MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngds Structured version   Visualization version   GIF version

Theorem tngds 24536
Description: The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015.) (Proof shortened by AV, 29-Oct-2024.)
Hypotheses
Ref Expression
tngbas.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngds.2 = (-g𝐺)
Assertion
Ref Expression
tngds (𝑁𝑉 → (𝑁 ) = (dist‘𝑇))

Proof of Theorem tngds
StepHypRef Expression
1 dsid 17349 . . . 4 dist = Slot (dist‘ndx)
2 dsndxntsetndx 17356 . . . 4 (dist‘ndx) ≠ (TopSet‘ndx)
31, 2setsnid 17178 . . 3 (dist‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩)) = (dist‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ))⟩))
4 tngds.2 . . . . . 6 = (-g𝐺)
54fvexi 6872 . . . . 5 ∈ V
6 coexg 7905 . . . . 5 ((𝑁𝑉 ∈ V) → (𝑁 ) ∈ V)
75, 6mpan2 691 . . . 4 (𝑁𝑉 → (𝑁 ) ∈ V)
81setsid 17177 . . . 4 ((𝐺 ∈ V ∧ (𝑁 ) ∈ V) → (𝑁 ) = (dist‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩)))
97, 8sylan2 593 . . 3 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝑁 ) = (dist‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩)))
10 tngbas.t . . . . 5 𝑇 = (𝐺 toNrmGrp 𝑁)
11 eqid 2729 . . . . 5 (𝑁 ) = (𝑁 )
12 eqid 2729 . . . . 5 (MetOpen‘(𝑁 )) = (MetOpen‘(𝑁 ))
1310, 4, 11, 12tngval 24527 . . . 4 ((𝐺 ∈ V ∧ 𝑁𝑉) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ))⟩))
1413fveq2d 6862 . . 3 ((𝐺 ∈ V ∧ 𝑁𝑉) → (dist‘𝑇) = (dist‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ))⟩)))
153, 9, 143eqtr4a 2790 . 2 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝑁 ) = (dist‘𝑇))
16 co02 6233 . . . . 5 (𝑁 ∘ ∅) = ∅
171str0 17159 . . . . 5 ∅ = (dist‘∅)
1816, 17eqtri 2752 . . . 4 (𝑁 ∘ ∅) = (dist‘∅)
19 fvprc 6850 . . . . . 6 𝐺 ∈ V → (-g𝐺) = ∅)
204, 19eqtrid 2776 . . . . 5 𝐺 ∈ V → = ∅)
2120coeq2d 5826 . . . 4 𝐺 ∈ V → (𝑁 ) = (𝑁 ∘ ∅))
22 reldmtng 24526 . . . . . . 7 Rel dom toNrmGrp
2322ovprc1 7426 . . . . . 6 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅)
2410, 23eqtrid 2776 . . . . 5 𝐺 ∈ V → 𝑇 = ∅)
2524fveq2d 6862 . . . 4 𝐺 ∈ V → (dist‘𝑇) = (dist‘∅))
2618, 21, 253eqtr4a 2790 . . 3 𝐺 ∈ V → (𝑁 ) = (dist‘𝑇))
2726adantr 480 . 2 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝑁 ) = (dist‘𝑇))
2815, 27pm2.61ian 811 1 (𝑁𝑉 → (𝑁 ) = (dist‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  c0 4296  cop 4595  ccom 5642  cfv 6511  (class class class)co 7387   sSet csts 17133  ndxcnx 17163  TopSetcts 17226  distcds 17229  -gcsg 18867  MetOpencmopn 21254   toNrmGrp ctng 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-sets 17134  df-slot 17152  df-ndx 17164  df-tset 17239  df-ds 17242  df-tng 24472
This theorem is referenced by:  tngtset  24537  tngtopn  24538  tngnm  24539  tngngp2  24540  tngngpd  24541  nrmtngdist  24545  tngnrg  24562  cnindmet  25062  tcphds  25131
  Copyright terms: Public domain W3C validator