MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngppropd Structured version   Visualization version   GIF version

Theorem ngppropd 24525
Description: Property deduction for a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
ngppropd.1 (𝜑𝐵 = (Base‘𝐾))
ngppropd.2 (𝜑𝐵 = (Base‘𝐿))
ngppropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
ngppropd.4 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
ngppropd.5 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Assertion
Ref Expression
ngppropd (𝜑 → (𝐾 ∈ NrmGrp ↔ 𝐿 ∈ NrmGrp))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ngppropd
StepHypRef Expression
1 ngppropd.1 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐾))
2 ngppropd.2 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐿))
3 ngppropd.4 . . . . . . . 8 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
4 ngppropd.5 . . . . . . . 8 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
51, 2, 3, 4mspropd 24362 . . . . . . 7 (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp))
65adantr 480 . . . . . 6 ((𝜑𝐾 ∈ Grp) → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp))
71adantr 480 . . . . . . . . 9 ((𝜑𝐾 ∈ Grp) → 𝐵 = (Base‘𝐾))
82adantr 480 . . . . . . . . 9 ((𝜑𝐾 ∈ Grp) → 𝐵 = (Base‘𝐿))
9 simpr 484 . . . . . . . . 9 ((𝜑𝐾 ∈ Grp) → 𝐾 ∈ Grp)
10 ngppropd.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
1110adantlr 715 . . . . . . . . 9 (((𝜑𝐾 ∈ Grp) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
123adantr 480 . . . . . . . . 9 ((𝜑𝐾 ∈ Grp) → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
137, 8, 9, 11, 12nmpropd2 24483 . . . . . . . 8 ((𝜑𝐾 ∈ Grp) → (norm‘𝐾) = (norm‘𝐿))
147, 8, 9, 11grpsubpropd2 18978 . . . . . . . 8 ((𝜑𝐾 ∈ Grp) → (-g𝐾) = (-g𝐿))
1513, 14coeq12d 5828 . . . . . . 7 ((𝜑𝐾 ∈ Grp) → ((norm‘𝐾) ∘ (-g𝐾)) = ((norm‘𝐿) ∘ (-g𝐿)))
161sqxpeqd 5670 . . . . . . . . . 10 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾)))
1716reseq2d 5950 . . . . . . . . 9 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
182sqxpeqd 5670 . . . . . . . . . 10 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿)))
1918reseq2d 5950 . . . . . . . . 9 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
203, 17, 193eqtr3d 2772 . . . . . . . 8 (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
2120adantr 480 . . . . . . 7 ((𝜑𝐾 ∈ Grp) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
2215, 21eqeq12d 2745 . . . . . 6 ((𝜑𝐾 ∈ Grp) → (((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↔ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))
236, 22anbi12d 632 . . . . 5 ((𝜑𝐾 ∈ Grp) → ((𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↔ (𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))))
2423pm5.32da 579 . . . 4 (𝜑 → ((𝐾 ∈ Grp ∧ (𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) ↔ (𝐾 ∈ Grp ∧ (𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))))
251, 2, 10grppropd 18883 . . . . 5 (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
2625anbi1d 631 . . . 4 (𝜑 → ((𝐾 ∈ Grp ∧ (𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))) ↔ (𝐿 ∈ Grp ∧ (𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))))
2724, 26bitrd 279 . . 3 (𝜑 → ((𝐾 ∈ Grp ∧ (𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) ↔ (𝐿 ∈ Grp ∧ (𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))))
28 3anass 1094 . . 3 ((𝐾 ∈ Grp ∧ 𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↔ (𝐾 ∈ Grp ∧ (𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))))
29 3anass 1094 . . 3 ((𝐿 ∈ Grp ∧ 𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) ↔ (𝐿 ∈ Grp ∧ (𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))))
3027, 28, 293bitr4g 314 . 2 (𝜑 → ((𝐾 ∈ Grp ∧ 𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↔ (𝐿 ∈ Grp ∧ 𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))))
31 eqid 2729 . . 3 (norm‘𝐾) = (norm‘𝐾)
32 eqid 2729 . . 3 (-g𝐾) = (-g𝐾)
33 eqid 2729 . . 3 (dist‘𝐾) = (dist‘𝐾)
34 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
35 eqid 2729 . . 3 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
3631, 32, 33, 34, 35isngp2 24485 . 2 (𝐾 ∈ NrmGrp ↔ (𝐾 ∈ Grp ∧ 𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))
37 eqid 2729 . . 3 (norm‘𝐿) = (norm‘𝐿)
38 eqid 2729 . . 3 (-g𝐿) = (-g𝐿)
39 eqid 2729 . . 3 (dist‘𝐿) = (dist‘𝐿)
40 eqid 2729 . . 3 (Base‘𝐿) = (Base‘𝐿)
41 eqid 2729 . . 3 ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))
4237, 38, 39, 40, 41isngp2 24485 . 2 (𝐿 ∈ NrmGrp ↔ (𝐿 ∈ Grp ∧ 𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))
4330, 36, 423bitr4g 314 1 (𝜑 → (𝐾 ∈ NrmGrp ↔ 𝐿 ∈ NrmGrp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   × cxp 5636  cres 5640  ccom 5642  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  distcds 17229  TopOpenctopn 17384  Grpcgrp 18865  -gcsg 18867  MetSpcms 24206  normcnm 24464  NrmGrpcngp 24465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-0g 17404  df-topgen 17406  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-xms 24208  df-ms 24209  df-nm 24470  df-ngp 24471
This theorem is referenced by:  sranlm  24572
  Copyright terms: Public domain W3C validator