Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvrunz Structured version   Visualization version   GIF version

Theorem dvrunz 37948
Description: In a division ring the ring unit is different from the zero. (Contributed by FL, 14-Feb-2010.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvrunz.1 𝐺 = (1st𝑅)
dvrunz.2 𝐻 = (2nd𝑅)
dvrunz.3 𝑋 = ran 𝐺
dvrunz.4 𝑍 = (GId‘𝐺)
dvrunz.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
dvrunz (𝑅 ∈ DivRingOps → 𝑈𝑍)

Proof of Theorem dvrunz
StepHypRef Expression
1 dvrunz.4 . . . 4 𝑍 = (GId‘𝐺)
21fvexi 6872 . . 3 𝑍 ∈ V
32zrdivrng 37947 . 2 ¬ ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps
4 dvrunz.1 . . . . . . 7 𝐺 = (1st𝑅)
5 dvrunz.2 . . . . . . 7 𝐻 = (2nd𝑅)
6 dvrunz.3 . . . . . . 7 𝑋 = ran 𝐺
74, 5, 6, 1drngoi 37945 . . . . . 6 (𝑅 ∈ DivRingOps → (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp))
87simpld 494 . . . . 5 (𝑅 ∈ DivRingOps → 𝑅 ∈ RingOps)
9 dvrunz.5 . . . . . 6 𝑈 = (GId‘𝐻)
104, 5, 1, 9, 6rngoueqz 37934 . . . . 5 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑈 = 𝑍))
118, 10syl 17 . . . 4 (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o𝑈 = 𝑍))
124, 6, 1rngosn6 37920 . . . . . . 7 (𝑅 ∈ RingOps → (𝑋 ≈ 1o𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))
138, 12syl 17 . . . . . 6 (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩))
14 eleq1 2816 . . . . . . 7 (𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ → (𝑅 ∈ DivRingOps ↔ ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps))
1514biimpd 229 . . . . . 6 (𝑅 = ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ → (𝑅 ∈ DivRingOps → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps))
1613, 15biimtrdi 253 . . . . 5 (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o → (𝑅 ∈ DivRingOps → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps)))
1716pm2.43a 54 . . . 4 (𝑅 ∈ DivRingOps → (𝑋 ≈ 1o → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps))
1811, 17sylbird 260 . . 3 (𝑅 ∈ DivRingOps → (𝑈 = 𝑍 → ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps))
1918necon3bd 2939 . 2 (𝑅 ∈ DivRingOps → (¬ ⟨{⟨⟨𝑍, 𝑍⟩, 𝑍⟩}, {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩ ∈ DivRingOps → 𝑈𝑍))
203, 19mpi 20 1 (𝑅 ∈ DivRingOps → 𝑈𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wne 2925  cdif 3911  {csn 4589  cop 4595   class class class wbr 5107   × cxp 5636  ran crn 5639  cres 5640  cfv 6511  1st c1st 7966  2nd c2nd 7967  1oc1o 8427  cen 8915  GrpOpcgr 30418  GIdcgi 30419  RingOpscrngo 37888  DivRingOpscdrng 37942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-1st 7968  df-2nd 7969  df-1o 8434  df-en 8919  df-grpo 30422  df-gid 30423  df-ablo 30474  df-ass 37837  df-exid 37839  df-mgmOLD 37843  df-sgrOLD 37855  df-mndo 37861  df-rngo 37889  df-drngo 37943
This theorem is referenced by:  isdrngo2  37952  divrngpr  38047  isfldidl  38062
  Copyright terms: Public domain W3C validator