MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lublecl Structured version   Visualization version   GIF version

Theorem lublecl 18419
Description: The set of all elements less than a given element has an LUB. (Contributed by NM, 8-Sep-2018.)
Hypotheses
Ref Expression
lublecl.b 𝐵 = (Base‘𝐾)
lublecl.l = (le‘𝐾)
lublecl.u 𝑈 = (lub‘𝐾)
lublecl.k (𝜑𝐾 ∈ Poset)
lublecl.x (𝜑𝑋𝐵)
Assertion
Ref Expression
lublecl (𝜑 → {𝑦𝐵𝑦 𝑋} ∈ dom 𝑈)
Distinct variable groups:   𝑦,   𝑦,𝐵   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑈(𝑦)   𝐾(𝑦)

Proof of Theorem lublecl
Dummy variables 𝑥 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4090 . . 3 {𝑦𝐵𝑦 𝑋} ⊆ 𝐵
21a1i 11 . 2 (𝜑 → {𝑦𝐵𝑦 𝑋} ⊆ 𝐵)
3 lublecl.x . . 3 (𝜑𝑋𝐵)
4 lublecl.b . . . . 5 𝐵 = (Base‘𝐾)
5 lublecl.l . . . . 5 = (le‘𝐾)
6 lublecl.u . . . . 5 𝑈 = (lub‘𝐾)
7 lublecl.k . . . . 5 (𝜑𝐾 ∈ Poset)
84, 5, 6, 7, 3lublecllem 18418 . . . 4 ((𝜑𝑥𝐵) → ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)) ↔ 𝑥 = 𝑋))
98ralrimiva 3144 . . 3 (𝜑 → ∀𝑥𝐵 ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)) ↔ 𝑥 = 𝑋))
10 reu6i 3737 . . 3 ((𝑋𝐵 ∧ ∀𝑥𝐵 ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)) ↔ 𝑥 = 𝑋)) → ∃!𝑥𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)))
113, 9, 10syl2anc 584 . 2 (𝜑 → ∃!𝑥𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)))
12 biid 261 . . 3 ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)) ↔ (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)))
134, 5, 6, 12, 7lubeldm 18411 . 2 (𝜑 → ({𝑦𝐵𝑦 𝑋} ∈ dom 𝑈 ↔ ({𝑦𝐵𝑦 𝑋} ⊆ 𝐵 ∧ ∃!𝑥𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)))))
142, 11, 13mpbir2and 713 1 (𝜑 → {𝑦𝐵𝑦 𝑋} ∈ dom 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  ∃!wreu 3376  {crab 3433  wss 3963   class class class wbr 5148  dom cdm 5689  cfv 6563  Basecbs 17245  lecple 17305  Posetcpo 18365  lubclub 18367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-proset 18352  df-poset 18371  df-lub 18404
This theorem is referenced by:  lubprlem  48759
  Copyright terms: Public domain W3C validator