MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngppropd Structured version   Visualization version   GIF version

Theorem ngppropd 24594
Description: Property deduction for a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
ngppropd.1 (𝜑𝐵 = (Base‘𝐾))
ngppropd.2 (𝜑𝐵 = (Base‘𝐿))
ngppropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
ngppropd.4 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
ngppropd.5 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Assertion
Ref Expression
ngppropd (𝜑 → (𝐾 ∈ NrmGrp ↔ 𝐿 ∈ NrmGrp))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ngppropd
StepHypRef Expression
1 ngppropd.1 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐾))
2 ngppropd.2 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐿))
3 ngppropd.4 . . . . . . . 8 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
4 ngppropd.5 . . . . . . . 8 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
51, 2, 3, 4mspropd 24429 . . . . . . 7 (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp))
65adantr 480 . . . . . 6 ((𝜑𝐾 ∈ Grp) → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp))
71adantr 480 . . . . . . . . 9 ((𝜑𝐾 ∈ Grp) → 𝐵 = (Base‘𝐾))
82adantr 480 . . . . . . . . 9 ((𝜑𝐾 ∈ Grp) → 𝐵 = (Base‘𝐿))
9 simpr 484 . . . . . . . . 9 ((𝜑𝐾 ∈ Grp) → 𝐾 ∈ Grp)
10 ngppropd.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
1110adantlr 715 . . . . . . . . 9 (((𝜑𝐾 ∈ Grp) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
123adantr 480 . . . . . . . . 9 ((𝜑𝐾 ∈ Grp) → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
137, 8, 9, 11, 12nmpropd2 24552 . . . . . . . 8 ((𝜑𝐾 ∈ Grp) → (norm‘𝐾) = (norm‘𝐿))
147, 8, 9, 11grpsubpropd2 19033 . . . . . . . 8 ((𝜑𝐾 ∈ Grp) → (-g𝐾) = (-g𝐿))
1513, 14coeq12d 5855 . . . . . . 7 ((𝜑𝐾 ∈ Grp) → ((norm‘𝐾) ∘ (-g𝐾)) = ((norm‘𝐿) ∘ (-g𝐿)))
161sqxpeqd 5697 . . . . . . . . . 10 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾)))
1716reseq2d 5977 . . . . . . . . 9 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
182sqxpeqd 5697 . . . . . . . . . 10 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿)))
1918reseq2d 5977 . . . . . . . . 9 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
203, 17, 193eqtr3d 2777 . . . . . . . 8 (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
2120adantr 480 . . . . . . 7 ((𝜑𝐾 ∈ Grp) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
2215, 21eqeq12d 2750 . . . . . 6 ((𝜑𝐾 ∈ Grp) → (((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↔ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))
236, 22anbi12d 632 . . . . 5 ((𝜑𝐾 ∈ Grp) → ((𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↔ (𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))))
2423pm5.32da 579 . . . 4 (𝜑 → ((𝐾 ∈ Grp ∧ (𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) ↔ (𝐾 ∈ Grp ∧ (𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))))
251, 2, 10grppropd 18938 . . . . 5 (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
2625anbi1d 631 . . . 4 (𝜑 → ((𝐾 ∈ Grp ∧ (𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))) ↔ (𝐿 ∈ Grp ∧ (𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))))
2724, 26bitrd 279 . . 3 (𝜑 → ((𝐾 ∈ Grp ∧ (𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) ↔ (𝐿 ∈ Grp ∧ (𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))))
28 3anass 1094 . . 3 ((𝐾 ∈ Grp ∧ 𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↔ (𝐾 ∈ Grp ∧ (𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))))
29 3anass 1094 . . 3 ((𝐿 ∈ Grp ∧ 𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) ↔ (𝐿 ∈ Grp ∧ (𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))))
3027, 28, 293bitr4g 314 . 2 (𝜑 → ((𝐾 ∈ Grp ∧ 𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↔ (𝐿 ∈ Grp ∧ 𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))))
31 eqid 2734 . . 3 (norm‘𝐾) = (norm‘𝐾)
32 eqid 2734 . . 3 (-g𝐾) = (-g𝐾)
33 eqid 2734 . . 3 (dist‘𝐾) = (dist‘𝐾)
34 eqid 2734 . . 3 (Base‘𝐾) = (Base‘𝐾)
35 eqid 2734 . . 3 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
3631, 32, 33, 34, 35isngp2 24554 . 2 (𝐾 ∈ NrmGrp ↔ (𝐾 ∈ Grp ∧ 𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))
37 eqid 2734 . . 3 (norm‘𝐿) = (norm‘𝐿)
38 eqid 2734 . . 3 (-g𝐿) = (-g𝐿)
39 eqid 2734 . . 3 (dist‘𝐿) = (dist‘𝐿)
40 eqid 2734 . . 3 (Base‘𝐿) = (Base‘𝐿)
41 eqid 2734 . . 3 ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))
4237, 38, 39, 40, 41isngp2 24554 . 2 (𝐿 ∈ NrmGrp ↔ (𝐿 ∈ Grp ∧ 𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))
4330, 36, 423bitr4g 314 1 (𝜑 → (𝐾 ∈ NrmGrp ↔ 𝐿 ∈ NrmGrp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107   × cxp 5663  cres 5667  ccom 5669  cfv 6541  (class class class)co 7413  Basecbs 17229  +gcplusg 17273  distcds 17282  TopOpenctopn 17437  Grpcgrp 18920  -gcsg 18922  MetSpcms 24273  normcnm 24533  NrmGrpcngp 24534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-n0 12510  df-z 12597  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-0g 17457  df-topgen 17459  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-grp 18923  df-minusg 18924  df-sbg 18925  df-psmet 21318  df-xmet 21319  df-met 21320  df-bl 21321  df-mopn 21322  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-xms 24275  df-ms 24276  df-nm 24539  df-ngp 24540
This theorem is referenced by:  sranlm  24641
  Copyright terms: Public domain W3C validator