MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvopab3ig Structured version   Visualization version   GIF version

Theorem fvopab3ig 6995
Description: Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999.)
Hypotheses
Ref Expression
fvopab3ig.1 (𝑥 = 𝐴 → (𝜑𝜓))
fvopab3ig.2 (𝑦 = 𝐵 → (𝜓𝜒))
fvopab3ig.3 (𝑥𝐶 → ∃*𝑦𝜑)
fvopab3ig.4 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
Assertion
Ref Expression
fvopab3ig ((𝐴𝐶𝐵𝐷) → (𝜒 → (𝐹𝐴) = 𝐵))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem fvopab3ig
StepHypRef Expression
1 eleq1 2822 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐶𝐴𝐶))
2 fvopab3ig.1 . . . . . . . 8 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2anbi12d 632 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥𝐶𝜑) ↔ (𝐴𝐶𝜓)))
4 fvopab3ig.2 . . . . . . . 8 (𝑦 = 𝐵 → (𝜓𝜒))
54anbi2d 630 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴𝐶𝜓) ↔ (𝐴𝐶𝜒)))
63, 5opelopabg 5539 . . . . . 6 ((𝐴𝐶𝐵𝐷) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} ↔ (𝐴𝐶𝜒)))
76biimpar 479 . . . . 5 (((𝐴𝐶𝐵𝐷) ∧ (𝐴𝐶𝜒)) → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)})
87exp43 438 . . . 4 (𝐴𝐶 → (𝐵𝐷 → (𝐴𝐶 → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}))))
98pm2.43a 54 . . 3 (𝐴𝐶 → (𝐵𝐷 → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)})))
109imp 408 . 2 ((𝐴𝐶𝐵𝐷) → (𝜒 → ⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}))
11 fvopab3ig.4 . . . 4 𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
1211fveq1i 6893 . . 3 (𝐹𝐴) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}‘𝐴)
13 funopab 6584 . . . . 5 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} ↔ ∀𝑥∃*𝑦(𝑥𝐶𝜑))
14 fvopab3ig.3 . . . . . 6 (𝑥𝐶 → ∃*𝑦𝜑)
15 moanimv 2616 . . . . . 6 (∃*𝑦(𝑥𝐶𝜑) ↔ (𝑥𝐶 → ∃*𝑦𝜑))
1614, 15mpbir 230 . . . . 5 ∃*𝑦(𝑥𝐶𝜑)
1713, 16mpgbir 1802 . . . 4 Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}
18 funopfv 6944 . . . 4 (Fun {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}‘𝐴) = 𝐵))
1917, 18ax-mp 5 . . 3 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → ({⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}‘𝐴) = 𝐵)
2012, 19eqtrid 2785 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)} → (𝐹𝐴) = 𝐵)
2110, 20syl6 35 1 ((𝐴𝐶𝐵𝐷) → (𝜒 → (𝐹𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  ∃*wmo 2533  cop 4635  {copab 5211  Fun wfun 6538  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552
This theorem is referenced by:  fvmptg  6997  fvopab6  7032  ov6g  7571
  Copyright terms: Public domain W3C validator