Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > neicvgnvor | Structured version Visualization version GIF version |
Description: If neighborhood and convergent functions are related by operator 𝐻, the relationship holds with the functions swapped. (Contributed by RP, 11-Jun-2021.) |
Ref | Expression |
---|---|
neicvg.o | ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) |
neicvg.p | ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) |
neicvg.d | ⊢ 𝐷 = (𝑃‘𝐵) |
neicvg.f | ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) |
neicvg.g | ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) |
neicvg.h | ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) |
neicvg.r | ⊢ (𝜑 → 𝑁𝐻𝑀) |
Ref | Expression |
---|---|
neicvgnvor | ⊢ (𝜑 → 𝑀𝐻𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neicvg.r | . . 3 ⊢ (𝜑 → 𝑁𝐻𝑀) | |
2 | neicvg.o | . . . . 5 ⊢ 𝑂 = (𝑖 ∈ V, 𝑗 ∈ V ↦ (𝑘 ∈ (𝒫 𝑗 ↑m 𝑖) ↦ (𝑙 ∈ 𝑗 ↦ {𝑚 ∈ 𝑖 ∣ 𝑙 ∈ (𝑘‘𝑚)}))) | |
3 | neicvg.p | . . . . 5 ⊢ 𝑃 = (𝑛 ∈ V ↦ (𝑝 ∈ (𝒫 𝑛 ↑m 𝒫 𝑛) ↦ (𝑜 ∈ 𝒫 𝑛 ↦ (𝑛 ∖ (𝑝‘(𝑛 ∖ 𝑜)))))) | |
4 | neicvg.d | . . . . 5 ⊢ 𝐷 = (𝑃‘𝐵) | |
5 | neicvg.f | . . . . 5 ⊢ 𝐹 = (𝒫 𝐵𝑂𝐵) | |
6 | neicvg.g | . . . . 5 ⊢ 𝐺 = (𝐵𝑂𝒫 𝐵) | |
7 | neicvg.h | . . . . 5 ⊢ 𝐻 = (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
8 | 2, 3, 4, 5, 6, 7, 1 | neicvgnvo 41725 | . . . 4 ⊢ (𝜑 → ◡𝐻 = 𝐻) |
9 | 8 | breqd 5085 | . . 3 ⊢ (𝜑 → (𝑁◡𝐻𝑀 ↔ 𝑁𝐻𝑀)) |
10 | 1, 9 | mpbird 256 | . 2 ⊢ (𝜑 → 𝑁◡𝐻𝑀) |
11 | relco 6148 | . . . 4 ⊢ Rel (𝐹 ∘ (𝐷 ∘ 𝐺)) | |
12 | 7 | releqi 5688 | . . . 4 ⊢ (Rel 𝐻 ↔ Rel (𝐹 ∘ (𝐷 ∘ 𝐺))) |
13 | 11, 12 | mpbir 230 | . . 3 ⊢ Rel 𝐻 |
14 | 13 | relbrcnv 6015 | . 2 ⊢ (𝑁◡𝐻𝑀 ↔ 𝑀𝐻𝑁) |
15 | 10, 14 | sylib 217 | 1 ⊢ (𝜑 → 𝑀𝐻𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ∖ cdif 3884 𝒫 cpw 4533 class class class wbr 5074 ↦ cmpt 5157 ◡ccnv 5588 ∘ ccom 5593 Rel wrel 5594 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ↑m cmap 8615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 |
This theorem is referenced by: neicvgnex 41728 |
Copyright terms: Public domain | W3C validator |