MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustref Structured version   Visualization version   GIF version

Theorem ustref 24135
Description: Any element of the base set is "near" itself, i.e. entourages are reflexive. (Contributed by Thierry Arnoux, 16-Nov-2017.)
Assertion
Ref Expression
ustref ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝐴𝑋) → 𝐴𝑉𝐴)

Proof of Theorem ustref
StepHypRef Expression
1 eqid 2733 . . . . 5 𝐴 = 𝐴
2 resieq 5943 . . . . 5 ((𝐴𝑋𝐴𝑋) → (𝐴( I ↾ 𝑋)𝐴𝐴 = 𝐴))
31, 2mpbiri 258 . . . 4 ((𝐴𝑋𝐴𝑋) → 𝐴( I ↾ 𝑋)𝐴)
43anidms 566 . . 3 (𝐴𝑋𝐴( I ↾ 𝑋)𝐴)
543ad2ant3 1135 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝐴𝑋) → 𝐴( I ↾ 𝑋)𝐴)
6 ustdiag 24125 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → ( I ↾ 𝑋) ⊆ 𝑉)
76ssbrd 5136 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → (𝐴( I ↾ 𝑋)𝐴𝐴𝑉𝐴))
873adant3 1132 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝐴𝑋) → (𝐴( I ↾ 𝑋)𝐴𝐴𝑉𝐴))
95, 8mpd 15 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝐴𝑋) → 𝐴𝑉𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113   class class class wbr 5093   I cid 5513  cres 5621  cfv 6486  UnifOncust 24116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-res 5631  df-iota 6442  df-fun 6488  df-fv 6494  df-ust 24117
This theorem is referenced by:  cstucnd  24199
  Copyright terms: Public domain W3C validator