42 cramerimp.x . . . . . . . 8 · = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
43 eqid 2801 . . . . . . . 8 ((Base‘𝑅) ↑m 𝑁) = ((Base‘𝑅) ↑m 𝑁)
442, 41, 34, 42, 43mavmulsolcl 21159 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ∧ (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))) → ((𝑋 · 𝑍) = 𝑌𝑍𝑉))
4544imp 410 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin ∧ 𝑁 ≠ ∅) ∧ (𝑅 ∈ CRing ∧ 𝑌 ∈ ((Base‘𝑅) ↑m 𝑁))) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑍𝑉)
4633, 39, 40, 45syl21anc 836 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑍𝑉)
47 simpr 488 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝐼𝑁) → 𝐼𝑁)
48473ad2ant1 1130 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝐼𝑁)
49 cramerimp.e . . . . . 6 𝐸 = (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼)
50 eqid 2801 . . . . . . 7 (1r𝐴) = (1r𝐴)
516, 7, 34, 50ma1repvcl 21178 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → (((1r𝐴)(𝑁 matRepV 𝑅)𝑍)‘𝐼) ∈ 𝐵)
5249, 51eqeltrid 2897 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin) ∧ (𝑍𝑉𝐼𝑁)) → 𝐸𝐵)
5329, 46, 48, 52syl12anc 835 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝐸𝐵)
5416eqcomd 2807 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑋𝐵) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 𝐵)
5554ad2ant2r 746 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉)) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 𝐵)
56553adant3 1129 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → ((Base‘𝑅) ↑m (𝑁 × 𝑁)) = 𝐵)
5753, 56eleqtrrd 2896 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝐸 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
581, 2, 3, 5, 11, 11, 11, 25, 57mamuval 20996 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 × 𝐸) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗))))))
59273ad2ant1 1130 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑅 ∈ Ring)
60593ad2ant1 1130 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → 𝑅 ∈ Ring)
61 simpl 486 . . . . . . 7 ((𝑋𝐵𝑌𝑉) → 𝑋𝐵)
62613ad2ant2 1131 . . . . . 6 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑋𝐵)
6362, 46, 483jca 1125 . . . . 5 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋𝐵𝑍𝑉𝐼𝑁))
64633ad2ant1 1130 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → (𝑋𝐵𝑍𝑉𝐼𝑁))
65 simp2 1134 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → 𝑖𝑁)
66 simp3 1135 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → 𝑗𝑁)
67403ad2ant1 1130 . . . 4 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → (𝑋 · 𝑍) = 𝑌)
68 eqid 2801 . . . . 5 (0g𝑅) = (0g𝑅)
696, 7, 34, 50, 68, 49, 42mulmarep1gsum2 21182 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑍𝑉𝐼𝑁) ∧ (𝑖𝑁𝑗𝑁 ∧ (𝑋 · 𝑍) = 𝑌)) → (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗)))) = if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗)))
7060, 64, 65, 66, 67, 69syl113anc 1379 . . 3 ((((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) ∧ 𝑖𝑁𝑗𝑁) → (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗)))) = if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗)))
7170mpoeq3dva 7214 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑅 Σg (𝑙𝑁 ↦ ((𝑖𝑋𝑙)(.r𝑅)(𝑙𝐸𝑗))))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))))
72 cramerimp.h . . 3 𝐻 = ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼)
73 simpr 488 . . . . 5 ((𝑋𝐵𝑌𝑉) → 𝑌𝑉)
74733ad2ant2 1131 . . . 4 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → 𝑌𝑉)
75 eqid 2801 . . . . 5 (𝑁 matRepV 𝑅) = (𝑁 matRepV 𝑅)
766, 7, 75, 34marepvval 21175 . . . 4 ((𝑋𝐵𝑌𝑉𝐼𝑁) → ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))))
7762, 74, 48, 76syl3anc 1368 . . 3 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → ((𝑋(𝑁 matRepV 𝑅)𝑌)‘𝐼) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))))
7872, 77syl5req 2849 . 2 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑗 = 𝐼, (𝑌𝑖), (𝑖𝑋𝑗))) = 𝐻)
7958, 71, 783eqtrd 2840 1 (((𝑅 ∈ CRing ∧ 𝐼𝑁) ∧ (𝑋𝐵𝑌𝑉) ∧ (𝑋 · 𝑍) = 𝑌) → (𝑋 × 𝐸) = 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  Vcvv 3444  c0 4246  ifcif 4428  cop 4534  cotp 4536  cmpt 5113   × cxp 5521  cfv 6328  (class class class)co 7139  cmpo 7141  m cmap 8393  Fincfn 8496  Basecbs 16478  .rcmulr 16561  0gc0g 16708   Σg cgsu 16709  1rcur 19247  Ringcrg 19293  CRingccrg 19294   maMul cmmul 20993   Mat cmat 21015   maVecMul cmvmul 21148   matRepV cmatrepV 21165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-ot 4537  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-ixp 8449  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-fzo 13033  df-seq 13369  df-hash 13691  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-hom 16584  df-cco 16585  df-0g 16710  df-gsum 16711  df-prds 16716  df-pws 16718  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-mulg 18220  df-subg 18271  df-ghm 18351  df-cntz 18442  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-ring 19295  df-cring 19296  df-subrg 19529  df-lmod 19632  df-lss 19700  df-sra 19940  df-rgmod 19941  df-dsmm 20424  df-frlm 20439  df-mamu 20994  df-mat 21016  df-mvmul 21149  df-marepv 21167
This theorem is referenced by:  cramerimplem3  21293
  Copyright terms: Public domain W3C validator