| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tngds | Structured version Visualization version GIF version | ||
| Description: The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015.) (Proof shortened by AV, 29-Oct-2024.) |
| Ref | Expression |
|---|---|
| tngbas.t | ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
| tngds.2 | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| tngds | ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) = (dist‘𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsid 17290 | . . . 4 ⊢ dist = Slot (dist‘ndx) | |
| 2 | dsndxntsetndx 17297 | . . . 4 ⊢ (dist‘ndx) ≠ (TopSet‘ndx) | |
| 3 | 1, 2 | setsnid 17119 | . . 3 ⊢ (dist‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉)) = (dist‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ − ))〉)) |
| 4 | tngds.2 | . . . . . 6 ⊢ − = (-g‘𝐺) | |
| 5 | 4 | fvexi 6836 | . . . . 5 ⊢ − ∈ V |
| 6 | coexg 7859 | . . . . 5 ⊢ ((𝑁 ∈ 𝑉 ∧ − ∈ V) → (𝑁 ∘ − ) ∈ V) | |
| 7 | 5, 6 | mpan2 691 | . . . 4 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) ∈ V) |
| 8 | 1 | setsid 17118 | . . . 4 ⊢ ((𝐺 ∈ V ∧ (𝑁 ∘ − ) ∈ V) → (𝑁 ∘ − ) = (dist‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉))) |
| 9 | 7, 8 | sylan2 593 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝑁 ∘ − ) = (dist‘(𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉))) |
| 10 | tngbas.t | . . . . 5 ⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) | |
| 11 | eqid 2731 | . . . . 5 ⊢ (𝑁 ∘ − ) = (𝑁 ∘ − ) | |
| 12 | eqid 2731 | . . . . 5 ⊢ (MetOpen‘(𝑁 ∘ − )) = (MetOpen‘(𝑁 ∘ − )) | |
| 13 | 10, 4, 11, 12 | tngval 24554 | . . . 4 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → 𝑇 = ((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ − ))〉)) |
| 14 | 13 | fveq2d 6826 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (dist‘𝑇) = (dist‘((𝐺 sSet 〈(dist‘ndx), (𝑁 ∘ − )〉) sSet 〈(TopSet‘ndx), (MetOpen‘(𝑁 ∘ − ))〉))) |
| 15 | 3, 9, 14 | 3eqtr4a 2792 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝑁 ∘ − ) = (dist‘𝑇)) |
| 16 | co02 6208 | . . . . 5 ⊢ (𝑁 ∘ ∅) = ∅ | |
| 17 | 1 | str0 17100 | . . . . 5 ⊢ ∅ = (dist‘∅) |
| 18 | 16, 17 | eqtri 2754 | . . . 4 ⊢ (𝑁 ∘ ∅) = (dist‘∅) |
| 19 | fvprc 6814 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (-g‘𝐺) = ∅) | |
| 20 | 4, 19 | eqtrid 2778 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → − = ∅) |
| 21 | 20 | coeq2d 5801 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (𝑁 ∘ − ) = (𝑁 ∘ ∅)) |
| 22 | reldmtng 24553 | . . . . . . 7 ⊢ Rel dom toNrmGrp | |
| 23 | 22 | ovprc1 7385 | . . . . . 6 ⊢ (¬ 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅) |
| 24 | 10, 23 | eqtrid 2778 | . . . . 5 ⊢ (¬ 𝐺 ∈ V → 𝑇 = ∅) |
| 25 | 24 | fveq2d 6826 | . . . 4 ⊢ (¬ 𝐺 ∈ V → (dist‘𝑇) = (dist‘∅)) |
| 26 | 18, 21, 25 | 3eqtr4a 2792 | . . 3 ⊢ (¬ 𝐺 ∈ V → (𝑁 ∘ − ) = (dist‘𝑇)) |
| 27 | 26 | adantr 480 | . 2 ⊢ ((¬ 𝐺 ∈ V ∧ 𝑁 ∈ 𝑉) → (𝑁 ∘ − ) = (dist‘𝑇)) |
| 28 | 15, 27 | pm2.61ian 811 | 1 ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∘ − ) = (dist‘𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 〈cop 4579 ∘ ccom 5618 ‘cfv 6481 (class class class)co 7346 sSet csts 17074 ndxcnx 17104 TopSetcts 17167 distcds 17170 -gcsg 18848 MetOpencmopn 21281 toNrmGrp ctng 24493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-sets 17075 df-slot 17093 df-ndx 17105 df-tset 17180 df-ds 17183 df-tng 24499 |
| This theorem is referenced by: tngtset 24564 tngtopn 24565 tngnm 24566 tngngp2 24567 tngngpd 24568 nrmtngdist 24572 tngnrg 24589 cnindmet 25089 tcphds 25158 |
| Copyright terms: Public domain | W3C validator |