Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrunz Structured version   Visualization version   GIF version

Theorem dvrunz 37955
Description: In a division ring the ring unit is different from the zero. (Contributed by FL, 14-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvrunz.1 𝐺 = (1st𝑅)
dvrunz.2 𝐻 = (2nd𝑅)
dvrunz.3 𝑋 = ran 𝐺
dvrunz.4 𝑍 = (GId‘𝐺)
dvrunz.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
dvrunz (𝑅 ∈ DivRingOps → 𝑈𝑍)

Proof of Theorem dvrunz
StepHypRef Expression
1 dvrunz.4 . . . 4 𝑍 = (GId‘𝐺)
21fvexi 6875 . . 3 𝑍 ∈ V
32zrdivrng 37954 . 2 ¬ ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps
4 dvrunz.1 . . . . . . 7 𝐺 = (1st𝑅)
5 dvrunz.2 . . . . . . 7 𝐻 = (2nd𝑅)
6 dvrunz.3 . . . . . . 7 𝑋 = ran 𝐺
74, 5, 6, 1drngoi 37952 . . . . . 6 (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
87simpld 494 . . . . 5 (𝑅 ∈ DivRingOps → 𝑅 ∈ RingOps)
9 dvrunz.5 . . . . . 6 𝑈 = (GId‘𝐻)
104, 5, 1, 9, 6rngoueqz 37941 . . . . 5 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍))
118, 10syl 17 . . . 4 (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o𝑈 = 𝑍))
124, 6, 1rngosn6 37927 . . . . . . 7 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))
138, 12syl 17 . . . . . 6 (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))
14 eleq1 2817 . . . . . . 7 (𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ → (𝑅 ∈ DivRingOps ↔ ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps))
1514biimpd 229 . . . . . 6 (𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ → (𝑅 ∈ DivRingOps → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps))
1613, 15biimtrdi 253 . . . . 5 (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o → (𝑅 ∈ DivRingOps → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps)))
1716pm2.43a 54 . . . 4 (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps))
1811, 17sylbird 260 . . 3 (𝑅 ∈ DivRingOps → (𝑈 = 𝑍 → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps))
1918necon3bd 2940 . 2 (𝑅 ∈ DivRingOps → (¬ ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps → 𝑈𝑍))
203, 19mpi 20 1 (𝑅 ∈ DivRingOps → 𝑈𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2926  cdif 3914  {csn 4592  cop 4598   class class class wbr 5110   × cxp 5639  ran crn 5642  cres 5643  cfv 6514  1st c1st 7969  2nd c2nd 7970  1oc1o 8430  cen 8918  GrpOpcgr 30425  GIdcgi 30426  RingOpscrngo 37895  DivRingOpscdrng 37949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-1st 7971  df-2nd 7972  df-1o 8437  df-en 8922  df-grpo 30429  df-gid 30430  df-ablo 30481  df-ass 37844  df-exid 37846  df-mgmOLD 37850  df-sgrOLD 37862  df-mndo 37868  df-rngo 37896  df-drngo 37950
This theorem is referenced by:  isdrngo2  37959  divrngpr  38054  isfldidl  38069
  Copyright terms: Public domain W3C validator