MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngds Structured version   Visualization version   GIF version

Theorem tngds 24093
Description: The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015.) (Proof shortened by AV, 29-Oct-2024.)
Hypotheses
Ref Expression
tngbas.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngds.2 = (-g𝐺)
Assertion
Ref Expression
tngds (𝑁𝑉 → (𝑁 ) = (dist‘𝑇))

Proof of Theorem tngds
StepHypRef Expression
1 dsid 17313 . . . 4 dist = Slot (dist‘ndx)
2 dsndxntsetndx 17320 . . . 4 (dist‘ndx) ≠ (TopSet‘ndx)
31, 2setsnid 17124 . . 3 (dist‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩)) = (dist‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ))⟩))
4 tngds.2 . . . . . 6 = (-g𝐺)
54fvexi 6892 . . . . 5 ∈ V
6 coexg 7902 . . . . 5 ((𝑁𝑉 ∈ V) → (𝑁 ) ∈ V)
75, 6mpan2 689 . . . 4 (𝑁𝑉 → (𝑁 ) ∈ V)
81setsid 17123 . . . 4 ((𝐺 ∈ V ∧ (𝑁 ) ∈ V) → (𝑁 ) = (dist‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩)))
97, 8sylan2 593 . . 3 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝑁 ) = (dist‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩)))
10 tngbas.t . . . . 5 𝑇 = (𝐺 toNrmGrp 𝑁)
11 eqid 2731 . . . . 5 (𝑁 ) = (𝑁 )
12 eqid 2731 . . . . 5 (MetOpen‘(𝑁 )) = (MetOpen‘(𝑁 ))
1310, 4, 11, 12tngval 24077 . . . 4 ((𝐺 ∈ V ∧ 𝑁𝑉) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ))⟩))
1413fveq2d 6882 . . 3 ((𝐺 ∈ V ∧ 𝑁𝑉) → (dist‘𝑇) = (dist‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ))⟩)))
153, 9, 143eqtr4a 2797 . 2 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝑁 ) = (dist‘𝑇))
16 co02 6248 . . . . 5 (𝑁 ∘ ∅) = ∅
171str0 17104 . . . . 5 ∅ = (dist‘∅)
1816, 17eqtri 2759 . . . 4 (𝑁 ∘ ∅) = (dist‘∅)
19 fvprc 6870 . . . . . 6 𝐺 ∈ V → (-g𝐺) = ∅)
204, 19eqtrid 2783 . . . . 5 𝐺 ∈ V → = ∅)
2120coeq2d 5854 . . . 4 𝐺 ∈ V → (𝑁 ) = (𝑁 ∘ ∅))
22 reldmtng 24076 . . . . . . 7 Rel dom toNrmGrp
2322ovprc1 7432 . . . . . 6 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅)
2410, 23eqtrid 2783 . . . . 5 𝐺 ∈ V → 𝑇 = ∅)
2524fveq2d 6882 . . . 4 𝐺 ∈ V → (dist‘𝑇) = (dist‘∅))
2618, 21, 253eqtr4a 2797 . . 3 𝐺 ∈ V → (𝑁 ) = (dist‘𝑇))
2726adantr 481 . 2 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝑁 ) = (dist‘𝑇))
2815, 27pm2.61ian 810 1 (𝑁𝑉 → (𝑁 ) = (dist‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3473  c0 4318  cop 4628  ccom 5673  cfv 6532  (class class class)co 7393   sSet csts 17078  ndxcnx 17108  TopSetcts 17185  distcds 17188  -gcsg 18796  MetOpencmopn 20868   toNrmGrp ctng 24016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-sets 17079  df-slot 17097  df-ndx 17109  df-tset 17198  df-ds 17201  df-tng 24022
This theorem is referenced by:  tngtset  24095  tngtopn  24096  tngnm  24097  tngngp2  24098  tngngpd  24099  nrmtngdist  24103  tngnrg  24120  cnindmet  24608  tcphds  24677
  Copyright terms: Public domain W3C validator