Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tnglem | Structured version Visualization version GIF version |
Description: Lemma for tngbas 23704 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
Ref | Expression |
---|---|
tngbas.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
tnglem.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
tnglem.t | ⊢ (𝐸‘ndx) ≠ (TopSet‘ndx) |
tnglem.d | ⊢ (𝐸‘ndx) ≠ (dist‘ndx) |
Ref | Expression |
---|---|
tnglem | ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tnglem.e | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | tnglem.d | . . . . 5 ⊢ (𝐸‘ndx) ≠ (dist‘ndx) | |
3 | 1, 2 | setsnid 16838 | . . . 4 ⊢ (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) |
4 | tnglem.t | . . . . 5 ⊢ (𝐸‘ndx) ≠ (TopSet‘ndx) | |
5 | 1, 4 | setsnid 16838 | . . . 4 ⊢ (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
6 | 3, 5 | eqtri 2766 | . . 3 ⊢ (𝐸‘𝐺) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
7 | tngbas.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
8 | eqid 2738 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
9 | eqid 2738 | . . . . 5 ⊢ (𝑁 ∘ (-g‘𝐺)) = (𝑁 ∘ (-g‘𝐺)) | |
10 | eqid 2738 | . . . . 5 ⊢ (MetOpen‘(𝑁 ∘ (-g‘𝐺))) = (MetOpen‘(𝑁 ∘ (-g‘𝐺))) | |
11 | 7, 8, 9, 10 | tngval 23701 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
12 | 11 | fveq2d 6760 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝑇) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉))) |
13 | 6, 12 | eqtr4id 2798 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
14 | 1 | str0 16818 | . . . . 5 ⊢ ∅ = (𝐸‘∅) |
15 | 14 | eqcomi 2747 | . . . 4 ⊢ (𝐸‘∅) = ∅ |
16 | reldmtng 23700 | . . . 4 ⊢ Rel dom toNrmGrp | |
17 | 15, 7, 16 | oveqprc 16821 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑇)) |
18 | 17 | adantr 480 | . 2 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
19 | 13, 18 | pm2.61ian 808 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 〈cop 4564 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 sSet csts 16792 Slot cslot 16810 ndxcnx 16822 TopSetcts 16894 distcds 16897 -gcsg 18494 MetOpencmopn 20500 toNrmGrp ctng 23640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-sets 16793 df-slot 16811 df-tng 23646 |
This theorem is referenced by: tngbas 23704 tngplusg 23706 tngmulr 23709 tngsca 23711 tngvsca 23713 tngip 23715 |
Copyright terms: Public domain | W3C validator |