| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pimconstlt0 | Structured version Visualization version GIF version | ||
| Description: Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound less than or equal to the constant, is the empty set. Second part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| pimconstlt0.x | ⊢ Ⅎ𝑥𝜑 |
| pimconstlt0.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| pimconstlt0.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| pimconstlt0.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| pimconstlt0.l | ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| pimconstlt0 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pimconstlt0.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | pimconstlt0.l | . . . . . . 7 ⊢ (𝜑 → 𝐶 ≤ 𝐵) | |
| 3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≤ 𝐵) |
| 4 | pimconstlt0.f | . . . . . . . 8 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 6 | pimconstlt0.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 8 | 5, 7 | fvmpt2d 6981 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
| 9 | 3, 8 | breqtrrd 5135 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≤ (𝐹‘𝑥)) |
| 10 | pimconstlt0.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ*) |
| 12 | 8, 7 | eqeltrd 2828 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ) |
| 13 | 12 | rexrd 11224 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ*) |
| 14 | 11, 13 | xrlenltd 11240 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 ≤ (𝐹‘𝑥) ↔ ¬ (𝐹‘𝑥) < 𝐶)) |
| 15 | 9, 14 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ (𝐹‘𝑥) < 𝐶) |
| 16 | 15 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ¬ (𝐹‘𝑥) < 𝐶)) |
| 17 | 1, 16 | ralrimi 3235 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) < 𝐶) |
| 18 | rabeq0 4351 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) < 𝐶) | |
| 19 | 17, 18 | sylibr 234 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 {crab 3405 ∅c0 4296 class class class wbr 5107 ↦ cmpt 5188 ‘cfv 6511 ℝcr 11067 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-xr 11212 df-le 11214 |
| This theorem is referenced by: smfconst 46747 |
| Copyright terms: Public domain | W3C validator |