MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tnglem Structured version   Visualization version   GIF version

Theorem tnglem 24577
Description: Lemma for tngbas 24578 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.)
Hypotheses
Ref Expression
tngbas.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tnglem.e 𝐸 = Slot (𝐸‘ndx)
tnglem.t (𝐸‘ndx) ≠ (TopSet‘ndx)
tnglem.d (𝐸‘ndx) ≠ (dist‘ndx)
Assertion
Ref Expression
tnglem (𝑁𝑉 → (𝐸𝐺) = (𝐸𝑇))

Proof of Theorem tnglem
StepHypRef Expression
1 tnglem.e . . . . 5 𝐸 = Slot (𝐸‘ndx)
2 tnglem.d . . . . 5 (𝐸‘ndx) ≠ (dist‘ndx)
31, 2setsnid 17225 . . . 4 (𝐸𝐺) = (𝐸‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩))
4 tnglem.t . . . . 5 (𝐸‘ndx) ≠ (TopSet‘ndx)
51, 4setsnid 17225 . . . 4 (𝐸‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩)) = (𝐸‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
63, 5eqtri 2758 . . 3 (𝐸𝐺) = (𝐸‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
7 tngbas.t . . . . 5 𝑇 = (𝐺 toNrmGrp 𝑁)
8 eqid 2735 . . . . 5 (-g𝐺) = (-g𝐺)
9 eqid 2735 . . . . 5 (𝑁 ∘ (-g𝐺)) = (𝑁 ∘ (-g𝐺))
10 eqid 2735 . . . . 5 (MetOpen‘(𝑁 ∘ (-g𝐺))) = (MetOpen‘(𝑁 ∘ (-g𝐺)))
117, 8, 9, 10tngval 24576 . . . 4 ((𝐺 ∈ V ∧ 𝑁𝑉) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
1211fveq2d 6879 . . 3 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝑇) = (𝐸‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩)))
136, 12eqtr4id 2789 . 2 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝐺) = (𝐸𝑇))
141str0 17206 . . . . 5 ∅ = (𝐸‘∅)
1514eqcomi 2744 . . . 4 (𝐸‘∅) = ∅
16 reldmtng 24575 . . . 4 Rel dom toNrmGrp
1715, 7, 16oveqprc 17209 . . 3 𝐺 ∈ V → (𝐸𝐺) = (𝐸𝑇))
1817adantr 480 . 2 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝐺) = (𝐸𝑇))
1913, 18pm2.61ian 811 1 (𝑁𝑉 → (𝐸𝐺) = (𝐸𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  c0 4308  cop 4607  ccom 5658  cfv 6530  (class class class)co 7403   sSet csts 17180  Slot cslot 17198  ndxcnx 17210  TopSetcts 17275  distcds 17278  -gcsg 18916  MetOpencmopn 21303   toNrmGrp ctng 24515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-res 5666  df-iota 6483  df-fun 6532  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-sets 17181  df-slot 17199  df-tng 24521
This theorem is referenced by:  tngbas  24578  tngplusg  24579  tngmulr  24581  tngsca  24582  tngvsca  24583  tngip  24584
  Copyright terms: Public domain W3C validator