| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tngds | Structured version Visualization version GIF version | ||
| Description: The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015.) (Proof shortened by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| tngbas.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
| tngds.2 | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| tngds | ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) = (dist‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsid 17290 | . . . 4 ⊢ dist = Slot (dist‘ndx) | |
| 2 | dsndxntsetndx 17297 | . . . 4 ⊢ (dist‘ndx) ≠ (TopSet‘ndx) | |
| 3 | 1, 2 | setsnid 17119 | . . 3 ⊢ (dist‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉)) = (dist‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ − ))〉)) |
| 4 | tngds.2 | . . . . . 6 ⊢ − = (-g‘𝐺) | |
| 5 | 4 | fvexi 6836 | . . . . 5 ⊢ − ∈ V |
| 6 | coexg 7862 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ − ∈ V) → (𝑁 ∘ − ) ∈ V) | |
| 7 | 5, 6 | mpan2 691 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) ∈ V) |
| 8 | 1 | setsid 17118 | . . . 4 ⊢ ((𝐺 ∈ V ∧ (𝑁 ∘ − ) ∈ V) → (𝑁 ∘ − ) = (dist‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉))) |
| 9 | 7, 8 | sylan2 593 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝑁 ∘ − ) = (dist‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉))) |
| 10 | tngbas.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
| 11 | eqid 2729 | . . . . 5 ⊢ (𝑁 ∘ − ) = (𝑁 ∘ − ) | |
| 12 | eqid 2729 | . . . . 5 ⊢ (MetOpen‘(𝑁 ∘ − )) = (MetOpen‘(𝑁 ∘ − )) | |
| 13 | 10, 4, 11, 12 | tngval 24525 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ − ))〉)) |
| 14 | 13 | fveq2d 6826 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (dist‘𝑇) = (dist‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ − ))〉))) |
| 15 | 3, 9, 14 | 3eqtr4a 2790 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝑁 ∘ − ) = (dist‘𝑇)) |
| 16 | co02 6209 | . . . . 5 ⊢ (𝑁 ∘ ∅) = ∅ | |
| 17 | 1 | str0 17100 | . . . . 5 ⊢ ∅ = (dist‘∅) |
| 18 | 16, 17 | eqtri 2752 | . . . 4 ⊢ (𝑁 ∘ ∅) = (dist‘∅) |
| 19 | fvprc 6814 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (-g‘𝐺) = ∅) | |
| 20 | 4, 19 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → − = ∅) |
| 21 | 20 | coeq2d 5805 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝑁 ∘ − ) = (𝑁 ∘ ∅)) |
| 22 | reldmtng 24524 | . . . . . . 7 ⊢ Rel dom toNrmGrp | |
| 23 | 22 | ovprc1 7388 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅) |
| 24 | 10, 23 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → 𝑇 = ∅) |
| 25 | 24 | fveq2d 6826 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (dist‘𝑇) = (dist‘∅)) |
| 26 | 18, 21, 25 | 3eqtr4a 2790 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝑁 ∘ − ) = (dist‘𝑇)) |
| 27 | 26 | adantr 480 | . 2 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝑁 ∘ − ) = (dist‘𝑇)) |
| 28 | 15, 27 | pm2.61ian 811 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) = (dist‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∅c0 4284 〈cop 4583 ∘ ccom 5623 ‘cfv 6482 (class class class)co 7349 sSet csts 17074 ndxcnx 17104 TopSetcts 17167 distcds 17170 -gcsg 18814 MetOpencmopn 21251 toNrmGrp ctng 24464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-sets 17075 df-slot 17093 df-ndx 17105 df-tset 17180 df-ds 17183 df-tng 24470 |
| This theorem is referenced by: tngtset 24535 tngtopn 24536 tngnm 24537 tngngp2 24538 tngngpd 24539 nrmtngdist 24543 tngnrg 24560 cnindmet 25060 tcphds 25129 |
| Copyright terms: Public domain | W3C validator |