| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvrunz | Structured version Visualization version GIF version | ||
| Description: In a division ring the ring unit is different from the zero. (Contributed by FL, 14-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dvrunz.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| dvrunz.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| dvrunz.3 | ⊢ 𝑋 = ran 𝐺 |
| dvrunz.4 | ⊢ 𝑍 = (GId‘𝐺) |
| dvrunz.5 | ⊢ 𝑈 = (GId‘𝐻) |
| Ref | Expression |
|---|---|
| dvrunz | ⊢ (𝑅 ∈ DivRingOps → 𝑈 ≠ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvrunz.4 | . . . 4 ⊢ 𝑍 = (GId‘𝐺) | |
| 2 | 1 | fvexi 6875 | . . 3 ⊢ 𝑍 ∈ V |
| 3 | 2 | zrdivrng 37954 | . 2 ⊢ ¬ 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps |
| 4 | dvrunz.1 | . . . . . . 7 ⊢ 𝐺 = (1st ‘𝑅) | |
| 5 | dvrunz.2 | . . . . . . 7 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 6 | dvrunz.3 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
| 7 | 4, 5, 6, 1 | drngoi 37952 | . . . . . 6 ⊢ (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) |
| 8 | 7 | simpld 494 | . . . . 5 ⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ RingOps) |
| 9 | dvrunz.5 | . . . . . 6 ⊢ 𝑈 = (GId‘𝐻) | |
| 10 | 4, 5, 1, 9, 6 | rngoueqz 37941 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1o ↔ 𝑈 = 𝑍)) |
| 11 | 8, 10 | syl 17 | . . . 4 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o ↔ 𝑈 = 𝑍)) |
| 12 | 4, 6, 1 | rngosn6 37927 | . . . . . . 7 ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
| 13 | 8, 12 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) |
| 14 | eleq1 2817 | . . . . . . 7 ⊢ (𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 → (𝑅 ∈ DivRingOps ↔ 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps)) | |
| 15 | 14 | biimpd 229 | . . . . . 6 ⊢ (𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 → (𝑅 ∈ DivRingOps → 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps)) |
| 16 | 13, 15 | biimtrdi 253 | . . . . 5 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o → (𝑅 ∈ DivRingOps → 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps))) |
| 17 | 16 | pm2.43a 54 | . . . 4 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o → 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps)) |
| 18 | 11, 17 | sylbird 260 | . . 3 ⊢ (𝑅 ∈ DivRingOps → (𝑈 = 𝑍 → 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps)) |
| 19 | 18 | necon3bd 2940 | . 2 ⊢ (𝑅 ∈ DivRingOps → (¬ 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉 ∈ DivRingOps → 𝑈 ≠ 𝑍)) |
| 20 | 3, 19 | mpi 20 | 1 ⊢ (𝑅 ∈ DivRingOps → 𝑈 ≠ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 {csn 4592 〈cop 4598 class class class wbr 5110 × cxp 5639 ran crn 5642 ↾ cres 5643 ‘cfv 6514 1st c1st 7969 2nd c2nd 7970 1oc1o 8430 ≈ cen 8918 GrpOpcgr 30425 GIdcgi 30426 RingOpscrngo 37895 DivRingOpscdrng 37949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-1st 7971 df-2nd 7972 df-1o 8437 df-en 8922 df-grpo 30429 df-gid 30430 df-ablo 30481 df-ass 37844 df-exid 37846 df-mgmOLD 37850 df-sgrOLD 37862 df-mndo 37868 df-rngo 37896 df-drngo 37950 |
| This theorem is referenced by: isdrngo2 37959 divrngpr 38054 isfldidl 38069 |
| Copyright terms: Public domain | W3C validator |