MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngds Structured version   Visualization version   GIF version

Theorem tngds 24668
Description: The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015.) (Proof shortened by AV, 29-Oct-2024.)
Hypotheses
Ref Expression
tngbas.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngds.2 = (-g𝐺)
Assertion
Ref Expression
tngds (𝑁𝑉 → (𝑁 ) = (dist‘𝑇))

Proof of Theorem tngds
StepHypRef Expression
1 dsid 17430 . . . 4 dist = Slot (dist‘ndx)
2 dsndxntsetndx 17437 . . . 4 (dist‘ndx) ≠ (TopSet‘ndx)
31, 2setsnid 17245 . . 3 (dist‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩)) = (dist‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ))⟩))
4 tngds.2 . . . . . 6 = (-g𝐺)
54fvexi 6920 . . . . 5 ∈ V
6 coexg 7951 . . . . 5 ((𝑁𝑉 ∈ V) → (𝑁 ) ∈ V)
75, 6mpan2 691 . . . 4 (𝑁𝑉 → (𝑁 ) ∈ V)
81setsid 17244 . . . 4 ((𝐺 ∈ V ∧ (𝑁 ) ∈ V) → (𝑁 ) = (dist‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩)))
97, 8sylan2 593 . . 3 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝑁 ) = (dist‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩)))
10 tngbas.t . . . . 5 𝑇 = (𝐺 toNrmGrp 𝑁)
11 eqid 2737 . . . . 5 (𝑁 ) = (𝑁 )
12 eqid 2737 . . . . 5 (MetOpen‘(𝑁 )) = (MetOpen‘(𝑁 ))
1310, 4, 11, 12tngval 24652 . . . 4 ((𝐺 ∈ V ∧ 𝑁𝑉) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ))⟩))
1413fveq2d 6910 . . 3 ((𝐺 ∈ V ∧ 𝑁𝑉) → (dist‘𝑇) = (dist‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ))⟩)))
153, 9, 143eqtr4a 2803 . 2 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝑁 ) = (dist‘𝑇))
16 co02 6280 . . . . 5 (𝑁 ∘ ∅) = ∅
171str0 17226 . . . . 5 ∅ = (dist‘∅)
1816, 17eqtri 2765 . . . 4 (𝑁 ∘ ∅) = (dist‘∅)
19 fvprc 6898 . . . . . 6 𝐺 ∈ V → (-g𝐺) = ∅)
204, 19eqtrid 2789 . . . . 5 𝐺 ∈ V → = ∅)
2120coeq2d 5873 . . . 4 𝐺 ∈ V → (𝑁 ) = (𝑁 ∘ ∅))
22 reldmtng 24651 . . . . . . 7 Rel dom toNrmGrp
2322ovprc1 7470 . . . . . 6 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅)
2410, 23eqtrid 2789 . . . . 5 𝐺 ∈ V → 𝑇 = ∅)
2524fveq2d 6910 . . . 4 𝐺 ∈ V → (dist‘𝑇) = (dist‘∅))
2618, 21, 253eqtr4a 2803 . . 3 𝐺 ∈ V → (𝑁 ) = (dist‘𝑇))
2726adantr 480 . 2 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝑁 ) = (dist‘𝑇))
2815, 27pm2.61ian 812 1 (𝑁𝑉 → (𝑁 ) = (dist‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  c0 4333  cop 4632  ccom 5689  cfv 6561  (class class class)co 7431   sSet csts 17200  ndxcnx 17230  TopSetcts 17303  distcds 17306  -gcsg 18953  MetOpencmopn 21354   toNrmGrp ctng 24591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-sets 17201  df-slot 17219  df-ndx 17231  df-tset 17316  df-ds 17319  df-tng 24597
This theorem is referenced by:  tngtset  24670  tngtopn  24671  tngnm  24672  tngngp2  24673  tngngpd  24674  nrmtngdist  24678  tngnrg  24695  cnindmet  25196  tcphds  25265
  Copyright terms: Public domain W3C validator