MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tnglem Structured version   Visualization version   GIF version

Theorem tnglem 22723
Description: Lemma for tngbas 22724 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
tngbas.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tnglem.2 𝐸 = Slot 𝐾
tnglem.3 𝐾 ∈ ℕ
tnglem.4 𝐾 < 9
Assertion
Ref Expression
tnglem (𝑁𝑉 → (𝐸𝐺) = (𝐸𝑇))

Proof of Theorem tnglem
StepHypRef Expression
1 tngbas.t . . . . 5 𝑇 = (𝐺 toNrmGrp 𝑁)
2 eqid 2765 . . . . 5 (-g𝐺) = (-g𝐺)
3 eqid 2765 . . . . 5 (𝑁 ∘ (-g𝐺)) = (𝑁 ∘ (-g𝐺))
4 eqid 2765 . . . . 5 (MetOpen‘(𝑁 ∘ (-g𝐺))) = (MetOpen‘(𝑁 ∘ (-g𝐺)))
51, 2, 3, 4tngval 22722 . . . 4 ((𝐺 ∈ V ∧ 𝑁𝑉) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
65fveq2d 6379 . . 3 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝑇) = (𝐸‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩)))
7 tnglem.2 . . . . . 6 𝐸 = Slot 𝐾
8 tnglem.3 . . . . . 6 𝐾 ∈ ℕ
97, 8ndxid 16158 . . . . 5 𝐸 = Slot (𝐸‘ndx)
107, 8ndxarg 16157 . . . . . . . 8 (𝐸‘ndx) = 𝐾
118nnrei 11284 . . . . . . . 8 𝐾 ∈ ℝ
1210, 11eqeltri 2840 . . . . . . 7 (𝐸‘ndx) ∈ ℝ
13 tnglem.4 . . . . . . . . 9 𝐾 < 9
1410, 13eqbrtri 4830 . . . . . . . 8 (𝐸‘ndx) < 9
15 1nn 11287 . . . . . . . . 9 1 ∈ ℕ
16 2nn0 11557 . . . . . . . . 9 2 ∈ ℕ0
17 9nn0 11564 . . . . . . . . 9 9 ∈ ℕ0
18 9lt10 11872 . . . . . . . . 9 9 < 10
1915, 16, 17, 18declti 11779 . . . . . . . 8 9 < 12
20 9re 11377 . . . . . . . . 9 9 ∈ ℝ
21 1nn0 11556 . . . . . . . . . . 11 1 ∈ ℕ0
2221, 16deccl 11755 . . . . . . . . . 10 12 ∈ ℕ0
2322nn0rei 11550 . . . . . . . . 9 12 ∈ ℝ
2412, 20, 23lttri 10417 . . . . . . . 8 (((𝐸‘ndx) < 9 ∧ 9 < 12) → (𝐸‘ndx) < 12)
2514, 19, 24mp2an 683 . . . . . . 7 (𝐸‘ndx) < 12
2612, 25ltneii 10404 . . . . . 6 (𝐸‘ndx) ≠ 12
27 dsndx 16330 . . . . . 6 (dist‘ndx) = 12
2826, 27neeqtrri 3010 . . . . 5 (𝐸‘ndx) ≠ (dist‘ndx)
299, 28setsnid 16189 . . . 4 (𝐸𝐺) = (𝐸‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩))
3012, 14ltneii 10404 . . . . . 6 (𝐸‘ndx) ≠ 9
31 tsetndx 16314 . . . . . 6 (TopSet‘ndx) = 9
3230, 31neeqtrri 3010 . . . . 5 (𝐸‘ndx) ≠ (TopSet‘ndx)
339, 32setsnid 16189 . . . 4 (𝐸‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩)) = (𝐸‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
3429, 33eqtri 2787 . . 3 (𝐸𝐺) = (𝐸‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 ∘ (-g𝐺))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g𝐺)))⟩))
356, 34syl6reqr 2818 . 2 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝐺) = (𝐸𝑇))
367str0 16185 . . 3 ∅ = (𝐸‘∅)
37 fvprc 6368 . . . 4 𝐺 ∈ V → (𝐸𝐺) = ∅)
3837adantr 472 . . 3 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝐺) = ∅)
39 reldmtng 22721 . . . . . . 7 Rel dom toNrmGrp
4039ovprc1 6880 . . . . . 6 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅)
4140adantr 472 . . . . 5 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝐺 toNrmGrp 𝑁) = ∅)
421, 41syl5eq 2811 . . . 4 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → 𝑇 = ∅)
4342fveq2d 6379 . . 3 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝑇) = (𝐸‘∅))
4436, 38, 433eqtr4a 2825 . 2 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝐸𝐺) = (𝐸𝑇))
4535, 44pm2.61ian 846 1 (𝑁𝑉 → (𝐸𝐺) = (𝐸𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1652  wcel 2155  Vcvv 3350  c0 4079  cop 4340   class class class wbr 4809  ccom 5281  cfv 6068  (class class class)co 6842  cr 10188  1c1 10190   < clt 10328  cn 11274  2c2 11327  9c9 11334  cdc 11740  ndxcnx 16129   sSet csts 16130  Slot cslot 16131  TopSetcts 16222  distcds 16225  -gcsg 17693  MetOpencmopn 20009   toNrmGrp ctng 22662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-ndx 16135  df-slot 16136  df-sets 16139  df-tset 16235  df-ds 16238  df-tng 22668
This theorem is referenced by:  tngbas  22724  tngplusg  22725  tngmulr  22727  tngsca  22728  tngvsca  22729  tngip  22730
  Copyright terms: Public domain W3C validator