Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvopab3ig Structured version   Visualization version   GIF version

Theorem fvopab3ig 6538
 Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999.)
Hypotheses
Ref Expression
fvopab3ig.1 (𝑥 = 𝐴 → (𝜑𝜓))
fvopab3ig.2 (𝑦 = 𝐵 → (𝜓𝜒))
fvopab3ig.3 (𝑥𝐶 → ∃*𝑦𝜑)
fvopab3ig.4 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
Assertion
Ref Expression
fvopab3ig ((𝐴𝐶𝐵𝐷) → (𝜒 → (𝐹𝐴) = 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fvopab3ig
StepHypRef Expression
1 eleq1 2846 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐶𝐴𝐶))
2 fvopab3ig.1 . . . . . . . 8 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2anbi12d 624 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝐶𝜑) ↔ (𝐴𝐶𝜓)))
4 fvopab3ig.2 . . . . . . . 8 (𝑦 = 𝐵 → (𝜓𝜒))
54anbi2d 622 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴𝐶𝜓) ↔ (𝐴𝐶𝜒)))
63, 5opelopabg 5230 . . . . . 6 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} ↔ (𝐴𝐶𝜒)))
76biimpar 471 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ (𝐴𝐶𝜒)) → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)})
87exp43 429 . . . 4 (𝐴𝐶 → (𝐵𝐷 → (𝐴𝐶 → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}))))
98pm2.43a 54 . . 3 (𝐴𝐶 → (𝐵𝐷 → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)})))
109imp 397 . 2 ((𝐴𝐶𝐵𝐷) → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}))
11 fvopab3ig.4 . . . 4 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
1211fveq1i 6447 . . 3 (𝐹𝐴) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}‘𝐴)
13 funopab 6170 . . . . 5 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝐶𝜑))
14 fvopab3ig.3 . . . . . 6 (𝑥𝐶 → ∃*𝑦𝜑)
15 moanimv 2653 . . . . . 6 (∃*𝑦(𝑥𝐶𝜑) ↔ (𝑥𝐶 → ∃*𝑦𝜑))
1614, 15mpbir 223 . . . . 5 ∃*𝑦(𝑥𝐶𝜑)
1713, 16mpgbir 1843 . . . 4 Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
18 funopfv 6494 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}‘𝐴) = 𝐵))
1917, 18ax-mp 5 . . 3 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}‘𝐴) = 𝐵)
2012, 19syl5eq 2825 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → (𝐹𝐴) = 𝐵)
2110, 20syl6 35 1 ((𝐴𝐶𝐵𝐷) → (𝜒 → (𝐹𝐴) = 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   = wceq 1601   ∈ wcel 2106  ∃*wmo 2548  ⟨cop 4403  {copab 4948  Fun wfun 6129  ‘cfv 6135 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-sep 5017  ax-nul 5025  ax-pr 5138 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3399  df-sbc 3652  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-br 4887  df-opab 4949  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-iota 6099  df-fun 6137  df-fv 6143 This theorem is referenced by:  fvmptg  6540  fvopab6  6573  ov6g  7075
 Copyright terms: Public domain W3C validator