![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustref | Structured version Visualization version GIF version |
Description: Any element of the base set is "near" itself, i.e. entourages are reflexive. (Contributed by Thierry Arnoux, 16-Nov-2017.) |
Ref | Expression |
---|---|
ustref | β’ ((π β (UnifOnβπ) β§ π β π β§ π΄ β π) β π΄ππ΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . . 5 β’ π΄ = π΄ | |
2 | resieq 5996 | . . . . 5 β’ ((π΄ β π β§ π΄ β π) β (π΄( I βΎ π)π΄ β π΄ = π΄)) | |
3 | 1, 2 | mpbiri 258 | . . . 4 β’ ((π΄ β π β§ π΄ β π) β π΄( I βΎ π)π΄) |
4 | 3 | anidms 566 | . . 3 β’ (π΄ β π β π΄( I βΎ π)π΄) |
5 | 4 | 3ad2ant3 1133 | . 2 β’ ((π β (UnifOnβπ) β§ π β π β§ π΄ β π) β π΄( I βΎ π)π΄) |
6 | ustdiag 24126 | . . . 4 β’ ((π β (UnifOnβπ) β§ π β π) β ( I βΎ π) β π) | |
7 | 6 | ssbrd 5191 | . . 3 β’ ((π β (UnifOnβπ) β§ π β π) β (π΄( I βΎ π)π΄ β π΄ππ΄)) |
8 | 7 | 3adant3 1130 | . 2 β’ ((π β (UnifOnβπ) β§ π β π β§ π΄ β π) β (π΄( I βΎ π)π΄ β π΄ππ΄)) |
9 | 5, 8 | mpd 15 | 1 β’ ((π β (UnifOnβπ) β§ π β π β§ π΄ β π) β π΄ππ΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1085 = wceq 1534 β wcel 2099 class class class wbr 5148 I cid 5575 βΎ cres 5680 βcfv 6548 UnifOncust 24117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-res 5690 df-iota 6500 df-fun 6550 df-fv 6556 df-ust 24118 |
This theorem is referenced by: cstucnd 24202 |
Copyright terms: Public domain | W3C validator |