MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0uhgrsubgr Structured version   Visualization version   GIF version

Theorem 0uhgrsubgr 29242
Description: The null graph (as hypergraph) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 28-Nov-2020.)
Assertion
Ref Expression
0uhgrsubgr ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → 𝑆 SubGraph 𝐺)

Proof of Theorem 0uhgrsubgr
StepHypRef Expression
1 3simpa 1148 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝐺𝑊𝑆 ∈ UHGraph))
2 0ss 4353 . . . 4 ∅ ⊆ (Vtx‘𝐺)
3 sseq1 3963 . . . 4 ((Vtx‘𝑆) = ∅ → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ↔ ∅ ⊆ (Vtx‘𝐺)))
42, 3mpbiri 258 . . 3 ((Vtx‘𝑆) = ∅ → (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
543ad2ant3 1135 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
6 eqid 2729 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
76uhgrfun 29029 . . 3 (𝑆 ∈ UHGraph → Fun (iEdg‘𝑆))
873ad2ant2 1134 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → Fun (iEdg‘𝑆))
9 edgval 29012 . . 3 (Edg‘𝑆) = ran (iEdg‘𝑆)
10 uhgr0vb 29035 . . . . . . . 8 ((𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆) = ∅))
11 rneq 5882 . . . . . . . . 9 ((iEdg‘𝑆) = ∅ → ran (iEdg‘𝑆) = ran ∅)
12 rn0 5872 . . . . . . . . 9 ran ∅ = ∅
1311, 12eqtrdi 2780 . . . . . . . 8 ((iEdg‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅)
1410, 13biimtrdi 253 . . . . . . 7 ((𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝑆 ∈ UHGraph → ran (iEdg‘𝑆) = ∅))
1514ex 412 . . . . . 6 (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → (𝑆 ∈ UHGraph → ran (iEdg‘𝑆) = ∅)))
1615pm2.43a 54 . . . . 5 (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅))
1716a1i 11 . . . 4 (𝐺𝑊 → (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅)))
18173imp 1110 . . 3 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → ran (iEdg‘𝑆) = ∅)
199, 18eqtrid 2776 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (Edg‘𝑆) = ∅)
20 egrsubgr 29240 . 2 (((𝐺𝑊𝑆 ∈ UHGraph) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → 𝑆 SubGraph 𝐺)
211, 5, 8, 19, 20syl112anc 1376 1 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → 𝑆 SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3905  c0 4286   class class class wbr 5095  ran crn 5624  Fun wfun 6480  cfv 6486  Vtxcvtx 28959  iEdgciedg 28960  Edgcedg 29010  UHGraphcuhgr 29019   SubGraph csubgr 29230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-edg 29011  df-uhgr 29021  df-subgr 29231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator