MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lublecl Structured version   Visualization version   GIF version

Theorem lublecl 18327
Description: The set of all elements less than a given element has an LUB. (Contributed by NM, 8-Sep-2018.)
Hypotheses
Ref Expression
lublecl.b 𝐵 = (Base‘𝐾)
lublecl.l = (le‘𝐾)
lublecl.u 𝑈 = (lub‘𝐾)
lublecl.k (𝜑𝐾 ∈ Poset)
lublecl.x (𝜑𝑋𝐵)
Assertion
Ref Expression
lublecl (𝜑 → {𝑦𝐵𝑦 𝑋} ∈ dom 𝑈)
Distinct variable groups:   𝑦,   𝑦,𝐵   𝑦,𝑋
Allowed substitution hints:   𝜑(𝑦)   𝑈(𝑦)   𝐾(𝑦)

Proof of Theorem lublecl
Dummy variables 𝑥 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4046 . . 3 {𝑦𝐵𝑦 𝑋} ⊆ 𝐵
21a1i 11 . 2 (𝜑 → {𝑦𝐵𝑦 𝑋} ⊆ 𝐵)
3 lublecl.x . . 3 (𝜑𝑋𝐵)
4 lublecl.b . . . . 5 𝐵 = (Base‘𝐾)
5 lublecl.l . . . . 5 = (le‘𝐾)
6 lublecl.u . . . . 5 𝑈 = (lub‘𝐾)
7 lublecl.k . . . . 5 (𝜑𝐾 ∈ Poset)
84, 5, 6, 7, 3lublecllem 18326 . . . 4 ((𝜑𝑥𝐵) → ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)) ↔ 𝑥 = 𝑋))
98ralrimiva 3126 . . 3 (𝜑 → ∀𝑥𝐵 ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)) ↔ 𝑥 = 𝑋))
10 reu6i 3702 . . 3 ((𝑋𝐵 ∧ ∀𝑥𝐵 ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)) ↔ 𝑥 = 𝑋)) → ∃!𝑥𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)))
113, 9, 10syl2anc 584 . 2 (𝜑 → ∃!𝑥𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)))
12 biid 261 . . 3 ((∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)) ↔ (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)))
134, 5, 6, 12, 7lubeldm 18319 . 2 (𝜑 → ({𝑦𝐵𝑦 𝑋} ∈ dom 𝑈 ↔ ({𝑦𝐵𝑦 𝑋} ⊆ 𝐵 ∧ ∃!𝑥𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑥 ∧ ∀𝑤𝐵 (∀𝑧 ∈ {𝑦𝐵𝑦 𝑋}𝑧 𝑤𝑥 𝑤)))))
142, 11, 13mpbir2and 713 1 (𝜑 → {𝑦𝐵𝑦 𝑋} ∈ dom 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  ∃!wreu 3354  {crab 3408  wss 3917   class class class wbr 5110  dom cdm 5641  cfv 6514  Basecbs 17186  lecple 17234  Posetcpo 18275  lubclub 18277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-proset 18262  df-poset 18281  df-lub 18312
This theorem is referenced by:  lubprlem  48954
  Copyright terms: Public domain W3C validator