Proof of Theorem pr2neOLD
| Step | Hyp | Ref
| Expression |
| 1 | | preq2 4710 |
. . . . 5
⊢ (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴}) |
| 2 | 1 | eqcoms 2743 |
. . . 4
⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴, 𝐴}) |
| 3 | | enpr1g 9037 |
. . . . . . . 8
⊢ (𝐴 ∈ 𝐶 → {𝐴, 𝐴} ≈ 1o) |
| 4 | | entr 9020 |
. . . . . . . . . . . 12
⊢ (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1o) → {𝐴, 𝐵} ≈ 1o) |
| 5 | | 1sdom2 9248 |
. . . . . . . . . . . . . . 15
⊢
1o ≺ 2o |
| 6 | | sdomnen 8995 |
. . . . . . . . . . . . . . 15
⊢
(1o ≺ 2o → ¬ 1o ≈
2o) |
| 7 | 5, 6 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ ¬
1o ≈ 2o |
| 8 | | ensym 9017 |
. . . . . . . . . . . . . . 15
⊢ ({𝐴, 𝐵} ≈ 1o → 1o
≈ {𝐴, 𝐵}) |
| 9 | | entr 9020 |
. . . . . . . . . . . . . . . 16
⊢
((1o ≈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ≈ 2o) →
1o ≈ 2o) |
| 10 | 9 | ex 412 |
. . . . . . . . . . . . . . 15
⊢
(1o ≈ {𝐴, 𝐵} → ({𝐴, 𝐵} ≈ 2o → 1o
≈ 2o)) |
| 11 | 8, 10 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ({𝐴, 𝐵} ≈ 1o → ({𝐴, 𝐵} ≈ 2o → 1o
≈ 2o)) |
| 12 | 7, 11 | mtoi 199 |
. . . . . . . . . . . . 13
⊢ ({𝐴, 𝐵} ≈ 1o → ¬ {𝐴, 𝐵} ≈ 2o) |
| 13 | 12 | a1d 25 |
. . . . . . . . . . . 12
⊢ ({𝐴, 𝐵} ≈ 1o → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)) |
| 14 | 4, 13 | syl 17 |
. . . . . . . . . . 11
⊢ (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1o) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)) |
| 15 | 14 | ex 412 |
. . . . . . . . . 10
⊢ ({𝐴, 𝐵} ≈ {𝐴, 𝐴} → ({𝐴, 𝐴} ≈ 1o → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))) |
| 16 | | prex 5407 |
. . . . . . . . . . 11
⊢ {𝐴, 𝐵} ∈ V |
| 17 | | eqeng 9000 |
. . . . . . . . . . 11
⊢ ({𝐴, 𝐵} ∈ V → ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴})) |
| 18 | 16, 17 | ax-mp 5 |
. . . . . . . . . 10
⊢ ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴}) |
| 19 | 15, 18 | syl11 33 |
. . . . . . . . 9
⊢ ({𝐴, 𝐴} ≈ 1o → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))) |
| 20 | 19 | a1dd 50 |
. . . . . . . 8
⊢ ({𝐴, 𝐴} ≈ 1o → ({𝐴, 𝐵} = {𝐴, 𝐴} → (𝐵 ∈ 𝐷 → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)))) |
| 21 | 3, 20 | syl 17 |
. . . . . . 7
⊢ (𝐴 ∈ 𝐶 → ({𝐴, 𝐵} = {𝐴, 𝐴} → (𝐵 ∈ 𝐷 → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)))) |
| 22 | 21 | com23 86 |
. . . . . 6
⊢ (𝐴 ∈ 𝐶 → (𝐵 ∈ 𝐷 → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)))) |
| 23 | 22 | imp 406 |
. . . . 5
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))) |
| 24 | 23 | pm2.43a 54 |
. . . 4
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ¬ {𝐴, 𝐵} ≈ 2o)) |
| 25 | 2, 24 | syl5 34 |
. . 3
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 = 𝐵 → ¬ {𝐴, 𝐵} ≈ 2o)) |
| 26 | 25 | necon2ad 2947 |
. 2
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o → 𝐴 ≠ 𝐵)) |
| 27 | | enpr2 10016 |
. . 3
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) |
| 28 | 27 | 3expia 1121 |
. 2
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ≠ 𝐵 → {𝐴, 𝐵} ≈ 2o)) |
| 29 | 26, 28 | impbid 212 |
1
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) |