| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvrunz | Structured version Visualization version GIF version | ||
| Description: In a division ring the ring unit is different from the zero. (Contributed by FL, 14-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dvrunz.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| dvrunz.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| dvrunz.3 | ⊢ 𝑋 = ran 𝐺 |
| dvrunz.4 | ⊢ 𝑍 = (GId‘𝐺) |
| dvrunz.5 | ⊢ 𝑈 = (GId‘𝐻) |
| Ref | Expression |
|---|---|
| dvrunz | ⊢ (𝑅 ∈ DivRingOps → 𝑈 ≠ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrunz.4 | . . . 4 ⊢ 𝑍 = (GId‘𝐺) | |
| 2 | 1 | fvexi 6890 | . . 3 ⊢ 𝑍 ∈ V |
| 3 | 2 | zrdivrng 37977 | . 2 ⊢ ¬ 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps |
| 4 | dvrunz.1 | . . . . . . 7 ⊢ 𝐺 = (1st ‘𝑅) | |
| 5 | dvrunz.2 | . . . . . . 7 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 6 | dvrunz.3 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
| 7 | 4, 5, 6, 1 | drngoi 37975 | . . . . . 6 ⊢ (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) |
| 8 | 7 | simpld 494 | . . . . 5 ⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ RingOps) |
| 9 | dvrunz.5 | . . . . . 6 ⊢ 𝑈 = (GId‘𝐻) | |
| 10 | 4, 5, 1, 9, 6 | rngoueqz 37964 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1o ↔ 𝑈 = 𝑍)) |
| 11 | 8, 10 | syl 17 | . . . 4 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o ↔ 𝑈 = 𝑍)) |
| 12 | 4, 6, 1 | rngosn6 37950 | . . . . . . 7 ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
| 13 | 8, 12 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
| 14 | eleq1 2822 | . . . . . . 7 ⊢ (𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 → (𝑅 ∈ DivRingOps ↔ 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps)) | |
| 15 | 14 | biimpd 229 | . . . . . 6 ⊢ (𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 → (𝑅 ∈ DivRingOps → 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps)) |
| 16 | 13, 15 | biimtrdi 253 | . . . . 5 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o → (𝑅 ∈ DivRingOps → 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps))) |
| 17 | 16 | pm2.43a 54 | . . . 4 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o → 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps)) |
| 18 | 11, 17 | sylbird 260 | . . 3 ⊢ (𝑅 ∈ DivRingOps → (𝑈 = 𝑍 → 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps)) |
| 19 | 18 | necon3bd 2946 | . 2 ⊢ (𝑅 ∈ DivRingOps → (¬ 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps → 𝑈 ≠ 𝑍)) |
| 20 | 3, 19 | mpi 20 | 1 ⊢ (𝑅 ∈ DivRingOps → 𝑈 ≠ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∖ cdif 3923 {csn 4601 〈cop 4607 class class class wbr 5119 × cxp 5652 ran crn 5655 ↾ cres 5656 ‘cfv 6531 1st c1st 7986 2nd c2nd 7987 1oc1o 8473 ≈ cen 8956 GrpOpcgr 30470 GIdcgi 30471 RingOpscrngo 37918 DivRingOpscdrng 37972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-1st 7988 df-2nd 7989 df-1o 8480 df-en 8960 df-grpo 30474 df-gid 30475 df-ablo 30526 df-ass 37867 df-exid 37869 df-mgmOLD 37873 df-sgrOLD 37885 df-mndo 37891 df-rngo 37919 df-drngo 37973 |
| This theorem is referenced by: isdrngo2 37982 divrngpr 38077 isfldidl 38092 |
| Copyright terms: Public domain | W3C validator |