Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tnglem | Structured version Visualization version GIF version |
Description: Lemma for tngbas 23348 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
tngbas.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
tnglem.2 | ⊢ 𝐸 = Slot 𝐾 |
tnglem.3 | ⊢ 𝐾 ∈ ℕ |
tnglem.4 | ⊢ 𝐾 < 9 |
Ref | Expression |
---|---|
tnglem | ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tnglem.2 | . . . . . 6 ⊢ 𝐸 = Slot 𝐾 | |
2 | tnglem.3 | . . . . . 6 ⊢ 𝐾 ∈ ℕ | |
3 | 1, 2 | ndxid 16572 | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 1, 2 | ndxarg 16571 | . . . . . . . 8 ⊢ (𝐸‘ndx) = 𝐾 |
5 | 2 | nnrei 11688 | . . . . . . . 8 ⊢ 𝐾 ∈ ℝ |
6 | 4, 5 | eqeltri 2848 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ ℝ |
7 | tnglem.4 | . . . . . . . . 9 ⊢ 𝐾 < 9 | |
8 | 4, 7 | eqbrtri 5056 | . . . . . . . 8 ⊢ (𝐸‘ndx) < 9 |
9 | 1nn 11690 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
10 | 2nn0 11956 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
11 | 9nn0 11963 | . . . . . . . . 9 ⊢ 9 ∈ ℕ0 | |
12 | 9lt10 12273 | . . . . . . . . 9 ⊢ 9 < ;10 | |
13 | 9, 10, 11, 12 | declti 12180 | . . . . . . . 8 ⊢ 9 < ;12 |
14 | 9re 11778 | . . . . . . . . 9 ⊢ 9 ∈ ℝ | |
15 | 1nn0 11955 | . . . . . . . . . . 11 ⊢ 1 ∈ ℕ0 | |
16 | 15, 10 | deccl 12157 | . . . . . . . . . 10 ⊢ ;12 ∈ ℕ0 |
17 | 16 | nn0rei 11950 | . . . . . . . . 9 ⊢ ;12 ∈ ℝ |
18 | 6, 14, 17 | lttri 10809 | . . . . . . . 8 ⊢ (((𝐸‘ndx) < 9 ∧ 9 < ;12) → (𝐸‘ndx) < ;12) |
19 | 8, 13, 18 | mp2an 691 | . . . . . . 7 ⊢ (𝐸‘ndx) < ;12 |
20 | 6, 19 | ltneii 10796 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ ;12 |
21 | dsndx 16738 | . . . . . 6 ⊢ (dist‘ndx) = ;12 | |
22 | 20, 21 | neeqtrri 3024 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (dist‘ndx) |
23 | 3, 22 | setsnid 16602 | . . . 4 ⊢ (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) |
24 | 6, 8 | ltneii 10796 | . . . . . 6 ⊢ (𝐸‘ndx) ≠ 9 |
25 | tsetndx 16722 | . . . . . 6 ⊢ (TopSet‘ndx) = 9 | |
26 | 24, 25 | neeqtrri 3024 | . . . . 5 ⊢ (𝐸‘ndx) ≠ (TopSet‘ndx) |
27 | 3, 26 | setsnid 16602 | . . . 4 ⊢ (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
28 | 23, 27 | eqtri 2781 | . . 3 ⊢ (𝐸‘𝐺) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
29 | tngbas.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
30 | eqid 2758 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
31 | eqid 2758 | . . . . 5 ⊢ (𝑁 ∘ (-g‘𝐺)) = (𝑁 ∘ (-g‘𝐺)) | |
32 | eqid 2758 | . . . . 5 ⊢ (MetOpen‘(𝑁 ∘ (-g‘𝐺))) = (MetOpen‘(𝑁 ∘ (-g‘𝐺))) | |
33 | 29, 30, 31, 32 | tngval 23346 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
34 | 33 | fveq2d 6666 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝑇) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉))) |
35 | 28, 34 | eqtr4id 2812 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
36 | 1 | str0 16598 | . . 3 ⊢ ∅ = (𝐸‘∅) |
37 | fvprc 6654 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = ∅) | |
38 | 37 | adantr 484 | . . 3 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = ∅) |
39 | reldmtng 23345 | . . . . . . 7 ⊢ Rel dom toNrmGrp | |
40 | 39 | ovprc1 7194 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅) |
41 | 40 | adantr 484 | . . . . 5 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐺 toNrmGrp 𝑁) = ∅) |
42 | 29, 41 | syl5eq 2805 | . . . 4 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ∅) |
43 | 42 | fveq2d 6666 | . . 3 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝑇) = (𝐸‘∅)) |
44 | 36, 38, 43 | 3eqtr4a 2819 | . 2 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
45 | 35, 44 | pm2.61ian 811 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∅c0 4227 〈cop 4531 class class class wbr 5035 ∘ ccom 5531 ‘cfv 6339 (class class class)co 7155 ℝcr 10579 1c1 10581 < clt 10718 ℕcn 11679 2c2 11734 9c9 11741 ;cdc 12142 ndxcnx 16543 sSet csts 16544 Slot cslot 16545 TopSetcts 16634 distcds 16637 -gcsg 18176 MetOpencmopn 20161 toNrmGrp ctng 23285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-dec 12143 df-ndx 16549 df-slot 16550 df-sets 16553 df-tset 16647 df-ds 16650 df-tng 23291 |
This theorem is referenced by: tngbas 23348 tngplusg 23349 tngmulr 23351 tngsca 23352 tngvsca 23353 tngip 23354 |
Copyright terms: Public domain | W3C validator |