| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvrunz | Structured version Visualization version GIF version | ||
| Description: In a division ring the ring unit is different from the zero. (Contributed by FL, 14-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dvrunz.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| dvrunz.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| dvrunz.3 | ⊢ 𝑋 = ran 𝐺 |
| dvrunz.4 | ⊢ 𝑍 = (GId‘𝐺) |
| dvrunz.5 | ⊢ 𝑈 = (GId‘𝐻) |
| Ref | Expression |
|---|---|
| dvrunz | ⊢ (𝑅 ∈ DivRingOps → 𝑈 ≠ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrunz.4 | . . . 4 ⊢ 𝑍 = (GId‘𝐺) | |
| 2 | 1 | fvexi 6845 | . . 3 ⊢ 𝑍 ∈ V |
| 3 | 2 | zrdivrng 38066 | . 2 ⊢ ¬ 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps |
| 4 | dvrunz.1 | . . . . . . 7 ⊢ 𝐺 = (1st ‘𝑅) | |
| 5 | dvrunz.2 | . . . . . . 7 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 6 | dvrunz.3 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
| 7 | 4, 5, 6, 1 | drngoi 38064 | . . . . . 6 ⊢ (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) |
| 8 | 7 | simpld 494 | . . . . 5 ⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ RingOps) |
| 9 | dvrunz.5 | . . . . . 6 ⊢ 𝑈 = (GId‘𝐻) | |
| 10 | 4, 5, 1, 9, 6 | rngoueqz 38053 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1o ↔ 𝑈 = 𝑍)) |
| 11 | 8, 10 | syl 17 | . . . 4 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o ↔ 𝑈 = 𝑍)) |
| 12 | 4, 6, 1 | rngosn6 38039 | . . . . . . 7 ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
| 13 | 8, 12 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
| 14 | eleq1 2821 | . . . . . . 7 ⊢ (𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 → (𝑅 ∈ DivRingOps ↔ 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps)) | |
| 15 | 14 | biimpd 229 | . . . . . 6 ⊢ (𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 → (𝑅 ∈ DivRingOps → 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps)) |
| 16 | 13, 15 | biimtrdi 253 | . . . . 5 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o → (𝑅 ∈ DivRingOps → 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps))) |
| 17 | 16 | pm2.43a 54 | . . . 4 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o → 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps)) |
| 18 | 11, 17 | sylbird 260 | . . 3 ⊢ (𝑅 ∈ DivRingOps → (𝑈 = 𝑍 → 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps)) |
| 19 | 18 | necon3bd 2943 | . 2 ⊢ (𝑅 ∈ DivRingOps → (¬ 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps → 𝑈 ≠ 𝑍)) |
| 20 | 3, 19 | mpi 20 | 1 ⊢ (𝑅 ∈ DivRingOps → 𝑈 ≠ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∖ cdif 3895 {csn 4577 〈cop 4583 class class class wbr 5095 × cxp 5619 ran crn 5622 ↾ cres 5623 ‘cfv 6489 1st c1st 7928 2nd c2nd 7929 1oc1o 8387 ≈ cen 8876 GrpOpcgr 30490 GIdcgi 30491 RingOpscrngo 38007 DivRingOpscdrng 38061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-1st 7930 df-2nd 7931 df-1o 8394 df-en 8880 df-grpo 30494 df-gid 30495 df-ablo 30546 df-ass 37956 df-exid 37958 df-mgmOLD 37962 df-sgrOLD 37974 df-mndo 37980 df-rngo 38008 df-drngo 38062 |
| This theorem is referenced by: isdrngo2 38071 divrngpr 38166 isfldidl 38181 |
| Copyright terms: Public domain | W3C validator |