Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0uhgrsubgr | Structured version Visualization version GIF version |
Description: The null graph (as hypergraph) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 28-Nov-2020.) |
Ref | Expression |
---|---|
0uhgrsubgr | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → 𝑆 SubGraph 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1147 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph)) | |
2 | 0ss 4330 | . . . 4 ⊢ ∅ ⊆ (Vtx‘𝐺) | |
3 | sseq1 3946 | . . . 4 ⊢ ((Vtx‘𝑆) = ∅ → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ↔ ∅ ⊆ (Vtx‘𝐺))) | |
4 | 2, 3 | mpbiri 257 | . . 3 ⊢ ((Vtx‘𝑆) = ∅ → (Vtx‘𝑆) ⊆ (Vtx‘𝐺)) |
5 | 4 | 3ad2ant3 1134 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (Vtx‘𝑆) ⊆ (Vtx‘𝐺)) |
6 | eqid 2738 | . . . 4 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
7 | 6 | uhgrfun 27436 | . . 3 ⊢ (𝑆 ∈ UHGraph → Fun (iEdg‘𝑆)) |
8 | 7 | 3ad2ant2 1133 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → Fun (iEdg‘𝑆)) |
9 | edgval 27419 | . . 3 ⊢ (Edg‘𝑆) = ran (iEdg‘𝑆) | |
10 | uhgr0vb 27442 | . . . . . . . 8 ⊢ ((𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆) = ∅)) | |
11 | rneq 5845 | . . . . . . . . 9 ⊢ ((iEdg‘𝑆) = ∅ → ran (iEdg‘𝑆) = ran ∅) | |
12 | rn0 5835 | . . . . . . . . 9 ⊢ ran ∅ = ∅ | |
13 | 11, 12 | eqtrdi 2794 | . . . . . . . 8 ⊢ ((iEdg‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅) |
14 | 10, 13 | syl6bi 252 | . . . . . . 7 ⊢ ((𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝑆 ∈ UHGraph → ran (iEdg‘𝑆) = ∅)) |
15 | 14 | ex 413 | . . . . . 6 ⊢ (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → (𝑆 ∈ UHGraph → ran (iEdg‘𝑆) = ∅))) |
16 | 15 | pm2.43a 54 | . . . . 5 ⊢ (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅)) |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅))) |
18 | 17 | 3imp 1110 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → ran (iEdg‘𝑆) = ∅) |
19 | 9, 18 | eqtrid 2790 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (Edg‘𝑆) = ∅) |
20 | egrsubgr 27644 | . 2 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → 𝑆 SubGraph 𝐺) | |
21 | 1, 5, 8, 19, 20 | syl112anc 1373 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → 𝑆 SubGraph 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ∅c0 4256 class class class wbr 5074 ran crn 5590 Fun wfun 6427 ‘cfv 6433 Vtxcvtx 27366 iEdgciedg 27367 Edgcedg 27417 UHGraphcuhgr 27426 SubGraph csubgr 27634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-edg 27418 df-uhgr 27428 df-subgr 27635 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |