MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0uhgrsubgr Structured version   Visualization version   GIF version

Theorem 0uhgrsubgr 29213
Description: The null graph (as hypergraph) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 28-Nov-2020.)
Assertion
Ref Expression
0uhgrsubgr ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → 𝑆 SubGraph 𝐺)

Proof of Theorem 0uhgrsubgr
StepHypRef Expression
1 3simpa 1148 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝐺𝑊𝑆 ∈ UHGraph))
2 0ss 4366 . . . 4 ∅ ⊆ (Vtx‘𝐺)
3 sseq1 3975 . . . 4 ((Vtx‘𝑆) = ∅ → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ↔ ∅ ⊆ (Vtx‘𝐺)))
42, 3mpbiri 258 . . 3 ((Vtx‘𝑆) = ∅ → (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
543ad2ant3 1135 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
6 eqid 2730 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
76uhgrfun 29000 . . 3 (𝑆 ∈ UHGraph → Fun (iEdg‘𝑆))
873ad2ant2 1134 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → Fun (iEdg‘𝑆))
9 edgval 28983 . . 3 (Edg‘𝑆) = ran (iEdg‘𝑆)
10 uhgr0vb 29006 . . . . . . . 8 ((𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆) = ∅))
11 rneq 5903 . . . . . . . . 9 ((iEdg‘𝑆) = ∅ → ran (iEdg‘𝑆) = ran ∅)
12 rn0 5892 . . . . . . . . 9 ran ∅ = ∅
1311, 12eqtrdi 2781 . . . . . . . 8 ((iEdg‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅)
1410, 13biimtrdi 253 . . . . . . 7 ((𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝑆 ∈ UHGraph → ran (iEdg‘𝑆) = ∅))
1514ex 412 . . . . . 6 (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → (𝑆 ∈ UHGraph → ran (iEdg‘𝑆) = ∅)))
1615pm2.43a 54 . . . . 5 (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅))
1716a1i 11 . . . 4 (𝐺𝑊 → (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅)))
18173imp 1110 . . 3 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → ran (iEdg‘𝑆) = ∅)
199, 18eqtrid 2777 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (Edg‘𝑆) = ∅)
20 egrsubgr 29211 . 2 (((𝐺𝑊𝑆 ∈ UHGraph) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → 𝑆 SubGraph 𝐺)
211, 5, 8, 19, 20syl112anc 1376 1 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → 𝑆 SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3917  c0 4299   class class class wbr 5110  ran crn 5642  Fun wfun 6508  cfv 6514  Vtxcvtx 28930  iEdgciedg 28931  Edgcedg 28981  UHGraphcuhgr 28990   SubGraph csubgr 29201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-edg 28982  df-uhgr 28992  df-subgr 29202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator