![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvopab3ig | Structured version Visualization version GIF version |
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999.) |
Ref | Expression |
---|---|
fvopab3ig.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
fvopab3ig.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
fvopab3ig.3 | ⊢ (𝑥 ∈ 𝐶 → ∃*𝑦𝜑) |
fvopab3ig.4 | ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} |
Ref | Expression |
---|---|
fvopab3ig | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝜒 → (𝐹‘𝐴) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2815 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐶 ↔ 𝐴 ∈ 𝐶)) | |
2 | fvopab3ig.1 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | anbi12d 630 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐶 ∧ 𝜑) ↔ (𝐴 ∈ 𝐶 ∧ 𝜓))) |
4 | fvopab3ig.2 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
5 | 4 | anbi2d 628 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ 𝐶 ∧ 𝜓) ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) |
6 | 3, 5 | opelopabg 5531 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} ↔ (𝐴 ∈ 𝐶 ∧ 𝜒))) |
7 | 6 | biimpar 477 | . . . . 5 ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ (𝐴 ∈ 𝐶 ∧ 𝜒)) → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)}) |
8 | 7 | exp43 436 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → (𝐵 ∈ 𝐷 → (𝐴 ∈ 𝐶 → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)})))) |
9 | 8 | pm2.43a 54 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (𝐵 ∈ 𝐷 → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)}))) |
10 | 9 | imp 406 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)})) |
11 | fvopab3ig.4 | . . . 4 ⊢ 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} | |
12 | 11 | fveq1i 6886 | . . 3 ⊢ (𝐹‘𝐴) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)}‘𝐴) |
13 | funopab 6577 | . . . . 5 ⊢ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} ↔ ∀𝑥∃*𝑦(𝑥 ∈ 𝐶 ∧ 𝜑)) | |
14 | fvopab3ig.3 | . . . . . 6 ⊢ (𝑥 ∈ 𝐶 → ∃*𝑦𝜑) | |
15 | moanimv 2609 | . . . . . 6 ⊢ (∃*𝑦(𝑥 ∈ 𝐶 ∧ 𝜑) ↔ (𝑥 ∈ 𝐶 → ∃*𝑦𝜑)) | |
16 | 14, 15 | mpbir 230 | . . . . 5 ⊢ ∃*𝑦(𝑥 ∈ 𝐶 ∧ 𝜑) |
17 | 13, 16 | mpgbir 1793 | . . . 4 ⊢ Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} |
18 | funopfv 6937 | . . . 4 ⊢ (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)}‘𝐴) = 𝐵)) | |
19 | 17, 18 | ax-mp 5 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)}‘𝐴) = 𝐵) |
20 | 12, 19 | eqtrid 2778 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐶 ∧ 𝜑)} → (𝐹‘𝐴) = 𝐵) |
21 | 10, 20 | syl6 35 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝜒 → (𝐹‘𝐴) = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃*wmo 2526 ⟨cop 4629 {copab 5203 Fun wfun 6531 ‘cfv 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6489 df-fun 6539 df-fv 6545 |
This theorem is referenced by: fvmptg 6990 fvopab6 7025 ov6g 7568 |
Copyright terms: Public domain | W3C validator |