Proof of Theorem ngppropd
Step | Hyp | Ref
| Expression |
1 | | ngppropd.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
2 | | ngppropd.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
3 | | ngppropd.4 |
. . . . . . . 8
⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) |
4 | | ngppropd.5 |
. . . . . . . 8
⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) |
5 | 1, 2, 3, 4 | mspropd 23676 |
. . . . . . 7
⊢ (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp)) |
6 | 5 | adantr 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp)) |
7 | 1 | adantr 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → 𝐵 = (Base‘𝐾)) |
8 | 2 | adantr 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → 𝐵 = (Base‘𝐿)) |
9 | | simpr 486 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → 𝐾 ∈ Grp) |
10 | | ngppropd.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
11 | 10 | adantlr 713 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝐾 ∈ Grp) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
12 | 3 | adantr 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) |
13 | 7, 8, 9, 11, 12 | nmpropd2 23800 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → (norm‘𝐾) = (norm‘𝐿)) |
14 | 7, 8, 9, 11 | grpsubpropd2 18730 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) →
(-g‘𝐾) =
(-g‘𝐿)) |
15 | 13, 14 | coeq12d 5786 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → ((norm‘𝐾) ∘
(-g‘𝐾)) =
((norm‘𝐿) ∘
(-g‘𝐿))) |
16 | 1 | sqxpeqd 5632 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾))) |
17 | 16 | reseq2d 5903 |
. . . . . . . . 9
⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))) |
18 | 2 | sqxpeqd 5632 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿))) |
19 | 18 | reseq2d 5903 |
. . . . . . . . 9
⊢ (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) |
20 | 3, 17, 19 | 3eqtr3d 2784 |
. . . . . . . 8
⊢ (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) |
21 | 20 | adantr 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))) |
22 | 15, 21 | eqeq12d 2752 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → (((norm‘𝐾) ∘
(-g‘𝐾)) =
((dist‘𝐾) ↾
((Base‘𝐾) ×
(Base‘𝐾))) ↔
((norm‘𝐿) ∘
(-g‘𝐿)) =
((dist‘𝐿) ↾
((Base‘𝐿) ×
(Base‘𝐿))))) |
23 | 6, 22 | anbi12d 632 |
. . . . 5
⊢ ((𝜑 ∧ 𝐾 ∈ Grp) → ((𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘
(-g‘𝐾)) =
((dist‘𝐾) ↾
((Base‘𝐾) ×
(Base‘𝐾)))) ↔
(𝐿 ∈ MetSp ∧
((norm‘𝐿) ∘
(-g‘𝐿)) =
((dist‘𝐿) ↾
((Base‘𝐿) ×
(Base‘𝐿)))))) |
24 | 23 | pm5.32da 580 |
. . . 4
⊢ (𝜑 → ((𝐾 ∈ Grp ∧ (𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘
(-g‘𝐾)) =
((dist‘𝐾) ↾
((Base‘𝐾) ×
(Base‘𝐾))))) ↔
(𝐾 ∈ Grp ∧ (𝐿 ∈ MetSp ∧
((norm‘𝐿) ∘
(-g‘𝐿)) =
((dist‘𝐿) ↾
((Base‘𝐿) ×
(Base‘𝐿))))))) |
25 | 1, 2, 10 | grppropd 18643 |
. . . . 5
⊢ (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)) |
26 | 25 | anbi1d 631 |
. . . 4
⊢ (𝜑 → ((𝐾 ∈ Grp ∧ (𝐿 ∈ MetSp ∧ ((norm‘𝐿) ∘
(-g‘𝐿)) =
((dist‘𝐿) ↾
((Base‘𝐿) ×
(Base‘𝐿))))) ↔
(𝐿 ∈ Grp ∧ (𝐿 ∈ MetSp ∧
((norm‘𝐿) ∘
(-g‘𝐿)) =
((dist‘𝐿) ↾
((Base‘𝐿) ×
(Base‘𝐿))))))) |
27 | 24, 26 | bitrd 279 |
. . 3
⊢ (𝜑 → ((𝐾 ∈ Grp ∧ (𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘
(-g‘𝐾)) =
((dist‘𝐾) ↾
((Base‘𝐾) ×
(Base‘𝐾))))) ↔
(𝐿 ∈ Grp ∧ (𝐿 ∈ MetSp ∧
((norm‘𝐿) ∘
(-g‘𝐿)) =
((dist‘𝐿) ↾
((Base‘𝐿) ×
(Base‘𝐿))))))) |
28 | | 3anass 1095 |
. . 3
⊢ ((𝐾 ∈ Grp ∧ 𝐾 ∈ MetSp ∧
((norm‘𝐾) ∘
(-g‘𝐾)) =
((dist‘𝐾) ↾
((Base‘𝐾) ×
(Base‘𝐾)))) ↔
(𝐾 ∈ Grp ∧ (𝐾 ∈ MetSp ∧
((norm‘𝐾) ∘
(-g‘𝐾)) =
((dist‘𝐾) ↾
((Base‘𝐾) ×
(Base‘𝐾)))))) |
29 | | 3anass 1095 |
. . 3
⊢ ((𝐿 ∈ Grp ∧ 𝐿 ∈ MetSp ∧
((norm‘𝐿) ∘
(-g‘𝐿)) =
((dist‘𝐿) ↾
((Base‘𝐿) ×
(Base‘𝐿)))) ↔
(𝐿 ∈ Grp ∧ (𝐿 ∈ MetSp ∧
((norm‘𝐿) ∘
(-g‘𝐿)) =
((dist‘𝐿) ↾
((Base‘𝐿) ×
(Base‘𝐿)))))) |
30 | 27, 28, 29 | 3bitr4g 314 |
. 2
⊢ (𝜑 → ((𝐾 ∈ Grp ∧ 𝐾 ∈ MetSp ∧ ((norm‘𝐾) ∘
(-g‘𝐾)) =
((dist‘𝐾) ↾
((Base‘𝐾) ×
(Base‘𝐾)))) ↔
(𝐿 ∈ Grp ∧ 𝐿 ∈ MetSp ∧
((norm‘𝐿) ∘
(-g‘𝐿)) =
((dist‘𝐿) ↾
((Base‘𝐿) ×
(Base‘𝐿)))))) |
31 | | eqid 2736 |
. . 3
⊢
(norm‘𝐾) =
(norm‘𝐾) |
32 | | eqid 2736 |
. . 3
⊢
(-g‘𝐾) = (-g‘𝐾) |
33 | | eqid 2736 |
. . 3
⊢
(dist‘𝐾) =
(dist‘𝐾) |
34 | | eqid 2736 |
. . 3
⊢
(Base‘𝐾) =
(Base‘𝐾) |
35 | | eqid 2736 |
. . 3
⊢
((dist‘𝐾)
↾ ((Base‘𝐾)
× (Base‘𝐾))) =
((dist‘𝐾) ↾
((Base‘𝐾) ×
(Base‘𝐾))) |
36 | 31, 32, 33, 34, 35 | isngp2 23802 |
. 2
⊢ (𝐾 ∈ NrmGrp ↔ (𝐾 ∈ Grp ∧ 𝐾 ∈ MetSp ∧
((norm‘𝐾) ∘
(-g‘𝐾)) =
((dist‘𝐾) ↾
((Base‘𝐾) ×
(Base‘𝐾))))) |
37 | | eqid 2736 |
. . 3
⊢
(norm‘𝐿) =
(norm‘𝐿) |
38 | | eqid 2736 |
. . 3
⊢
(-g‘𝐿) = (-g‘𝐿) |
39 | | eqid 2736 |
. . 3
⊢
(dist‘𝐿) =
(dist‘𝐿) |
40 | | eqid 2736 |
. . 3
⊢
(Base‘𝐿) =
(Base‘𝐿) |
41 | | eqid 2736 |
. . 3
⊢
((dist‘𝐿)
↾ ((Base‘𝐿)
× (Base‘𝐿))) =
((dist‘𝐿) ↾
((Base‘𝐿) ×
(Base‘𝐿))) |
42 | 37, 38, 39, 40, 41 | isngp2 23802 |
. 2
⊢ (𝐿 ∈ NrmGrp ↔ (𝐿 ∈ Grp ∧ 𝐿 ∈ MetSp ∧
((norm‘𝐿) ∘
(-g‘𝐿)) =
((dist‘𝐿) ↾
((Base‘𝐿) ×
(Base‘𝐿))))) |
43 | 30, 36, 42 | 3bitr4g 314 |
1
⊢ (𝜑 → (𝐾 ∈ NrmGrp ↔ 𝐿 ∈ NrmGrp)) |