MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lublecl Structured version   Visualization version   GIF version

Theorem lublecl 18265
Description: The set of all elements less than a given element has an LUB. (Contributed by NM, 8-Sep-2018.)
Hypotheses
Ref Expression
lublecl.b 𝐵 = (Base‘𝐾)
lublecl.l = (le‘𝐾)
lublecl.u 𝑈 = (lub‘𝐾)
lublecl.k (𝜑𝐾 ∈ Poset)
lublecl.x (𝜑𝑋𝐵)
Assertion
Ref Expression
lublecl (𝜑 → {𝑦𝐵𝑦 𝑋} ∈ dom 𝑈)
Distinct variable groups:   𝑦,   𝑦,𝐵   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑈(𝑦)   𝐾(𝑦)

Proof of Theorem lublecl
Dummy variables 𝑥 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4027 . . 3 {𝑦𝐵𝑦 𝑋} ⊆ 𝐵
21a1i 11 . 2 (𝜑 → {𝑦𝐵𝑦 𝑋} ⊆ 𝐵)
3 lublecl.x . . 3 (𝜑𝑋𝐵)
4 lublecl.b . . . . 5 𝐵 = (Base‘𝐾)
5 lublecl.l . . . . 5 = (le‘𝐾)
6 lublecl.u . . . . 5 𝑈 = (lub‘𝐾)
7 lublecl.k . . . . 5 (𝜑𝐾 ∈ Poset)
84, 5, 6, 7, 3lublecllem 18264 . . . 4 ((𝜑𝑥𝐵) → ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)) ↔ 𝑥 = 𝑋))
98ralrimiva 3124 . . 3 (𝜑 → ∀𝑥𝐵 ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)) ↔ 𝑥 = 𝑋))
10 reu6i 3682 . . 3 ((𝑋𝐵 ∧ ∀𝑥𝐵 ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)) ↔ 𝑥 = 𝑋)) → ∃!𝑥𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)))
113, 9, 10syl2anc 584 . 2 (𝜑 → ∃!𝑥𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)))
12 biid 261 . . 3 ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)) ↔ (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)))
134, 5, 6, 12, 7lubeldm 18257 . 2 (𝜑 → ({𝑦𝐵𝑦 𝑋} ∈ dom 𝑈 ↔ ({𝑦𝐵𝑦 𝑋} ⊆ 𝐵 ∧ ∃!𝑥𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)))))
142, 11, 13mpbir2and 713 1 (𝜑 → {𝑦𝐵𝑦 𝑋} ∈ dom 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  ∃!wreu 3344  {crab 3395  wss 3897   class class class wbr 5089  dom cdm 5614  cfv 6481  Basecbs 17120  lecple 17168  Posetcpo 18213  lubclub 18215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-proset 18200  df-poset 18219  df-lub 18250
This theorem is referenced by:  lubprlem  49001
  Copyright terms: Public domain W3C validator