| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lublecl | Structured version Visualization version GIF version | ||
| Description: The set of all elements less than a given element has an LUB. (Contributed by NM, 8-Sep-2018.) |
| Ref | Expression |
|---|---|
| lublecl.b | ⊢ 𝐵 = (Base‘𝐾) |
| lublecl.l | ⊢ ≤ = (le‘𝐾) |
| lublecl.u | ⊢ 𝑈 = (lub‘𝐾) |
| lublecl.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
| lublecl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| lublecl | ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ∈ dom 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4060 | . . 3 ⊢ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵) |
| 3 | lublecl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 4 | lublecl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | lublecl.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 6 | lublecl.u | . . . . 5 ⊢ 𝑈 = (lub‘𝐾) | |
| 7 | lublecl.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
| 8 | 4, 5, 6, 7, 3 | lublecllem 18375 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)) ↔ 𝑥 = 𝑋)) |
| 9 | 8 | ralrimiva 3133 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ((∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)) ↔ 𝑥 = 𝑋)) |
| 10 | reu6i 3716 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)) ↔ 𝑥 = 𝑋)) → ∃!𝑥 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤))) | |
| 11 | 3, 9, 10 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤))) |
| 12 | biid 261 | . . 3 ⊢ ((∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)) ↔ (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤))) | |
| 13 | 4, 5, 6, 12, 7 | lubeldm 18368 | . 2 ⊢ (𝜑 → ({𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ∈ dom 𝑈 ↔ ({𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤))))) |
| 14 | 2, 11, 13 | mpbir2and 713 | 1 ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ∈ dom 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃!wreu 3362 {crab 3420 ⊆ wss 3931 class class class wbr 5124 dom cdm 5659 ‘cfv 6536 Basecbs 17233 lecple 17283 Posetcpo 18324 lubclub 18326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-proset 18311 df-poset 18330 df-lub 18361 |
| This theorem is referenced by: lubprlem 48903 |
| Copyright terms: Public domain | W3C validator |