| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pimconstlt0 | Structured version Visualization version GIF version | ||
| Description: Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound less than or equal to the constant, is the empty set. Second part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| pimconstlt0.x | ⊢ Ⅎ𝑥𝜑 |
| pimconstlt0.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| pimconstlt0.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| pimconstlt0.c | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
| pimconstlt0.l | ⊢ (𝜑 → 𝐶 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| pimconstlt0 | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pimconstlt0.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | pimconstlt0.l | . . . . . . 7 ⊢ (𝜑 → 𝐶 ≤ 𝐵) | |
| 3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≤ 𝐵) |
| 4 | pimconstlt0.f | . . . . . . . 8 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 6 | pimconstlt0.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 7 | 6 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 8 | 5, 7 | fvmpt2d 6947 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = 𝐵) |
| 9 | 3, 8 | breqtrrd 5123 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≤ (𝐹‘𝑥)) |
| 10 | pimconstlt0.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ*) |
| 12 | 8, 7 | eqeltrd 2828 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ) |
| 13 | 12 | rexrd 11184 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ ℝ*) |
| 14 | 11, 13 | xrlenltd 11200 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 ≤ (𝐹‘𝑥) ↔ ¬ (𝐹‘𝑥) < 𝐶)) |
| 15 | 9, 14 | mpbid 232 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ¬ (𝐹‘𝑥) < 𝐶) |
| 16 | 15 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ¬ (𝐹‘𝑥) < 𝐶)) |
| 17 | 1, 16 | ralrimi 3227 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) < 𝐶) |
| 18 | rabeq0 4341 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = ∅ ↔ ∀𝑥 ∈ 𝐴 ¬ (𝐹‘𝑥) < 𝐶) | |
| 19 | 17, 18 | sylibr 234 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) < 𝐶} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 {crab 3396 ∅c0 4286 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 ℝcr 11027 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-xr 11172 df-le 11174 |
| This theorem is referenced by: smfconst 46731 |
| Copyright terms: Public domain | W3C validator |