| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tnglem | Structured version Visualization version GIF version | ||
| Description: Lemma for tngbas 24536 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| tngbas.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
| tnglem.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| tnglem.t | ⊢ (𝐸‘ndx) ≠ (TopSet‘ndx) |
| tnglem.d | ⊢ (𝐸‘ndx) ≠ (dist‘ndx) |
| Ref | Expression |
|---|---|
| tnglem | ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tnglem.e | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | tnglem.d | . . . . 5 ⊢ (𝐸‘ndx) ≠ (dist‘ndx) | |
| 3 | 1, 2 | setsnid 17185 | . . . 4 ⊢ (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) |
| 4 | tnglem.t | . . . . 5 ⊢ (𝐸‘ndx) ≠ (TopSet‘ndx) | |
| 5 | 1, 4 | setsnid 17185 | . . . 4 ⊢ (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
| 6 | 3, 5 | eqtri 2753 | . . 3 ⊢ (𝐸‘𝐺) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
| 7 | tngbas.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
| 8 | eqid 2730 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 9 | eqid 2730 | . . . . 5 ⊢ (𝑁 ∘ (-g‘𝐺)) = (𝑁 ∘ (-g‘𝐺)) | |
| 10 | eqid 2730 | . . . . 5 ⊢ (MetOpen‘(𝑁 ∘ (-g‘𝐺))) = (MetOpen‘(𝑁 ∘ (-g‘𝐺))) | |
| 11 | 7, 8, 9, 10 | tngval 24534 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
| 12 | 11 | fveq2d 6865 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝑇) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉))) |
| 13 | 6, 12 | eqtr4id 2784 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
| 14 | 1 | str0 17166 | . . . . 5 ⊢ ∅ = (𝐸‘∅) |
| 15 | 14 | eqcomi 2739 | . . . 4 ⊢ (𝐸‘∅) = ∅ |
| 16 | reldmtng 24533 | . . . 4 ⊢ Rel dom toNrmGrp | |
| 17 | 15, 7, 16 | oveqprc 17169 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑇)) |
| 18 | 17 | adantr 480 | . 2 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
| 19 | 13, 18 | pm2.61ian 811 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∅c0 4299 〈cop 4598 ∘ ccom 5645 ‘cfv 6514 (class class class)co 7390 sSet csts 17140 Slot cslot 17158 ndxcnx 17170 TopSetcts 17233 distcds 17236 -gcsg 18874 MetOpencmopn 21261 toNrmGrp ctng 24473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-sets 17141 df-slot 17159 df-tng 24479 |
| This theorem is referenced by: tngbas 24536 tngplusg 24537 tngmulr 24539 tngsca 24540 tngvsca 24541 tngip 24542 |
| Copyright terms: Public domain | W3C validator |