Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimconstlt0 Structured version   Visualization version   GIF version

Theorem pimconstlt0 46699
Description: Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound less than or equal to the constant, is the empty set. Second part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimconstlt0.x 𝑥𝜑
pimconstlt0.b (𝜑𝐵 ∈ ℝ)
pimconstlt0.f 𝐹 = (𝑥𝐴𝐵)
pimconstlt0.c (𝜑𝐶 ∈ ℝ*)
pimconstlt0.l (𝜑𝐶𝐵)
Assertion
Ref Expression
pimconstlt0 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem pimconstlt0
StepHypRef Expression
1 pimconstlt0.x . . 3 𝑥𝜑
2 pimconstlt0.l . . . . . . 7 (𝜑𝐶𝐵)
32adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶𝐵)
4 pimconstlt0.f . . . . . . . 8 𝐹 = (𝑥𝐴𝐵)
54a1i 11 . . . . . . 7 (𝜑𝐹 = (𝑥𝐴𝐵))
6 pimconstlt0.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
76adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
85, 7fvmpt2d 6981 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
93, 8breqtrrd 5135 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ≤ (𝐹𝑥))
10 pimconstlt0.c . . . . . . 7 (𝜑𝐶 ∈ ℝ*)
1110adantr 480 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
128, 7eqeltrd 2828 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
1312rexrd 11224 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ*)
1411, 13xrlenltd 11240 . . . . 5 ((𝜑𝑥𝐴) → (𝐶 ≤ (𝐹𝑥) ↔ ¬ (𝐹𝑥) < 𝐶))
159, 14mpbid 232 . . . 4 ((𝜑𝑥𝐴) → ¬ (𝐹𝑥) < 𝐶)
1615ex 412 . . 3 (𝜑 → (𝑥𝐴 → ¬ (𝐹𝑥) < 𝐶))
171, 16ralrimi 3235 . 2 (𝜑 → ∀𝑥𝐴 ¬ (𝐹𝑥) < 𝐶)
18 rabeq0 4351 . 2 ({𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} = ∅ ↔ ∀𝑥𝐴 ¬ (𝐹𝑥) < 𝐶)
1917, 18sylibr 234 1 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3044  {crab 3405  c0 4296   class class class wbr 5107  cmpt 5188  cfv 6511  cr 11067  *cxr 11207   < clt 11208  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fv 6519  df-xr 11212  df-le 11214
This theorem is referenced by:  smfconst  46747
  Copyright terms: Public domain W3C validator