![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tnglem | Structured version Visualization version GIF version |
Description: Lemma for tngbas 24676 and similar theorems. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by AV, 31-Oct-2024.) |
Ref | Expression |
---|---|
tngbas.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
tnglem.e | ⊢ 𝐸 = Slot (𝐸‘ndx) |
tnglem.t | ⊢ (𝐸‘ndx) ≠ (TopSet‘ndx) |
tnglem.d | ⊢ (𝐸‘ndx) ≠ (dist‘ndx) |
Ref | Expression |
---|---|
tnglem | ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tnglem.e | . . . . 5 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | tnglem.d | . . . . 5 ⊢ (𝐸‘ndx) ≠ (dist‘ndx) | |
3 | 1, 2 | setsnid 17256 | . . . 4 ⊢ (𝐸‘𝐺) = (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) |
4 | tnglem.t | . . . . 5 ⊢ (𝐸‘ndx) ≠ (TopSet‘ndx) | |
5 | 1, 4 | setsnid 17256 | . . . 4 ⊢ (𝐸‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉)) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
6 | 3, 5 | eqtri 2768 | . . 3 ⊢ (𝐸‘𝐺) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
7 | tngbas.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
8 | eqid 2740 | . . . . 5 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
9 | eqid 2740 | . . . . 5 ⊢ (𝑁 ∘ (-g‘𝐺)) = (𝑁 ∘ (-g‘𝐺)) | |
10 | eqid 2740 | . . . . 5 ⊢ (MetOpen‘(𝑁 ∘ (-g‘𝐺))) = (MetOpen‘(𝑁 ∘ (-g‘𝐺))) | |
11 | 7, 8, 9, 10 | tngval 24673 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉)) |
12 | 11 | fveq2d 6924 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝑇) = (𝐸‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ (-g‘𝐺))〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ (-g‘𝐺)))〉))) |
13 | 6, 12 | eqtr4id 2799 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
14 | 1 | str0 17236 | . . . . 5 ⊢ ∅ = (𝐸‘∅) |
15 | 14 | eqcomi 2749 | . . . 4 ⊢ (𝐸‘∅) = ∅ |
16 | reldmtng 24672 | . . . 4 ⊢ Rel dom toNrmGrp | |
17 | 15, 7, 16 | oveqprc 17239 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝐸‘𝐺) = (𝐸‘𝑇)) |
18 | 17 | adantr 480 | . 2 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝐸‘𝐺) = (𝐸‘𝑇)) |
19 | 13, 18 | pm2.61ian 811 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝐸‘𝐺) = (𝐸‘𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∅c0 4352 〈cop 4654 ∘ ccom 5704 ‘cfv 6573 (class class class)co 7448 sSet csts 17210 Slot cslot 17228 ndxcnx 17240 TopSetcts 17317 distcds 17320 -gcsg 18975 MetOpencmopn 21377 toNrmGrp ctng 24612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-sets 17211 df-slot 17229 df-tng 24618 |
This theorem is referenced by: tngbas 24676 tngplusg 24678 tngmulr 24681 tngsca 24683 tngvsca 24685 tngip 24687 |
Copyright terms: Public domain | W3C validator |