| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lublecl | Structured version Visualization version GIF version | ||
| Description: The set of all elements less than a given element has an LUB. (Contributed by NM, 8-Sep-2018.) |
| Ref | Expression |
|---|---|
| lublecl.b | ⊢ 𝐵 = (Base‘𝐾) |
| lublecl.l | ⊢ ≤ = (le‘𝐾) |
| lublecl.u | ⊢ 𝑈 = (lub‘𝐾) |
| lublecl.k | ⊢ (𝜑 → 𝐾 ∈ Poset) |
| lublecl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| lublecl | ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ∈ dom 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 4043 | . . 3 ⊢ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵) |
| 3 | lublecl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 4 | lublecl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | lublecl.l | . . . . 5 ⊢ ≤ = (le‘𝐾) | |
| 6 | lublecl.u | . . . . 5 ⊢ 𝑈 = (lub‘𝐾) | |
| 7 | lublecl.k | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Poset) | |
| 8 | 4, 5, 6, 7, 3 | lublecllem 18319 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)) ↔ 𝑥 = 𝑋)) |
| 9 | 8 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ((∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)) ↔ 𝑥 = 𝑋)) |
| 10 | reu6i 3699 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ((∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)) ↔ 𝑥 = 𝑋)) → ∃!𝑥 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤))) | |
| 11 | 3, 9, 10 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤))) |
| 12 | biid 261 | . . 3 ⊢ ((∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤)) ↔ (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤))) | |
| 13 | 4, 5, 6, 12, 7 | lubeldm 18312 | . 2 ⊢ (𝜑 → ({𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ∈ dom 𝑈 ↔ ({𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ⊆ 𝐵 ∧ ∃!𝑥 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑥 ∧ ∀𝑤 ∈ 𝐵 (∀𝑧 ∈ {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋}𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤))))) |
| 14 | 2, 11, 13 | mpbir2and 713 | 1 ⊢ (𝜑 → {𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋} ∈ dom 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃!wreu 3352 {crab 3405 ⊆ wss 3914 class class class wbr 5107 dom cdm 5638 ‘cfv 6511 Basecbs 17179 lecple 17227 Posetcpo 18268 lubclub 18270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-proset 18255 df-poset 18274 df-lub 18305 |
| This theorem is referenced by: lubprlem 48950 |
| Copyright terms: Public domain | W3C validator |