MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tnglem Structured version   Visualization version   GIF version

Theorem tnglem 24528
Description: Lemma for tngbas 24529 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
tngbas.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tnglem.e 𝐸 = Slot (𝐸‘ndx)
tnglem.t (𝐸‘ndx) ≠ (TopSet‘ndx)
tnglem.d (𝐸‘ndx) ≠ (dist‘ndx)
Assertion
Ref Expression
tnglem (𝑁𝑉 → (𝐸𝐺) = (𝐸𝑇))

Proof of Theorem tnglem
StepHypRef Expression
1 tnglem.e . . . . 5 𝐸 = Slot (𝐸‘ndx)
2 tnglem.d . . . . 5 (𝐸‘ndx) ≠ (dist‘ndx)
31, 2setsnid 17178 . . . 4 (𝐸𝐺) = (𝐸‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩))
4 tnglem.t . . . . 5 (𝐸‘ndx) ≠ (TopSet‘ndx)
51, 4setsnid 17178 . . . 4 (𝐸‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩)) = (𝐸‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
63, 5eqtri 2752 . . 3 (𝐸𝐺) = (𝐸‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
7 tngbas.t . . . . 5 𝑇 = (𝐺 toNrmGrp 𝑁)
8 eqid 2729 . . . . 5 (-g𝐺) = (-g𝐺)
9 eqid 2729 . . . . 5 (𝑁 ∘ (-g𝐺)) = (𝑁 ∘ (-g𝐺))
10 eqid 2729 . . . . 5 (MetOpen‘(𝑁 ∘ (-g𝐺))) = (MetOpen‘(𝑁 ∘ (-g𝐺)))
117, 8, 9, 10tngval 24527 . . . 4 ((𝐺 ∈ V ∧ 𝑁𝑉) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
1211fveq2d 6862 . . 3 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝑇) = (𝐸‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩)))
136, 12eqtr4id 2783 . 2 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝐺) = (𝐸𝑇))
141str0 17159 . . . . 5 ∅ = (𝐸‘∅)
1514eqcomi 2738 . . . 4 (𝐸‘∅) = ∅
16 reldmtng 24526 . . . 4 Rel dom toNrmGrp
1715, 7, 16oveqprc 17162 . . 3 𝐺 ∈ V → (𝐸𝐺) = (𝐸𝑇))
1817adantr 480 . 2 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝐺) = (𝐸𝑇))
1913, 18pm2.61ian 811 1 (𝑁𝑉 → (𝐸𝐺) = (𝐸𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3447  c0 4296  cop 4595  ccom 5642  cfv 6511  (class class class)co 7387   sSet csts 17133  Slot cslot 17151  ndxcnx 17163  TopSetcts 17226  distcds 17229  -gcsg 18867  MetOpencmopn 21254   toNrmGrp ctng 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-sets 17134  df-slot 17152  df-tng 24472
This theorem is referenced by:  tngbas  24529  tngplusg  24530  tngmulr  24532  tngsca  24533  tngvsca  24534  tngip  24535
  Copyright terms: Public domain W3C validator