![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0uhgrsubgr | Structured version Visualization version GIF version |
Description: The null graph (as hypergraph) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 28-Nov-2020.) |
Ref | Expression |
---|---|
0uhgrsubgr | ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → 𝑆 SubGraph 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1139 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph)) | |
2 | 0ss 4198 | . . . 4 ⊢ ∅ ⊆ (Vtx‘𝐺) | |
3 | sseq1 3845 | . . . 4 ⊢ ((Vtx‘𝑆) = ∅ → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ↔ ∅ ⊆ (Vtx‘𝐺))) | |
4 | 2, 3 | mpbiri 250 | . . 3 ⊢ ((Vtx‘𝑆) = ∅ → (Vtx‘𝑆) ⊆ (Vtx‘𝐺)) |
5 | 4 | 3ad2ant3 1126 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (Vtx‘𝑆) ⊆ (Vtx‘𝐺)) |
6 | eqid 2778 | . . . 4 ⊢ (iEdg‘𝑆) = (iEdg‘𝑆) | |
7 | 6 | uhgrfun 26418 | . . 3 ⊢ (𝑆 ∈ UHGraph → Fun (iEdg‘𝑆)) |
8 | 7 | 3ad2ant2 1125 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → Fun (iEdg‘𝑆)) |
9 | edgval 26401 | . . 3 ⊢ (Edg‘𝑆) = ran (iEdg‘𝑆) | |
10 | uhgr0vb 26424 | . . . . . . . 8 ⊢ ((𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆) = ∅)) | |
11 | rneq 5598 | . . . . . . . . 9 ⊢ ((iEdg‘𝑆) = ∅ → ran (iEdg‘𝑆) = ran ∅) | |
12 | rn0 5625 | . . . . . . . . 9 ⊢ ran ∅ = ∅ | |
13 | 11, 12 | syl6eq 2830 | . . . . . . . 8 ⊢ ((iEdg‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅) |
14 | 10, 13 | syl6bi 245 | . . . . . . 7 ⊢ ((𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝑆 ∈ UHGraph → ran (iEdg‘𝑆) = ∅)) |
15 | 14 | ex 403 | . . . . . 6 ⊢ (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → (𝑆 ∈ UHGraph → ran (iEdg‘𝑆) = ∅))) |
16 | 15 | pm2.43a 54 | . . . . 5 ⊢ (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅)) |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝐺 ∈ 𝑊 → (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅))) |
18 | 17 | 3imp 1098 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → ran (iEdg‘𝑆) = ∅) |
19 | 9, 18 | syl5eq 2826 | . 2 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (Edg‘𝑆) = ∅) |
20 | egrsubgr 26628 | . 2 ⊢ (((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → 𝑆 SubGraph 𝐺) | |
21 | 1, 5, 8, 19, 20 | syl112anc 1442 | 1 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → 𝑆 SubGraph 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 ∅c0 4141 class class class wbr 4888 ran crn 5358 Fun wfun 6131 ‘cfv 6137 Vtxcvtx 26348 iEdgciedg 26349 Edgcedg 26399 UHGraphcuhgr 26408 SubGraph csubgr 26618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-opab 4951 df-mpt 4968 df-id 5263 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-fv 6145 df-edg 26400 df-uhgr 26410 df-subgr 26619 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |