MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfzo12 Structured version   Visualization version   GIF version

Theorem ssfzo12 13480
Description: Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 16-Mar-2018.)
Assertion
Ref Expression
ssfzo12 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))

Proof of Theorem ssfzo12
StepHypRef Expression
1 fzolb2 13394 . . 3 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐾 ∈ (𝐾..^𝐿) ↔ 𝐾 < 𝐿))
21biimp3ar 1469 . 2 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → 𝐾 ∈ (𝐾..^𝐿))
3 fzoend 13478 . . 3 (𝐾 ∈ (𝐾..^𝐿) → (𝐿 − 1) ∈ (𝐾..^𝐿))
4 ssel2 3916 . . . . . . 7 (((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ∧ 𝐾 ∈ (𝐾..^𝐿)) → 𝐾 ∈ (𝑀..^𝑁))
5 ssel2 3916 . . . . . . . . . 10 (((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ∧ (𝐿 − 1) ∈ (𝐾..^𝐿)) → (𝐿 − 1) ∈ (𝑀..^𝑁))
6 elfzolt2 13396 . . . . . . . . . 10 ((𝐿 − 1) ∈ (𝑀..^𝑁) → (𝐿 − 1) < 𝑁)
7 simp2 1136 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → 𝐿 ∈ ℤ)
8 elfzoel2 13386 . . . . . . . . . . . . . 14 (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
9 zlem1lt 12372 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿𝑁 ↔ (𝐿 − 1) < 𝑁))
107, 8, 9syl2anr 597 . . . . . . . . . . . . 13 ((𝐾 ∈ (𝑀..^𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿)) → (𝐿𝑁 ↔ (𝐿 − 1) < 𝑁))
11 elfzole1 13395 . . . . . . . . . . . . . . 15 (𝐾 ∈ (𝑀..^𝑁) → 𝑀𝐾)
12 pm3.2 470 . . . . . . . . . . . . . . 15 (𝑀𝐾 → (𝐿𝑁 → (𝑀𝐾𝐿𝑁)))
1311, 12syl 17 . . . . . . . . . . . . . 14 (𝐾 ∈ (𝑀..^𝑁) → (𝐿𝑁 → (𝑀𝐾𝐿𝑁)))
1413adantr 481 . . . . . . . . . . . . 13 ((𝐾 ∈ (𝑀..^𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿)) → (𝐿𝑁 → (𝑀𝐾𝐿𝑁)))
1510, 14sylbird 259 . . . . . . . . . . . 12 ((𝐾 ∈ (𝑀..^𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿)) → ((𝐿 − 1) < 𝑁 → (𝑀𝐾𝐿𝑁)))
1615ex 413 . . . . . . . . . . 11 (𝐾 ∈ (𝑀..^𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐿 − 1) < 𝑁 → (𝑀𝐾𝐿𝑁))))
1716com13 88 . . . . . . . . . 10 ((𝐿 − 1) < 𝑁 → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → (𝐾 ∈ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁))))
185, 6, 173syl 18 . . . . . . . . 9 (((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ∧ (𝐿 − 1) ∈ (𝐾..^𝐿)) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → (𝐾 ∈ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁))))
1918ex 413 . . . . . . . 8 ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → ((𝐿 − 1) ∈ (𝐾..^𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → (𝐾 ∈ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))))
2019com24 95 . . . . . . 7 ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝐾 ∈ (𝑀..^𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐿 − 1) ∈ (𝐾..^𝐿) → (𝑀𝐾𝐿𝑁)))))
214, 20syl5com 31 . . . . . 6 (((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ∧ 𝐾 ∈ (𝐾..^𝐿)) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐿 − 1) ∈ (𝐾..^𝐿) → (𝑀𝐾𝐿𝑁)))))
2221ex 413 . . . . 5 ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝐾 ∈ (𝐾..^𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐿 − 1) ∈ (𝐾..^𝐿) → (𝑀𝐾𝐿𝑁))))))
2322pm2.43a 54 . . . 4 ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝐾 ∈ (𝐾..^𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐿 − 1) ∈ (𝐾..^𝐿) → (𝑀𝐾𝐿𝑁)))))
2423com14 96 . . 3 ((𝐿 − 1) ∈ (𝐾..^𝐿) → (𝐾 ∈ (𝐾..^𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))))
253, 24mpcom 38 . 2 (𝐾 ∈ (𝐾..^𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁))))
262, 25mpcom 38 1 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2106  wss 3887   class class class wbr 5074  (class class class)co 7275  1c1 10872   < clt 11009  cle 11010  cmin 11205  cz 12319  ..^cfzo 13382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383
This theorem is referenced by:  ssfzoulel  13481  ssfzo12bi  13482
  Copyright terms: Public domain W3C validator