MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pr2neOLD Structured version   Visualization version   GIF version

Theorem pr2neOLD 10019
Description: Obsolete version of pr2ne 10018 as of 30-Dec-2024. (Contributed by FL, 14-Feb-2010.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
pr2neOLD ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))

Proof of Theorem pr2neOLD
StepHypRef Expression
1 preq2 4710 . . . . 5 (𝐵 = 𝐴 → {𝐴, 𝐵} = {𝐴, 𝐴})
21eqcoms 2743 . . . 4 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴, 𝐴})
3 enpr1g 9037 . . . . . . . 8 (𝐴𝐶 → {𝐴, 𝐴} ≈ 1o)
4 entr 9020 . . . . . . . . . . . 12 (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1o) → {𝐴, 𝐵} ≈ 1o)
5 1sdom2 9248 . . . . . . . . . . . . . . 15 1o ≺ 2o
6 sdomnen 8995 . . . . . . . . . . . . . . 15 (1o ≺ 2o → ¬ 1o ≈ 2o)
75, 6ax-mp 5 . . . . . . . . . . . . . 14 ¬ 1o ≈ 2o
8 ensym 9017 . . . . . . . . . . . . . . 15 ({𝐴, 𝐵} ≈ 1o → 1o ≈ {𝐴, 𝐵})
9 entr 9020 . . . . . . . . . . . . . . . 16 ((1o ≈ {𝐴, 𝐵} ∧ {𝐴, 𝐵} ≈ 2o) → 1o ≈ 2o)
109ex 412 . . . . . . . . . . . . . . 15 (1o ≈ {𝐴, 𝐵} → ({𝐴, 𝐵} ≈ 2o → 1o ≈ 2o))
118, 10syl 17 . . . . . . . . . . . . . 14 ({𝐴, 𝐵} ≈ 1o → ({𝐴, 𝐵} ≈ 2o → 1o ≈ 2o))
127, 11mtoi 199 . . . . . . . . . . . . 13 ({𝐴, 𝐵} ≈ 1o → ¬ {𝐴, 𝐵} ≈ 2o)
1312a1d 25 . . . . . . . . . . . 12 ({𝐴, 𝐵} ≈ 1o → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))
144, 13syl 17 . . . . . . . . . . 11 (({𝐴, 𝐵} ≈ {𝐴, 𝐴} ∧ {𝐴, 𝐴} ≈ 1o) → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))
1514ex 412 . . . . . . . . . 10 ({𝐴, 𝐵} ≈ {𝐴, 𝐴} → ({𝐴, 𝐴} ≈ 1o → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)))
16 prex 5407 . . . . . . . . . . 11 {𝐴, 𝐵} ∈ V
17 eqeng 9000 . . . . . . . . . . 11 ({𝐴, 𝐵} ∈ V → ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴}))
1816, 17ax-mp 5 . . . . . . . . . 10 ({𝐴, 𝐵} = {𝐴, 𝐴} → {𝐴, 𝐵} ≈ {𝐴, 𝐴})
1915, 18syl11 33 . . . . . . . . 9 ({𝐴, 𝐴} ≈ 1o → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)))
2019a1dd 50 . . . . . . . 8 ({𝐴, 𝐴} ≈ 1o → ({𝐴, 𝐵} = {𝐴, 𝐴} → (𝐵𝐷 → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))))
213, 20syl 17 . . . . . . 7 (𝐴𝐶 → ({𝐴, 𝐵} = {𝐴, 𝐴} → (𝐵𝐷 → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))))
2221com23 86 . . . . . 6 (𝐴𝐶 → (𝐵𝐷 → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o))))
2322imp 406 . . . . 5 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ((𝐴𝐶𝐵𝐷) → ¬ {𝐴, 𝐵} ≈ 2o)))
2423pm2.43a 54 . . . 4 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} = {𝐴, 𝐴} → ¬ {𝐴, 𝐵} ≈ 2o))
252, 24syl5 34 . . 3 ((𝐴𝐶𝐵𝐷) → (𝐴 = 𝐵 → ¬ {𝐴, 𝐵} ≈ 2o))
2625necon2ad 2947 . 2 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
27 enpr2 10016 . . 3 ((𝐴𝐶𝐵𝐷𝐴𝐵) → {𝐴, 𝐵} ≈ 2o)
28273expia 1121 . 2 ((𝐴𝐶𝐵𝐷) → (𝐴𝐵 → {𝐴, 𝐵} ≈ 2o))
2926, 28impbid 212 1 ((𝐴𝐶𝐵𝐷) → ({𝐴, 𝐵} ≈ 2o𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  {cpr 4603   class class class wbr 5119  1oc1o 8473  2oc2o 8474  cen 8956  csdm 8958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-1o 8480  df-2o 8481  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator