MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0uhgrsubgr Structured version   Visualization version   GIF version

Theorem 0uhgrsubgr 26630
Description: The null graph (as hypergraph) is a subgraph of all graphs. (Contributed by AV, 17-Nov-2020.) (Proof shortened by AV, 28-Nov-2020.)
Assertion
Ref Expression
0uhgrsubgr ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → 𝑆 SubGraph 𝐺)

Proof of Theorem 0uhgrsubgr
StepHypRef Expression
1 3simpa 1139 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝐺𝑊𝑆 ∈ UHGraph))
2 0ss 4198 . . . 4 ∅ ⊆ (Vtx‘𝐺)
3 sseq1 3845 . . . 4 ((Vtx‘𝑆) = ∅ → ((Vtx‘𝑆) ⊆ (Vtx‘𝐺) ↔ ∅ ⊆ (Vtx‘𝐺)))
42, 3mpbiri 250 . . 3 ((Vtx‘𝑆) = ∅ → (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
543ad2ant3 1126 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (Vtx‘𝑆) ⊆ (Vtx‘𝐺))
6 eqid 2778 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
76uhgrfun 26418 . . 3 (𝑆 ∈ UHGraph → Fun (iEdg‘𝑆))
873ad2ant2 1125 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → Fun (iEdg‘𝑆))
9 edgval 26401 . . 3 (Edg‘𝑆) = ran (iEdg‘𝑆)
10 uhgr0vb 26424 . . . . . . . 8 ((𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝑆 ∈ UHGraph ↔ (iEdg‘𝑆) = ∅))
11 rneq 5598 . . . . . . . . 9 ((iEdg‘𝑆) = ∅ → ran (iEdg‘𝑆) = ran ∅)
12 rn0 5625 . . . . . . . . 9 ran ∅ = ∅
1311, 12syl6eq 2830 . . . . . . . 8 ((iEdg‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅)
1410, 13syl6bi 245 . . . . . . 7 ((𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (𝑆 ∈ UHGraph → ran (iEdg‘𝑆) = ∅))
1514ex 403 . . . . . 6 (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → (𝑆 ∈ UHGraph → ran (iEdg‘𝑆) = ∅)))
1615pm2.43a 54 . . . . 5 (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅))
1716a1i 11 . . . 4 (𝐺𝑊 → (𝑆 ∈ UHGraph → ((Vtx‘𝑆) = ∅ → ran (iEdg‘𝑆) = ∅)))
18173imp 1098 . . 3 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → ran (iEdg‘𝑆) = ∅)
199, 18syl5eq 2826 . 2 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → (Edg‘𝑆) = ∅)
20 egrsubgr 26628 . 2 (((𝐺𝑊𝑆 ∈ UHGraph) ∧ (Vtx‘𝑆) ⊆ (Vtx‘𝐺) ∧ (Fun (iEdg‘𝑆) ∧ (Edg‘𝑆) = ∅)) → 𝑆 SubGraph 𝐺)
211, 5, 8, 19, 20syl112anc 1442 1 ((𝐺𝑊𝑆 ∈ UHGraph ∧ (Vtx‘𝑆) = ∅) → 𝑆 SubGraph 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  wss 3792  c0 4141   class class class wbr 4888  ran crn 5358  Fun wfun 6131  cfv 6137  Vtxcvtx 26348  iEdgciedg 26349  Edgcedg 26399  UHGraphcuhgr 26408   SubGraph csubgr 26618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-fv 6145  df-edg 26400  df-uhgr 26410  df-subgr 26619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator