Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pimconstlt0 | Structured version Visualization version GIF version |
Description: Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound less than or equal to the constant, is the empty set. Second part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
pimconstlt0.x | ⊢ Ⅎ𝑥𝜑 |
pimconstlt0.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
pimconstlt0.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
pimconstlt0.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
pimconstlt0.l | ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
Ref | Expression |
---|---|
pimconstlt0 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pimconstlt0.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | pimconstlt0.l | . . . . . . 7 ⊢ (𝜑 → 𝐶 ≤ 𝐵) | |
3 | 2 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≤ 𝐵) |
4 | pimconstlt0.f | . . . . . . . 8 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
6 | pimconstlt0.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
7 | 6 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
8 | 5, 7 | fvmpt2d 6888 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
9 | 3, 8 | breqtrrd 5102 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≤ (𝐹‘𝑥)) |
10 | pimconstlt0.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
11 | 10 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ*) |
12 | 8, 7 | eqeltrd 2839 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ) |
13 | 12 | rexrd 11025 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ*) |
14 | 11, 13 | xrlenltd 11041 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 ≤ (𝐹‘𝑥) ↔ ¬ (𝐹‘𝑥) < 𝐶)) |
15 | 9, 14 | mpbid 231 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ (𝐹‘𝑥) < 𝐶) |
16 | 15 | ex 413 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ¬ (𝐹‘𝑥) < 𝐶)) |
17 | 1, 16 | ralrimi 3141 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) < 𝐶) |
18 | rabeq0 4318 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) < 𝐶) | |
19 | 17, 18 | sylibr 233 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 ∀wral 3064 {crab 3068 ∅c0 4256 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 ℝcr 10870 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-xr 11013 df-le 11015 |
This theorem is referenced by: smfconst 44285 |
Copyright terms: Public domain | W3C validator |