![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tnglem | Structured version Visualization version GIF version |
Description: Lemma for tngbas 22938 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
tngbas.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
tnglem.2 | ⊢ 𝐸 = Slot 𝐾 |
tnglem.3 | ⊢ 𝐾 ∈ ℕ |
tnglem.4 | ⊢ 𝐾 < 9 |
Ref | Expression |
---|---|
tnglem | ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tngbas.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
2 | eqid 2795 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
3 | eqid 2795 | . . . . 5 ⊢ (𝑁 ∘ (-g‘𝐺)) = (𝑁 ∘ (-g‘𝐺)) | |
4 | eqid 2795 | . . . . 5 ⊢ (MetOpen‘(𝑁 ∘ (-g‘𝐺))) = (MetOpen‘(𝑁 ∘ (-g‘𝐺))) | |
5 | 1, 2, 3, 4 | tngval 22936 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
6 | 5 | fveq2d 6547 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝑇) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉))) |
7 | tnglem.2 | . . . . . 6 ⊢ 𝐸 = Slot 𝐾 | |
8 | tnglem.3 | . . . . . 6 ⊢ 𝐾 ∈ ℕ | |
9 | 7, 8 | ndxid 16343 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) |
10 | 7, 8 | ndxarg 16342 | . . . . . . . 8 ⊢ (𝐸‘ndx) = 𝐾 |
11 | 8 | nnrei 11500 | . . . . . . . 8 ⊢ 𝐾 ∈ ℝ |
12 | 10, 11 | eqeltri 2879 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ ℝ |
13 | tnglem.4 | . . . . . . . . 9 ⊢ 𝐾 < 9 | |
14 | 10, 13 | eqbrtri 4987 | . . . . . . . 8 ⊢ (𝐸‘ndx) < 9 |
15 | 1nn 11502 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
16 | 2nn0 11767 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
17 | 9nn0 11774 | . . . . . . . . 9 ⊢ 9 ∈ ℕ0 | |
18 | 9lt10 12084 | . . . . . . . . 9 ⊢ 9 < ;10 | |
19 | 15, 16, 17, 18 | declti 11990 | . . . . . . . 8 ⊢ 9 < ;12 |
20 | 9re 11589 | . . . . . . . . 9 ⊢ 9 ∈ ℝ | |
21 | 1nn0 11766 | . . . . . . . . . . 11 ⊢ 1 ∈ ℕ0 | |
22 | 21, 16 | deccl 11967 | . . . . . . . . . 10 ⊢ ;12 ∈ ℕ0 |
23 | 22 | nn0rei 11761 | . . . . . . . . 9 ⊢ ;12 ∈ ℝ |
24 | 12, 20, 23 | lttri 10618 | . . . . . . . 8 ⊢ (((𝐸‘ndx) < 9 ∧ 9 < ;12) → (𝐸‘ndx) < ;12) |
25 | 14, 19, 24 | mp2an 688 | . . . . . . 7 ⊢ (𝐸‘ndx) < ;12 |
26 | 12, 25 | ltneii 10605 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ ;12 |
27 | dsndx 16509 | . . . . . 6 ⊢ (dist‘ndx) = ;12 | |
28 | 26, 27 | neeqtrri 3057 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (dist‘ndx) |
29 | 9, 28 | setsnid 16373 | . . . 4 ⊢ (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) |
30 | 12, 14 | ltneii 10605 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ 9 |
31 | tsetndx 16493 | . . . . . 6 ⊢ (TopSet‘ndx) = 9 | |
32 | 30, 31 | neeqtrri 3057 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (TopSet‘ndx) |
33 | 9, 32 | setsnid 16373 | . . . 4 ⊢ (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
34 | 29, 33 | eqtri 2819 | . . 3 ⊢ (𝐸‘𝐺) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
35 | 6, 34 | syl6reqr 2850 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
36 | 7 | str0 16369 | . . 3 ⊢ ∅ = (𝐸‘∅) |
37 | fvprc 6536 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = ∅) | |
38 | 37 | adantr 481 | . . 3 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = ∅) |
39 | reldmtng 22935 | . . . . . . 7 ⊢ Rel dom toNrmGrp | |
40 | 39 | ovprc1 7059 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅) |
41 | 40 | adantr 481 | . . . . 5 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐺 toNrmGrp 𝑁) = ∅) |
42 | 1, 41 | syl5eq 2843 | . . . 4 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ∅) |
43 | 42 | fveq2d 6547 | . . 3 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝑇) = (𝐸‘∅)) |
44 | 36, 38, 43 | 3eqtr4a 2857 | . 2 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
45 | 35, 44 | pm2.61ian 808 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 Vcvv 3437 ∅c0 4215 〈cop 4482 class class class wbr 4966 ∘ ccom 5452 ‘cfv 6230 (class class class)co 7021 ℝcr 10387 1c1 10389 < clt 10526 ℕcn 11491 2c2 11545 9c9 11552 ;cdc 11952 ndxcnx 16314 sSet csts 16315 Slot cslot 16316 TopSetcts 16405 distcds 16408 -gcsg 17868 MetOpencmopn 20222 toNrmGrp ctng 22876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-cnex 10444 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 ax-pre-mulgt0 10465 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-om 7442 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-er 8144 df-en 8363 df-dom 8364 df-sdom 8365 df-pnf 10528 df-mnf 10529 df-xr 10530 df-ltxr 10531 df-le 10532 df-sub 10724 df-neg 10725 df-nn 11492 df-2 11553 df-3 11554 df-4 11555 df-5 11556 df-6 11557 df-7 11558 df-8 11559 df-9 11560 df-n0 11751 df-z 11835 df-dec 11953 df-ndx 16320 df-slot 16321 df-sets 16324 df-tset 16418 df-ds 16421 df-tng 22882 |
This theorem is referenced by: tngbas 22938 tngplusg 22939 tngmulr 22941 tngsca 22942 tngvsca 22943 tngip 22944 |
Copyright terms: Public domain | W3C validator |