MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tngds Structured version   Visualization version   GIF version

Theorem tngds 24534
Description: The metric function of a structure augmented with a norm. (Contributed by Mario Carneiro, 3-Oct-2015.) (Proof shortened by AV, 29-Oct-2024.)
Hypotheses
Ref Expression
tngbas.t 𝑇 = (𝐺 toNrmGrp 𝑁)
tngds.2 = (-g𝐺)
Assertion
Ref Expression
tngds (𝑁𝑉 → (𝑁 ) = (dist‘𝑇))

Proof of Theorem tngds
StepHypRef Expression
1 dsid 17290 . . . 4 dist = Slot (dist‘ndx)
2 dsndxntsetndx 17297 . . . 4 (dist‘ndx) ≠ (TopSet‘ndx)
31, 2setsnid 17119 . . 3 (dist‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩)) = (dist‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ))⟩))
4 tngds.2 . . . . . 6 = (-g𝐺)
54fvexi 6836 . . . . 5 ∈ V
6 coexg 7862 . . . . 5 ((𝑁𝑉 ∈ V) → (𝑁 ) ∈ V)
75, 6mpan2 691 . . . 4 (𝑁𝑉 → (𝑁 ) ∈ V)
81setsid 17118 . . . 4 ((𝐺 ∈ V ∧ (𝑁 ) ∈ V) → (𝑁 ) = (dist‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩)))
97, 8sylan2 593 . . 3 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝑁 ) = (dist‘(𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩)))
10 tngbas.t . . . . 5 𝑇 = (𝐺 toNrmGrp 𝑁)
11 eqid 2729 . . . . 5 (𝑁 ) = (𝑁 )
12 eqid 2729 . . . . 5 (MetOpen‘(𝑁 )) = (MetOpen‘(𝑁 ))
1310, 4, 11, 12tngval 24525 . . . 4 ((𝐺 ∈ V ∧ 𝑁𝑉) → 𝑇 = ((𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ))⟩))
1413fveq2d 6826 . . 3 ((𝐺 ∈ V ∧ 𝑁𝑉) → (dist‘𝑇) = (dist‘((𝐺 sSet ⟨(dist‘ndx), (𝑁 )⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑁 ))⟩)))
153, 9, 143eqtr4a 2790 . 2 ((𝐺 ∈ V ∧ 𝑁𝑉) → (𝑁 ) = (dist‘𝑇))
16 co02 6209 . . . . 5 (𝑁 ∘ ∅) = ∅
171str0 17100 . . . . 5 ∅ = (dist‘∅)
1816, 17eqtri 2752 . . . 4 (𝑁 ∘ ∅) = (dist‘∅)
19 fvprc 6814 . . . . . 6 𝐺 ∈ V → (-g𝐺) = ∅)
204, 19eqtrid 2776 . . . . 5 𝐺 ∈ V → = ∅)
2120coeq2d 5805 . . . 4 𝐺 ∈ V → (𝑁 ) = (𝑁 ∘ ∅))
22 reldmtng 24524 . . . . . . 7 Rel dom toNrmGrp
2322ovprc1 7388 . . . . . 6 𝐺 ∈ V → (𝐺 toNrmGrp 𝑁) = ∅)
2410, 23eqtrid 2776 . . . . 5 𝐺 ∈ V → 𝑇 = ∅)
2524fveq2d 6826 . . . 4 𝐺 ∈ V → (dist‘𝑇) = (dist‘∅))
2618, 21, 253eqtr4a 2790 . . 3 𝐺 ∈ V → (𝑁 ) = (dist‘𝑇))
2726adantr 480 . 2 ((¬ 𝐺 ∈ V ∧ 𝑁𝑉) → (𝑁 ) = (dist‘𝑇))
2815, 27pm2.61ian 811 1 (𝑁𝑉 → (𝑁 ) = (dist‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  c0 4284  cop 4583  ccom 5623  cfv 6482  (class class class)co 7349   sSet csts 17074  ndxcnx 17104  TopSetcts 17167  distcds 17170  -gcsg 18814  MetOpencmopn 21251   toNrmGrp ctng 24464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-sets 17075  df-slot 17093  df-ndx 17105  df-tset 17180  df-ds 17183  df-tng 24470
This theorem is referenced by:  tngtset  24535  tngtopn  24536  tngnm  24537  tngngp2  24538  tngngpd  24539  nrmtngdist  24543  tngnrg  24560  cnindmet  25060  tcphds  25129
  Copyright terms: Public domain W3C validator