MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvopab3ig Structured version   Visualization version   GIF version

Theorem fvopab3ig 6420
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999.)
Hypotheses
Ref Expression
fvopab3ig.1 (𝑥 = 𝐴 → (𝜑𝜓))
fvopab3ig.2 (𝑦 = 𝐵 → (𝜓𝜒))
fvopab3ig.3 (𝑥𝐶 → ∃*𝑦𝜑)
fvopab3ig.4 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
Assertion
Ref Expression
fvopab3ig ((𝐴𝐶𝐵𝐷) → (𝜒 → (𝐹𝐴) = 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fvopab3ig
StepHypRef Expression
1 eleq1 2838 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐶𝐴𝐶))
2 fvopab3ig.1 . . . . . . . 8 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2anbi12d 616 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝐶𝜑) ↔ (𝐴𝐶𝜓)))
4 fvopab3ig.2 . . . . . . . 8 (𝑦 = 𝐵 → (𝜓𝜒))
54anbi2d 614 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴𝐶𝜓) ↔ (𝐴𝐶𝜒)))
63, 5opelopabg 5126 . . . . . 6 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} ↔ (𝐴𝐶𝜒)))
76biimpar 463 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ (𝐴𝐶𝜒)) → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)})
87exp43 423 . . . 4 (𝐴𝐶 → (𝐵𝐷 → (𝐴𝐶 → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}))))
98pm2.43a 54 . . 3 (𝐴𝐶 → (𝐵𝐷 → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)})))
109imp 393 . 2 ((𝐴𝐶𝐵𝐷) → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}))
11 fvopab3ig.4 . . . 4 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
1211fveq1i 6333 . . 3 (𝐹𝐴) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}‘𝐴)
13 funopab 6066 . . . . 5 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝐶𝜑))
14 fvopab3ig.3 . . . . . 6 (𝑥𝐶 → ∃*𝑦𝜑)
15 moanimv 2680 . . . . . 6 (∃*𝑦(𝑥𝐶𝜑) ↔ (𝑥𝐶 → ∃*𝑦𝜑))
1614, 15mpbir 221 . . . . 5 ∃*𝑦(𝑥𝐶𝜑)
1713, 16mpgbir 1874 . . . 4 Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
18 funopfv 6376 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}‘𝐴) = 𝐵))
1917, 18ax-mp 5 . . 3 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}‘𝐴) = 𝐵)
2012, 19syl5eq 2817 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → (𝐹𝐴) = 𝐵)
2110, 20syl6 35 1 ((𝐴𝐶𝐵𝐷) → (𝜒 → (𝐹𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  ∃*wmo 2619  cop 4322  {copab 4846  Fun wfun 6025  cfv 6031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039
This theorem is referenced by:  fvmptg  6422  fvopab6  6453  ov6g  6945
  Copyright terms: Public domain W3C validator