Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ustref | Structured version Visualization version GIF version |
Description: Any element of the base set is "near" itself, i.e. entourages are reflexive. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
Ref | Expression |
---|---|
ustref | ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐴𝑉𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . . 5 ⊢ 𝐴 = 𝐴 | |
2 | resieq 5867 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴( I ↾ 𝑋)𝐴 ↔ 𝐴 = 𝐴)) | |
3 | 1, 2 | mpbiri 261 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → 𝐴( I ↾ 𝑋)𝐴) |
4 | 3 | anidms 570 | . . 3 ⊢ (𝐴 ∈ 𝑋 → 𝐴( I ↾ 𝑋)𝐴) |
5 | 4 | 3ad2ant3 1137 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐴( I ↾ 𝑋)𝐴) |
6 | ustdiag 23111 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → ( I ↾ 𝑋) ⊆ 𝑉) | |
7 | 6 | ssbrd 5101 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈) → (𝐴( I ↾ 𝑋)𝐴 → 𝐴𝑉𝐴)) |
8 | 7 | 3adant3 1134 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → (𝐴( I ↾ 𝑋)𝐴 → 𝐴𝑉𝐴)) |
9 | 5, 8 | mpd 15 | 1 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉 ∈ 𝑈 ∧ 𝐴 ∈ 𝑋) → 𝐴𝑉𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 class class class wbr 5058 I cid 5459 ↾ cres 5558 ‘cfv 6385 UnifOncust 23102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3415 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-op 4553 df-uni 4825 df-br 5059 df-opab 5121 df-mpt 5141 df-id 5460 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-res 5568 df-iota 6343 df-fun 6387 df-fv 6393 df-ust 23103 |
This theorem is referenced by: cstucnd 23186 |
Copyright terms: Public domain | W3C validator |