| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tngds | Structured version Visualization version GIF version | ||
| Description: The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015.) (Proof shortened by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| tngbas.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
| tngds.2 | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| tngds | ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) = (dist‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsid 17325 | . . . 4 ⊢ dist = Slot (dist‘ndx) | |
| 2 | dsndxntsetndx 17332 | . . . 4 ⊢ (dist‘ndx) ≠ (TopSet‘ndx) | |
| 3 | 1, 2 | setsnid 17154 | . . 3 ⊢ (dist‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉)) = (dist‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ − ))〉)) |
| 4 | tngds.2 | . . . . . 6 ⊢ − = (-g‘𝐺) | |
| 5 | 4 | fvexi 6854 | . . . . 5 ⊢ − ∈ V |
| 6 | coexg 7885 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ − ∈ V) → (𝑁 ∘ − ) ∈ V) | |
| 7 | 5, 6 | mpan2 691 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) ∈ V) |
| 8 | 1 | setsid 17153 | . . . 4 ⊢ ((𝐺 ∈ V ∧ (𝑁 ∘ − ) ∈ V) → (𝑁 ∘ − ) = (dist‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉))) |
| 9 | 7, 8 | sylan2 593 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝑁 ∘ − ) = (dist‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉))) |
| 10 | tngbas.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
| 11 | eqid 2729 | . . . . 5 ⊢ (𝑁 ∘ − ) = (𝑁 ∘ − ) | |
| 12 | eqid 2729 | . . . . 5 ⊢ (MetOpen‘(𝑁 ∘ − )) = (MetOpen‘(𝑁 ∘ − )) | |
| 13 | 10, 4, 11, 12 | tngval 24503 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ − ))〉)) |
| 14 | 13 | fveq2d 6844 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (dist‘𝑇) = (dist‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ − ))〉))) |
| 15 | 3, 9, 14 | 3eqtr4a 2790 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝑁 ∘ − ) = (dist‘𝑇)) |
| 16 | co02 6221 | . . . . 5 ⊢ (𝑁 ∘ ∅) = ∅ | |
| 17 | 1 | str0 17135 | . . . . 5 ⊢ ∅ = (dist‘∅) |
| 18 | 16, 17 | eqtri 2752 | . . . 4 ⊢ (𝑁 ∘ ∅) = (dist‘∅) |
| 19 | fvprc 6832 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (-g‘𝐺) = ∅) | |
| 20 | 4, 19 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → − = ∅) |
| 21 | 20 | coeq2d 5816 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝑁 ∘ − ) = (𝑁 ∘ ∅)) |
| 22 | reldmtng 24502 | . . . . . . 7 ⊢ Rel dom toNrmGrp | |
| 23 | 22 | ovprc1 7408 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅) |
| 24 | 10, 23 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → 𝑇 = ∅) |
| 25 | 24 | fveq2d 6844 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (dist‘𝑇) = (dist‘∅)) |
| 26 | 18, 21, 25 | 3eqtr4a 2790 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝑁 ∘ − ) = (dist‘𝑇)) |
| 27 | 26 | adantr 480 | . 2 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝑁 ∘ − ) = (dist‘𝑇)) |
| 28 | 15, 27 | pm2.61ian 811 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) = (dist‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 〈cop 4591 ∘ ccom 5635 ‘cfv 6499 (class class class)co 7369 sSet csts 17109 ndxcnx 17139 TopSetcts 17202 distcds 17205 -gcsg 18843 MetOpencmopn 21230 toNrmGrp ctng 24442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-sets 17110 df-slot 17128 df-ndx 17140 df-tset 17215 df-ds 17218 df-tng 24448 |
| This theorem is referenced by: tngtset 24513 tngtopn 24514 tngnm 24515 tngngp2 24516 tngngpd 24517 nrmtngdist 24521 tngnrg 24538 cnindmet 25038 tcphds 25107 |
| Copyright terms: Public domain | W3C validator |