MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfzo12 Structured version   Visualization version   GIF version

Theorem ssfzo12 13661
Description: Subset relationship for half-open integer ranges. (Contributed by Alexander van der Vekens, 16-Mar-2018.)
Assertion
Ref Expression
ssfzo12 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))

Proof of Theorem ssfzo12
StepHypRef Expression
1 fzolb2 13568 . . 3 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐾 ∈ (𝐾..^𝐿) ↔ 𝐾 < 𝐿))
21biimp3ar 1472 . 2 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → 𝐾 ∈ (𝐾..^𝐿))
3 fzoend 13659 . . 3 (𝐾 ∈ (𝐾..^𝐿) → (𝐿 − 1) ∈ (𝐾..^𝐿))
4 ssel2 3925 . . . . . . 7 (((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ∧ 𝐾 ∈ (𝐾..^𝐿)) → 𝐾 ∈ (𝑀..^𝑁))
5 ssel2 3925 . . . . . . . . . 10 (((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ∧ (𝐿 − 1) ∈ (𝐾..^𝐿)) → (𝐿 − 1) ∈ (𝑀..^𝑁))
6 elfzolt2 13570 . . . . . . . . . 10 ((𝐿 − 1) ∈ (𝑀..^𝑁) → (𝐿 − 1) < 𝑁)
7 simp2 1137 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → 𝐿 ∈ ℤ)
8 elfzoel2 13560 . . . . . . . . . . . . . 14 (𝐾 ∈ (𝑀..^𝑁) → 𝑁 ∈ ℤ)
9 zlem1lt 12530 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿𝑁 ↔ (𝐿 − 1) < 𝑁))
107, 8, 9syl2anr 597 . . . . . . . . . . . . 13 ((𝐾 ∈ (𝑀..^𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿)) → (𝐿𝑁 ↔ (𝐿 − 1) < 𝑁))
11 elfzole1 13569 . . . . . . . . . . . . . . 15 (𝐾 ∈ (𝑀..^𝑁) → 𝑀𝐾)
12 pm3.2 469 . . . . . . . . . . . . . . 15 (𝑀𝐾 → (𝐿𝑁 → (𝑀𝐾𝐿𝑁)))
1311, 12syl 17 . . . . . . . . . . . . . 14 (𝐾 ∈ (𝑀..^𝑁) → (𝐿𝑁 → (𝑀𝐾𝐿𝑁)))
1413adantr 480 . . . . . . . . . . . . 13 ((𝐾 ∈ (𝑀..^𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿)) → (𝐿𝑁 → (𝑀𝐾𝐿𝑁)))
1510, 14sylbird 260 . . . . . . . . . . . 12 ((𝐾 ∈ (𝑀..^𝑁) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿)) → ((𝐿 − 1) < 𝑁 → (𝑀𝐾𝐿𝑁)))
1615ex 412 . . . . . . . . . . 11 (𝐾 ∈ (𝑀..^𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐿 − 1) < 𝑁 → (𝑀𝐾𝐿𝑁))))
1716com13 88 . . . . . . . . . 10 ((𝐿 − 1) < 𝑁 → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → (𝐾 ∈ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁))))
185, 6, 173syl 18 . . . . . . . . 9 (((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ∧ (𝐿 − 1) ∈ (𝐾..^𝐿)) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → (𝐾 ∈ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁))))
1918ex 412 . . . . . . . 8 ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → ((𝐿 − 1) ∈ (𝐾..^𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → (𝐾 ∈ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))))
2019com24 95 . . . . . . 7 ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝐾 ∈ (𝑀..^𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐿 − 1) ∈ (𝐾..^𝐿) → (𝑀𝐾𝐿𝑁)))))
214, 20syl5com 31 . . . . . 6 (((𝐾..^𝐿) ⊆ (𝑀..^𝑁) ∧ 𝐾 ∈ (𝐾..^𝐿)) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐿 − 1) ∈ (𝐾..^𝐿) → (𝑀𝐾𝐿𝑁)))))
2221ex 412 . . . . 5 ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝐾 ∈ (𝐾..^𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐿 − 1) ∈ (𝐾..^𝐿) → (𝑀𝐾𝐿𝑁))))))
2322pm2.43a 54 . . . 4 ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝐾 ∈ (𝐾..^𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐿 − 1) ∈ (𝐾..^𝐿) → (𝑀𝐾𝐿𝑁)))))
2423com14 96 . . 3 ((𝐿 − 1) ∈ (𝐾..^𝐿) → (𝐾 ∈ (𝐾..^𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))))
253, 24mpcom 38 . 2 (𝐾 ∈ (𝐾..^𝐿) → ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁))))
262, 25mpcom 38 1 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 < 𝐿) → ((𝐾..^𝐿) ⊆ (𝑀..^𝑁) → (𝑀𝐾𝐿𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2113  wss 3898   class class class wbr 5093  (class class class)co 7352  1c1 11014   < clt 11153  cle 11154  cmin 11351  cz 12475  ..^cfzo 13556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557
This theorem is referenced by:  ssfzoulel  13662  ssfzo12bi  13663
  Copyright terms: Public domain W3C validator