![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvrunz | Structured version Visualization version GIF version |
Description: In a division ring the ring unit is different from the zero. (Contributed by FL, 14-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvrunz.1 | ⊢ 𝐺 = (1st ‘𝑅) |
dvrunz.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
dvrunz.3 | ⊢ 𝑋 = ran 𝐺 |
dvrunz.4 | ⊢ 𝑍 = (GId‘𝐺) |
dvrunz.5 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
dvrunz | ⊢ (𝑅 ∈ DivRingOps → 𝑈 ≠ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvrunz.4 | . . . 4 ⊢ 𝑍 = (GId‘𝐺) | |
2 | 1 | fvexi 6905 | . . 3 ⊢ 𝑍 ∈ V |
3 | 2 | zrdivrng 37361 | . 2 ⊢ ¬ ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps |
4 | dvrunz.1 | . . . . . . 7 ⊢ 𝐺 = (1st ‘𝑅) | |
5 | dvrunz.2 | . . . . . . 7 ⊢ 𝐻 = (2nd ‘𝑅) | |
6 | dvrunz.3 | . . . . . . 7 ⊢ 𝑋 = ran 𝐺 | |
7 | 4, 5, 6, 1 | drngoi 37359 | . . . . . 6 ⊢ (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) |
8 | 7 | simpld 494 | . . . . 5 ⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ RingOps) |
9 | dvrunz.5 | . . . . . 6 ⊢ 𝑈 = (GId‘𝐻) | |
10 | 4, 5, 1, 9, 6 | rngoueqz 37348 | . . . . 5 ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1o ↔ 𝑈 = 𝑍)) |
11 | 8, 10 | syl 17 | . . . 4 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o ↔ 𝑈 = 𝑍)) |
12 | 4, 6, 1 | rngosn6 37334 | . . . . . . 7 ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1o ↔ 𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩)) |
13 | 8, 12 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o ↔ 𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩)) |
14 | eleq1 2816 | . . . . . . 7 ⊢ (𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ → (𝑅 ∈ DivRingOps ↔ ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps)) | |
15 | 14 | biimpd 228 | . . . . . 6 ⊢ (𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ → (𝑅 ∈ DivRingOps → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps)) |
16 | 13, 15 | biimtrdi 252 | . . . . 5 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o → (𝑅 ∈ DivRingOps → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps))) |
17 | 16 | pm2.43a 54 | . . . 4 ⊢ (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps)) |
18 | 11, 17 | sylbird 260 | . . 3 ⊢ (𝑅 ∈ DivRingOps → (𝑈 = 𝑍 → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps)) |
19 | 18 | necon3bd 2949 | . 2 ⊢ (𝑅 ∈ DivRingOps → (¬ ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps → 𝑈 ≠ 𝑍)) |
20 | 3, 19 | mpi 20 | 1 ⊢ (𝑅 ∈ DivRingOps → 𝑈 ≠ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 ∖ cdif 3941 {csn 4624 ⟨cop 4630 class class class wbr 5142 × cxp 5670 ran crn 5673 ↾ cres 5674 ‘cfv 6542 1st c1st 7985 2nd c2nd 7986 1oc1o 8473 ≈ cen 8952 GrpOpcgr 30286 GIdcgi 30287 RingOpscrngo 37302 DivRingOpscdrng 37356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-1st 7987 df-2nd 7988 df-1o 8480 df-en 8956 df-grpo 30290 df-gid 30291 df-ablo 30342 df-ass 37251 df-exid 37253 df-mgmOLD 37257 df-sgrOLD 37269 df-mndo 37275 df-rngo 37303 df-drngo 37357 |
This theorem is referenced by: isdrngo2 37366 divrngpr 37461 isfldidl 37476 |
Copyright terms: Public domain | W3C validator |