Proof of Theorem pr2neOLD
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | preq2 4734 | . . . . 5
⊢ (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴}) | 
| 2 | 1 | eqcoms 2745 | . . . 4
⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴, 𝐴}) | 
| 3 |  | enpr1g 9063 | . . . . . . . 8
⊢ (𝐴 ∈ 𝐶 → {𝐴, 𝐴} ≈ 1o) | 
| 4 |  | entr 9046 | . . . . . . . . . . . 12
⊢ (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1o) → {𝐴, 𝐵} ≈ 1o) | 
| 5 |  | 1sdom2 9276 | . . . . . . . . . . . . . . 15
⊢
1o ≺ 2o | 
| 6 |  | sdomnen 9021 | . . . . . . . . . . . . . . 15
⊢
(1o ≺ 2o → ¬ 1o ≈
2o) | 
| 7 | 5, 6 | ax-mp 5 | . . . . . . . . . . . . . 14
⊢  ¬
1o ≈ 2o | 
| 8 |  | ensym 9043 | . . . . . . . . . . . . . . 15
⊢ ({𝐴, 𝐵} ≈ 1o → 1o
≈ {𝐴, 𝐵}) | 
| 9 |  | entr 9046 | . . . . . . . . . . . . . . . 16
⊢
((1o ≈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ≈ 2o) →
1o ≈ 2o) | 
| 10 | 9 | ex 412 | . . . . . . . . . . . . . . 15
⊢
(1o ≈ {𝐴, 𝐵} → ({𝐴, 𝐵} ≈ 2o → 1o
≈ 2o)) | 
| 11 | 8, 10 | syl 17 | . . . . . . . . . . . . . 14
⊢ ({𝐴, 𝐵} ≈ 1o → ({𝐴, 𝐵} ≈ 2o → 1o
≈ 2o)) | 
| 12 | 7, 11 | mtoi 199 | . . . . . . . . . . . . 13
⊢ ({𝐴, 𝐵} ≈ 1o → ¬ {𝐴, 𝐵} ≈ 2o) | 
| 13 | 12 | a1d 25 | . . . . . . . . . . . 12
⊢ ({𝐴, 𝐵} ≈ 1o → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)) | 
| 14 | 4, 13 | syl 17 | . . . . . . . . . . 11
⊢ (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1o) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)) | 
| 15 | 14 | ex 412 | . . . . . . . . . 10
⊢ ({𝐴, 𝐵} ≈ {𝐴, 𝐴} → ({𝐴, 𝐴} ≈ 1o → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))) | 
| 16 |  | prex 5437 | . . . . . . . . . . 11
⊢ {𝐴, 𝐵} ∈ V | 
| 17 |  | eqeng 9026 | . . . . . . . . . . 11
⊢ ({𝐴, 𝐵} ∈ V → ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴})) | 
| 18 | 16, 17 | ax-mp 5 | . . . . . . . . . 10
⊢ ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴}) | 
| 19 | 15, 18 | syl11 33 | . . . . . . . . 9
⊢ ({𝐴, 𝐴} ≈ 1o → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))) | 
| 20 | 19 | a1dd 50 | . . . . . . . 8
⊢ ({𝐴, 𝐴} ≈ 1o → ({𝐴, 𝐵} = {𝐴, 𝐴} → (𝐵 ∈ 𝐷 → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)))) | 
| 21 | 3, 20 | syl 17 | . . . . . . 7
⊢ (𝐴 ∈ 𝐶 → ({𝐴, 𝐵} = {𝐴, 𝐴} → (𝐵 ∈ 𝐷 → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)))) | 
| 22 | 21 | com23 86 | . . . . . 6
⊢ (𝐴 ∈ 𝐶 → (𝐵 ∈ 𝐷 → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)))) | 
| 23 | 22 | imp 406 | . . . . 5
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))) | 
| 24 | 23 | pm2.43a 54 | . . . 4
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ¬ {𝐴, 𝐵} ≈ 2o)) | 
| 25 | 2, 24 | syl5 34 | . . 3
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 = 𝐵 → ¬ {𝐴, 𝐵} ≈ 2o)) | 
| 26 | 25 | necon2ad 2955 | . 2
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o → 𝐴 ≠ 𝐵)) | 
| 27 |  | enpr2 10042 | . . 3
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ≈ 2o) | 
| 28 | 27 | 3expia 1122 | . 2
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴 ≠ 𝐵 → {𝐴, 𝐵} ≈ 2o)) | 
| 29 | 26, 28 | impbid 212 | 1
⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → ({𝐴, 𝐵} ≈ 2o ↔ 𝐴 ≠ 𝐵)) |