| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tnglem | Structured version Visualization version GIF version | ||
| Description: Lemma for tngbas 24529 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| tngbas.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
| tnglem.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| tnglem.t | ⊢ (𝐸‘ndx) ≠ (TopSet‘ndx) |
| tnglem.d | ⊢ (𝐸‘ndx) ≠ (dist‘ndx) |
| Ref | Expression |
|---|---|
| tnglem | ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tnglem.e | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | tnglem.d | . . . . 5 ⊢ (𝐸‘ndx) ≠ (dist‘ndx) | |
| 3 | 1, 2 | setsnid 17178 | . . . 4 ⊢ (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) |
| 4 | tnglem.t | . . . . 5 ⊢ (𝐸‘ndx) ≠ (TopSet‘ndx) | |
| 5 | 1, 4 | setsnid 17178 | . . . 4 ⊢ (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
| 6 | 3, 5 | eqtri 2752 | . . 3 ⊢ (𝐸‘𝐺) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
| 7 | tngbas.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 9 | eqid 2729 | . . . . 5 ⊢ (𝑁 ∘ (-g‘𝐺)) = (𝑁 ∘ (-g‘𝐺)) | |
| 10 | eqid 2729 | . . . . 5 ⊢ (MetOpen‘(𝑁 ∘ (-g‘𝐺))) = (MetOpen‘(𝑁 ∘ (-g‘𝐺))) | |
| 11 | 7, 8, 9, 10 | tngval 24527 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
| 12 | 11 | fveq2d 6862 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝑇) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉))) |
| 13 | 6, 12 | eqtr4id 2783 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
| 14 | 1 | str0 17159 | . . . . 5 ⊢ ∅ = (𝐸‘∅) |
| 15 | 14 | eqcomi 2738 | . . . 4 ⊢ (𝐸‘∅) = ∅ |
| 16 | reldmtng 24526 | . . . 4 ⊢ Rel dom toNrmGrp | |
| 17 | 15, 7, 16 | oveqprc 17162 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑇)) |
| 18 | 17 | adantr 480 | . 2 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
| 19 | 13, 18 | pm2.61ian 811 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∅c0 4296 〈cop 4595 ∘ ccom 5642 ‘cfv 6511 (class class class)co 7387 sSet csts 17133 Slot cslot 17151 ndxcnx 17163 TopSetcts 17226 distcds 17229 -gcsg 18867 MetOpencmopn 21254 toNrmGrp ctng 24466 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-sets 17134 df-slot 17152 df-tng 24472 |
| This theorem is referenced by: tngbas 24529 tngplusg 24530 tngmulr 24532 tngsca 24533 tngvsca 24534 tngip 24535 |
| Copyright terms: Public domain | W3C validator |