MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0uhgrsubgr Structured version   Visualization version   GIF version

Theorem 0uhgrsubgr 28536
Description: The null graph (as hypergraph) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 28-Nov-2020.)
Assertion
Ref Expression
0uhgrsubgr ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → 𝑆 SubGraph 𝐺)

Proof of Theorem 0uhgrsubgr
StepHypRef Expression
1 3simpa 1149 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝐺𝑊𝑆 ∈ UHGraph))
2 0ss 4397 . . . 4 ∅ ⊆ (Vtx‘𝐺)
3 sseq1 4008 . . . 4 ((Vtx‘𝑆) = ∅ → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ↔ ∅ ⊆ (Vtx‘𝐺)))
42, 3mpbiri 258 . . 3 ((Vtx‘𝑆) = ∅ → (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
543ad2ant3 1136 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
6 eqid 2733 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
76uhgrfun 28326 . . 3 (𝑆 ∈ UHGraph → Fun (iEdg‘𝑆))
873ad2ant2 1135 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → Fun (iEdg‘𝑆))
9 edgval 28309 . . 3 (Edg‘𝑆) = ran (iEdg‘𝑆)
10 uhgr0vb 28332 . . . . . . . 8 ((𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆) = ∅))
11 rneq 5936 . . . . . . . . 9 ((iEdg‘𝑆) = ∅ → ran (iEdg‘𝑆) = ran ∅)
12 rn0 5926 . . . . . . . . 9 ran ∅ = ∅
1311, 12eqtrdi 2789 . . . . . . . 8 ((iEdg‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅)
1410, 13syl6bi 253 . . . . . . 7 ((𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝑆 ∈ UHGraph → ran (iEdg‘𝑆) = ∅))
1514ex 414 . . . . . 6 (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → (𝑆 ∈ UHGraph → ran (iEdg‘𝑆) = ∅)))
1615pm2.43a 54 . . . . 5 (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅))
1716a1i 11 . . . 4 (𝐺𝑊 → (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅)))
18173imp 1112 . . 3 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → ran (iEdg‘𝑆) = ∅)
199, 18eqtrid 2785 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (Edg‘𝑆) = ∅)
20 egrsubgr 28534 . 2 (((𝐺𝑊𝑆 ∈ UHGraph) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → 𝑆 SubGraph 𝐺)
211, 5, 8, 19, 20syl112anc 1375 1 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → 𝑆 SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wss 3949  c0 4323   class class class wbr 5149  ran crn 5678  Fun wfun 6538  cfv 6544  Vtxcvtx 28256  iEdgciedg 28257  Edgcedg 28307  UHGraphcuhgr 28316   SubGraph csubgr 28524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-edg 28308  df-uhgr 28318  df-subgr 28525
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator