![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvopab3ig | Structured version Visualization version GIF version |
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999.) |
Ref | Expression |
---|---|
fvopab3ig.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
fvopab3ig.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
fvopab3ig.3 | ⊢ (𝑥 ∈ 𝐶 → ∃*𝑦𝜑) |
fvopab3ig.4 | ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} |
Ref | Expression |
---|---|
fvopab3ig | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝜒 → (𝐹‘𝐴) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2822 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
2 | fvopab3ig.1 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | anbi12d 632 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐶 ∧ 𝜑) ↔ (𝐴 ∈ 𝐶 ∧ 𝜓))) |
4 | fvopab3ig.2 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
5 | 4 | anbi2d 630 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝐶 ∧ 𝜓) ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) |
6 | 3, 5 | opelopabg 5539 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) |
7 | 6 | biimpar 479 | . . . . 5 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ (𝐴 ∈ 𝐶 ∧ 𝜒)) → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)}) |
8 | 7 | exp43 438 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → (𝐵 ∈ 𝐷 → (𝐴 ∈ 𝐶 → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)})))) |
9 | 8 | pm2.43a 54 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐵 ∈ 𝐷 → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)}))) |
10 | 9 | imp 408 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)})) |
11 | fvopab3ig.4 | . . . 4 ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} | |
12 | 11 | fveq1i 6893 | . . 3 ⊢ (𝐹‘𝐴) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)}‘𝐴) |
13 | funopab 6584 | . . . . 5 ⊢ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐶 ∧ 𝜑)) | |
14 | fvopab3ig.3 | . . . . . 6 ⊢ (𝑥 ∈ 𝐶 → ∃*𝑦𝜑) | |
15 | moanimv 2616 | . . . . . 6 ⊢ (∃*𝑦(𝑥 ∈ 𝐶 ∧ 𝜑) ↔ (𝑥 ∈ 𝐶 → ∃*𝑦𝜑)) | |
16 | 14, 15 | mpbir 230 | . . . . 5 ⊢ ∃*𝑦(𝑥 ∈ 𝐶 ∧ 𝜑) |
17 | 13, 16 | mpgbir 1802 | . . . 4 ⊢ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} |
18 | funopfv 6944 | . . . 4 ⊢ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)}‘𝐴) = 𝐵)) | |
19 | 17, 18 | ax-mp 5 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)}‘𝐴) = 𝐵) |
20 | 12, 19 | eqtrid 2785 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} → (𝐹‘𝐴) = 𝐵) |
21 | 10, 20 | syl6 35 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝜒 → (𝐹‘𝐴) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃*wmo 2533 ⟨cop 4635 {copab 5211 Fun wfun 6538 ‘cfv 6544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 |
This theorem is referenced by: fvmptg 6997 fvopab6 7032 ov6g 7571 |
Copyright terms: Public domain | W3C validator |