| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tngds | Structured version Visualization version GIF version | ||
| Description: The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015.) (Proof shortened by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| tngbas.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
| tngds.2 | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| tngds | ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) = (dist‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsid 17356 | . . . 4 ⊢ dist = Slot (dist‘ndx) | |
| 2 | dsndxntsetndx 17363 | . . . 4 ⊢ (dist‘ndx) ≠ (TopSet‘ndx) | |
| 3 | 1, 2 | setsnid 17185 | . . 3 ⊢ (dist‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉)) = (dist‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ − ))〉)) |
| 4 | tngds.2 | . . . . . 6 ⊢ − = (-g‘𝐺) | |
| 5 | 4 | fvexi 6875 | . . . . 5 ⊢ − ∈ V |
| 6 | coexg 7908 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ − ∈ V) → (𝑁 ∘ − ) ∈ V) | |
| 7 | 5, 6 | mpan2 691 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) ∈ V) |
| 8 | 1 | setsid 17184 | . . . 4 ⊢ ((𝐺 ∈ V ∧ (𝑁 ∘ − ) ∈ V) → (𝑁 ∘ − ) = (dist‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉))) |
| 9 | 7, 8 | sylan2 593 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝑁 ∘ − ) = (dist‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉))) |
| 10 | tngbas.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
| 11 | eqid 2730 | . . . . 5 ⊢ (𝑁 ∘ − ) = (𝑁 ∘ − ) | |
| 12 | eqid 2730 | . . . . 5 ⊢ (MetOpen‘(𝑁 ∘ − )) = (MetOpen‘(𝑁 ∘ − )) | |
| 13 | 10, 4, 11, 12 | tngval 24534 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ − ))〉)) |
| 14 | 13 | fveq2d 6865 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (dist‘𝑇) = (dist‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ − ))〉))) |
| 15 | 3, 9, 14 | 3eqtr4a 2791 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝑁 ∘ − ) = (dist‘𝑇)) |
| 16 | co02 6236 | . . . . 5 ⊢ (𝑁 ∘ ∅) = ∅ | |
| 17 | 1 | str0 17166 | . . . . 5 ⊢ ∅ = (dist‘∅) |
| 18 | 16, 17 | eqtri 2753 | . . . 4 ⊢ (𝑁 ∘ ∅) = (dist‘∅) |
| 19 | fvprc 6853 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (-g‘𝐺) = ∅) | |
| 20 | 4, 19 | eqtrid 2777 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → − = ∅) |
| 21 | 20 | coeq2d 5829 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝑁 ∘ − ) = (𝑁 ∘ ∅)) |
| 22 | reldmtng 24533 | . . . . . . 7 ⊢ Rel dom toNrmGrp | |
| 23 | 22 | ovprc1 7429 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅) |
| 24 | 10, 23 | eqtrid 2777 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → 𝑇 = ∅) |
| 25 | 24 | fveq2d 6865 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (dist‘𝑇) = (dist‘∅)) |
| 26 | 18, 21, 25 | 3eqtr4a 2791 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝑁 ∘ − ) = (dist‘𝑇)) |
| 27 | 26 | adantr 480 | . 2 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝑁 ∘ − ) = (dist‘𝑇)) |
| 28 | 15, 27 | pm2.61ian 811 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) = (dist‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 〈cop 4598 ∘ ccom 5645 ‘cfv 6514 (class class class)co 7390 sSet csts 17140 ndxcnx 17170 TopSetcts 17233 distcds 17236 -gcsg 18874 MetOpencmopn 21261 toNrmGrp ctng 24473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-sets 17141 df-slot 17159 df-ndx 17171 df-tset 17246 df-ds 17249 df-tng 24479 |
| This theorem is referenced by: tngtset 24544 tngtopn 24545 tngnm 24546 tngngp2 24547 tngngpd 24548 nrmtngdist 24552 tngnrg 24569 cnindmet 25069 tcphds 25138 |
| Copyright terms: Public domain | W3C validator |