MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0uhgrrusgr Structured version   Visualization version   GIF version

Theorem 0uhgrrusgr 29504
Description: The null graph as hypergraph is a k-regular simple graph for every k. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Assertion
Ref Expression
0uhgrrusgr ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegUSGraph 𝑘)
Distinct variable group:   𝑘,𝐺

Proof of Theorem 0uhgrrusgr
StepHypRef Expression
1 uhgr0vb 28997 . . . . . 6 ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph ↔ (iEdg‘𝐺) = ∅))
21biimpd 229 . . . . 5 ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅))
32ex 412 . . . 4 (𝐺 ∈ UHGraph → ((Vtx‘𝐺) = ∅ → (𝐺 ∈ UHGraph → (iEdg‘𝐺) = ∅)))
43pm2.43a 54 . . 3 (𝐺 ∈ UHGraph → ((Vtx‘𝐺) = ∅ → (iEdg‘𝐺) = ∅))
54imp 406 . 2 ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → (iEdg‘𝐺) = ∅)
6 0vtxrusgr 29503 . 2 ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅ ∧ (iEdg‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegUSGraph 𝑘)
75, 6mpd3an3 1464 1 ((𝐺 ∈ UHGraph ∧ (Vtx‘𝐺) = ∅) → ∀𝑘 ∈ ℕ0* 𝐺 RegUSGraph 𝑘)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  c0 4308   class class class wbr 5119  cfv 6530  0*cxnn0 12572  Vtxcvtx 28921  iEdgciedg 28922  UHGraphcuhgr 28981   RegUSGraph crusgr 29482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-i2m1 11195  ax-1ne0 11196  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-2 12301  df-uhgr 28983  df-upgr 29007  df-uspgr 29075  df-usgr 29076  df-rgr 29483  df-rusgr 29484
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator