Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-subeu Structured version   Visualization version   GIF version

Theorem sn-subeu 42469
Description: negeu 11472 without ax-mulcom 11193 and complex number version of resubeu 42420. (Contributed by SN, 5-May-2024.)
Assertion
Ref Expression
sn-subeu ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem sn-subeu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sn-negex 42460 . . 3 (𝐴 ∈ ℂ → ∃𝑦 ∈ ℂ (𝐴 + 𝑦) = 0)
21adantr 480 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃𝑦 ∈ ℂ (𝐴 + 𝑦) = 0)
3 simprl 770 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) → 𝑦 ∈ ℂ)
4 simplr 768 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) → 𝐵 ∈ ℂ)
53, 4addcld 11254 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) → (𝑦 + 𝐵) ∈ ℂ)
6 simplrr 777 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → (𝐴 + 𝑦) = 0)
76oveq1d 7420 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑦) + 𝐵) = (0 + 𝐵))
8 simplll 774 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
9 simplrl 776 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝑦 ∈ ℂ)
10 simpllr 775 . . . . . . . 8 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝐵 ∈ ℂ)
118, 9, 10addassd 11257 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑦) + 𝐵) = (𝐴 + (𝑦 + 𝐵)))
12 sn-addlid 42447 . . . . . . . 8 (𝐵 ∈ ℂ → (0 + 𝐵) = 𝐵)
1310, 12syl 17 . . . . . . 7 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → (0 + 𝐵) = 𝐵)
147, 11, 133eqtr3rd 2779 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝐵 = (𝐴 + (𝑦 + 𝐵)))
1514eqeq2d 2746 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 𝐵 ↔ (𝐴 + 𝑥) = (𝐴 + (𝑦 + 𝐵))))
16 simpr 484 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
179, 10addcld 11254 . . . . . 6 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → (𝑦 + 𝐵) ∈ ℂ)
188, 16, 17sn-addcand 42462 . . . . 5 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = (𝐴 + (𝑦 + 𝐵)) ↔ 𝑥 = (𝑦 + 𝐵)))
1915, 18bitrd 279 . . . 4 ((((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) ∧ 𝑥 ∈ ℂ) → ((𝐴 + 𝑥) = 𝐵𝑥 = (𝑦 + 𝐵)))
2019ralrimiva 3132 . . 3 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) → ∀𝑥 ∈ ℂ ((𝐴 + 𝑥) = 𝐵𝑥 = (𝑦 + 𝐵)))
21 reu6i 3711 . . 3 (((𝑦 + 𝐵) ∈ ℂ ∧ ∀𝑥 ∈ ℂ ((𝐴 + 𝑥) = 𝐵𝑥 = (𝑦 + 𝐵))) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵)
225, 20, 21syl2anc 584 . 2 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ (𝐴 + 𝑦) = 0)) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵)
232, 22rexlimddv 3147 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  ∃!wreu 3357  (class class class)co 7405  cc 11127  0cc0 11129   + caddc 11132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-ltxr 11274  df-2 12303  df-3 12304  df-resub 42409
This theorem is referenced by:  sn-subcl  42470  resubeqsub  42472  addinvcom  42474
  Copyright terms: Public domain W3C validator