Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrunz Structured version   Visualization version   GIF version

Theorem dvrunz 35849
Description: In a division ring the unit is different from the zero. (Contributed by FL, 14-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvrunz.1 𝐺 = (1st𝑅)
dvrunz.2 𝐻 = (2nd𝑅)
dvrunz.3 𝑋 = ran 𝐺
dvrunz.4 𝑍 = (GId‘𝐺)
dvrunz.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
dvrunz (𝑅 ∈ DivRingOps → 𝑈𝑍)

Proof of Theorem dvrunz
StepHypRef Expression
1 dvrunz.4 . . . 4 𝑍 = (GId‘𝐺)
21fvexi 6731 . . 3 𝑍 ∈ V
32zrdivrng 35848 . 2 ¬ ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps
4 dvrunz.1 . . . . . . 7 𝐺 = (1st𝑅)
5 dvrunz.2 . . . . . . 7 𝐻 = (2nd𝑅)
6 dvrunz.3 . . . . . . 7 𝑋 = ran 𝐺
74, 5, 6, 1drngoi 35846 . . . . . 6 (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
87simpld 498 . . . . 5 (𝑅 ∈ DivRingOps → 𝑅 ∈ RingOps)
9 dvrunz.5 . . . . . 6 𝑈 = (GId‘𝐻)
104, 5, 1, 9, 6rngoueqz 35835 . . . . 5 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍))
118, 10syl 17 . . . 4 (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o𝑈 = 𝑍))
124, 6, 1rngosn6 35821 . . . . . . 7 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))
138, 12syl 17 . . . . . 6 (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))
14 eleq1 2825 . . . . . . 7 (𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ → (𝑅 ∈ DivRingOps ↔ ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps))
1514biimpd 232 . . . . . 6 (𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ → (𝑅 ∈ DivRingOps → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps))
1613, 15syl6bi 256 . . . . 5 (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o → (𝑅 ∈ DivRingOps → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps)))
1716pm2.43a 54 . . . 4 (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps))
1811, 17sylbird 263 . . 3 (𝑅 ∈ DivRingOps → (𝑈 = 𝑍 → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps))
1918necon3bd 2954 . 2 (𝑅 ∈ DivRingOps → (¬ ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps → 𝑈𝑍))
203, 19mpi 20 1 (𝑅 ∈ DivRingOps → 𝑈𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209   = wceq 1543  wcel 2110  wne 2940  cdif 3863  {csn 4541  cop 4547   class class class wbr 5053   × cxp 5549  ran crn 5552  cres 5553  cfv 6380  1st c1st 7759  2nd c2nd 7760  1oc1o 8195  cen 8623  GrpOpcgr 28570  GIdcgi 28571  RingOpscrngo 35789  DivRingOpscdrng 35843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-om 7645  df-1st 7761  df-2nd 7762  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-grpo 28574  df-gid 28575  df-ablo 28626  df-ass 35738  df-exid 35740  df-mgmOLD 35744  df-sgrOLD 35756  df-mndo 35762  df-rngo 35790  df-drngo 35844
This theorem is referenced by:  isdrngo2  35853  divrngpr  35948  isfldidl  35963
  Copyright terms: Public domain W3C validator