MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustref Structured version   Visualization version   GIF version

Theorem ustref 23586
Description: Any element of the base set is "near" itself, i.e. entourages are reflexive. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Assertion
Ref Expression
ustref ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ ∧ 𝐴 ∈ 𝑋) β†’ 𝐴𝑉𝐴)

Proof of Theorem ustref
StepHypRef Expression
1 eqid 2733 . . . . 5 𝐴 = 𝐴
2 resieq 5949 . . . . 5 ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ (𝐴( I β†Ύ 𝑋)𝐴 ↔ 𝐴 = 𝐴))
31, 2mpbiri 258 . . . 4 ((𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ 𝐴( I β†Ύ 𝑋)𝐴)
43anidms 568 . . 3 (𝐴 ∈ 𝑋 β†’ 𝐴( I β†Ύ 𝑋)𝐴)
543ad2ant3 1136 . 2 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ ∧ 𝐴 ∈ 𝑋) β†’ 𝐴( I β†Ύ 𝑋)𝐴)
6 ustdiag 23576 . . . 4 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ ( I β†Ύ 𝑋) βŠ† 𝑉)
76ssbrd 5149 . . 3 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ) β†’ (𝐴( I β†Ύ 𝑋)𝐴 β†’ 𝐴𝑉𝐴))
873adant3 1133 . 2 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ ∧ 𝐴 ∈ 𝑋) β†’ (𝐴( I β†Ύ 𝑋)𝐴 β†’ 𝐴𝑉𝐴))
95, 8mpd 15 1 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑉 ∈ π‘ˆ ∧ 𝐴 ∈ 𝑋) β†’ 𝐴𝑉𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   class class class wbr 5106   I cid 5531   β†Ύ cres 5636  β€˜cfv 6497  UnifOncust 23567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-res 5646  df-iota 6449  df-fun 6499  df-fv 6505  df-ust 23568
This theorem is referenced by:  cstucnd  23652
  Copyright terms: Public domain W3C validator