MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngppropd Structured version   Visualization version   GIF version

Theorem ngppropd 24675
Description: Property deduction for a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
ngppropd.1 (𝜑𝐵 = (Base‘𝐾))
ngppropd.2 (𝜑𝐵 = (Base‘𝐿))
ngppropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
ngppropd.4 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
ngppropd.5 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Assertion
Ref Expression
ngppropd (𝜑 → (𝐾 ∈ NrmGrp ↔ 𝐿 ∈ NrmGrp))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ngppropd
StepHypRef Expression
1 ngppropd.1 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐾))
2 ngppropd.2 . . . . . . . 8 (𝜑𝐵 = (Base‘𝐿))
3 ngppropd.4 . . . . . . . 8 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
4 ngppropd.5 . . . . . . . 8 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
51, 2, 3, 4mspropd 24509 . . . . . . 7 (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp))
65adantr 480 . . . . . 6 ((𝜑𝐾 ∈ Grp) → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp))
71adantr 480 . . . . . . . . 9 ((𝜑𝐾 ∈ Grp) → 𝐵 = (Base‘𝐾))
82adantr 480 . . . . . . . . 9 ((𝜑𝐾 ∈ Grp) → 𝐵 = (Base‘𝐿))
9 simpr 484 . . . . . . . . 9 ((𝜑𝐾 ∈ Grp) → 𝐾 ∈ Grp)
10 ngppropd.3 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
1110adantlr 715 . . . . . . . . 9 (((𝜑𝐾 ∈ Grp) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
123adantr 480 . . . . . . . . 9 ((𝜑𝐾 ∈ Grp) → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
137, 8, 9, 11, 12nmpropd2 24633 . . . . . . . 8 ((𝜑𝐾 ∈ Grp) → (norm‘𝐾) = (norm‘𝐿))
147, 8, 9, 11grpsubpropd2 19086 . . . . . . . 8 ((𝜑𝐾 ∈ Grp) → (-g𝐾) = (-g𝐿))
1513, 14coeq12d 5882 . . . . . . 7 ((𝜑𝐾 ∈ Grp) → ((norm‘𝐾) ∘ (-g𝐾)) = ((norm‘𝐿) ∘ (-g𝐿)))
161sqxpeqd 5725 . . . . . . . . . 10 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾)))
1716reseq2d 6004 . . . . . . . . 9 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
182sqxpeqd 5725 . . . . . . . . . 10 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿)))
1918reseq2d 6004 . . . . . . . . 9 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
203, 17, 193eqtr3d 2785 . . . . . . . 8 (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
2120adantr 480 . . . . . . 7 ((𝜑𝐾 ∈ Grp) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
2215, 21eqeq12d 2753 . . . . . 6 ((𝜑𝐾 ∈ Grp) → (((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↔ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))
236, 22anbi12d 632 . . . . 5 ((𝜑𝐾 ∈ Grp) → ((𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↔ (𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))))
2423pm5.32da 579 . . . 4 (𝜑 → ((𝐾 ∈ Grp ∧ (𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) ↔ (𝐾 ∈ Grp ∧ (𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))))
251, 2, 10grppropd 18991 . . . . 5 (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
2625anbi1d 631 . . . 4 (𝜑 → ((𝐾 ∈ Grp ∧ (𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))) ↔ (𝐿 ∈ Grp ∧ (𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))))
2724, 26bitrd 279 . . 3 (𝜑 → ((𝐾 ∈ Grp ∧ (𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))) ↔ (𝐿 ∈ Grp ∧ (𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))))
28 3anass 1095 . . 3 ((𝐾 ∈ Grp ∧ 𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↔ (𝐾 ∈ Grp ∧ (𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))))
29 3anass 1095 . . 3 ((𝐿 ∈ Grp ∧ 𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) ↔ (𝐿 ∈ Grp ∧ (𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))))
3027, 28, 293bitr4g 314 . 2 (𝜑 → ((𝐾 ∈ Grp ∧ 𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) ↔ (𝐿 ∈ Grp ∧ 𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))))
31 eqid 2737 . . 3 (norm‘𝐾) = (norm‘𝐾)
32 eqid 2737 . . 3 (-g𝐾) = (-g𝐾)
33 eqid 2737 . . 3 (dist‘𝐾) = (dist‘𝐾)
34 eqid 2737 . . 3 (Base‘𝐾) = (Base‘𝐾)
35 eqid 2737 . . 3 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
3631, 32, 33, 34, 35isngp2 24635 . 2 (𝐾 ∈ NrmGrp ↔ (𝐾 ∈ Grp ∧ 𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘ (-g𝐾)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))))
37 eqid 2737 . . 3 (norm‘𝐿) = (norm‘𝐿)
38 eqid 2737 . . 3 (-g𝐿) = (-g𝐿)
39 eqid 2737 . . 3 (dist‘𝐿) = (dist‘𝐿)
40 eqid 2737 . . 3 (Base‘𝐿) = (Base‘𝐿)
41 eqid 2737 . . 3 ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))
4237, 38, 39, 40, 41isngp2 24635 . 2 (𝐿 ∈ NrmGrp ↔ (𝐿 ∈ Grp ∧ 𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘ (-g𝐿)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))))
4330, 36, 423bitr4g 314 1 (𝜑 → (𝐾 ∈ NrmGrp ↔ 𝐿 ∈ NrmGrp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1539  wcel 2108   × cxp 5691  cres 5695  ccom 5697  cfv 6569  (class class class)co 7438  Basecbs 17254  +gcplusg 17307  distcds 17316  TopOpenctopn 17477  Grpcgrp 18973  -gcsg 18975  MetSpcms 24353  normcnm 24614  NrmGrpcngp 24615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239  ax-pre-sup 11240
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-er 8753  df-map 8876  df-en 8994  df-dom 8995  df-sdom 8996  df-sup 9489  df-inf 9490  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-div 11928  df-nn 12274  df-2 12336  df-n0 12534  df-z 12621  df-uz 12886  df-q 12998  df-rp 13042  df-xneg 13161  df-xadd 13162  df-xmul 13163  df-0g 17497  df-topgen 17499  df-mgm 18675  df-sgrp 18754  df-mnd 18770  df-grp 18976  df-minusg 18977  df-sbg 18978  df-psmet 21383  df-xmet 21384  df-met 21385  df-bl 21386  df-mopn 21387  df-top 22925  df-topon 22942  df-topsp 22964  df-bases 22978  df-xms 24355  df-ms 24356  df-nm 24620  df-ngp 24621
This theorem is referenced by:  sranlm  24730
  Copyright terms: Public domain W3C validator