Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimconstlt0 Structured version   Visualization version   GIF version

Theorem pimconstlt0 43339
Description: Given a constant function, its preimage with respect to an unbounded below, open interval, with upper bound less than or equal to the constant, is the empty set. Second part of Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimconstlt0.x 𝑥𝜑
pimconstlt0.b (𝜑𝐵 ∈ ℝ)
pimconstlt0.f 𝐹 = (𝑥𝐴𝐵)
pimconstlt0.c (𝜑𝐶 ∈ ℝ*)
pimconstlt0.l (𝜑𝐶𝐵)
Assertion
Ref Expression
pimconstlt0 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐹(𝑥)

Proof of Theorem pimconstlt0
StepHypRef Expression
1 pimconstlt0.x . . 3 𝑥𝜑
2 pimconstlt0.l . . . . . . 7 (𝜑𝐶𝐵)
32adantr 484 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶𝐵)
4 pimconstlt0.f . . . . . . . 8 𝐹 = (𝑥𝐴𝐵)
54a1i 11 . . . . . . 7 (𝜑𝐹 = (𝑥𝐴𝐵))
6 pimconstlt0.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
76adantr 484 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
85, 7fvmpt2d 6758 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
93, 8breqtrrd 5058 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ≤ (𝐹𝑥))
10 pimconstlt0.c . . . . . . 7 (𝜑𝐶 ∈ ℝ*)
1110adantr 484 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
128, 7eqeltrd 2890 . . . . . . 7 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
1312rexrd 10680 . . . . . 6 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ ℝ*)
1411, 13xrlenltd 10696 . . . . 5 ((𝜑𝑥𝐴) → (𝐶 ≤ (𝐹𝑥) ↔ ¬ (𝐹𝑥) < 𝐶))
159, 14mpbid 235 . . . 4 ((𝜑𝑥𝐴) → ¬ (𝐹𝑥) < 𝐶)
1615ex 416 . . 3 (𝜑 → (𝑥𝐴 → ¬ (𝐹𝑥) < 𝐶))
171, 16ralrimi 3180 . 2 (𝜑 → ∀𝑥𝐴 ¬ (𝐹𝑥) < 𝐶)
18 rabeq0 4292 . 2 ({𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} = ∅ ↔ ∀𝑥𝐴 ¬ (𝐹𝑥) < 𝐶)
1917, 18sylibr 237 1 (𝜑 → {𝑥𝐴 ∣ (𝐹𝑥) < 𝐶} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2111  wral 3106  {crab 3110  c0 4243   class class class wbr 5030  cmpt 5110  cfv 6324  cr 10525  *cxr 10663   < clt 10664  cle 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fv 6332  df-xr 10668  df-le 10670
This theorem is referenced by:  smfconst  43383
  Copyright terms: Public domain W3C validator