| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > renegeulemv | Structured version Visualization version GIF version | ||
| Description: Lemma for renegeu 42473 and similar. Derive existential uniqueness from existence. (Contributed by Steven Nguyen, 28-Jan-2023.) |
| Ref | Expression |
|---|---|
| renegeulemv.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| renegeulemv.1 | ⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴) |
| Ref | Expression |
|---|---|
| renegeulemv | ⊢ (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegeulemv.1 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴) | |
| 2 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) → 𝑦 ∈ ℝ) | |
| 3 | simplrr 777 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → (𝐵 + 𝑦) = 𝐴) | |
| 4 | 3 | eqcomd 2737 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝐴 = (𝐵 + 𝑦)) |
| 5 | 4 | eqeq2d 2742 | . . . . 5 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → ((𝐵 + 𝑥) = 𝐴 ↔ (𝐵 + 𝑥) = (𝐵 + 𝑦))) |
| 6 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
| 7 | simplrl 776 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ℝ) | |
| 8 | renegeulemv.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 9 | 8 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ) |
| 10 | readdcan 11287 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + 𝑥) = (𝐵 + 𝑦) ↔ 𝑥 = 𝑦)) | |
| 11 | 6, 7, 9, 10 | syl3anc 1373 | . . . . 5 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → ((𝐵 + 𝑥) = (𝐵 + 𝑦) ↔ 𝑥 = 𝑦)) |
| 12 | 5, 11 | bitrd 279 | . . . 4 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → ((𝐵 + 𝑥) = 𝐴 ↔ 𝑥 = 𝑦)) |
| 13 | 12 | ralrimiva 3124 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) → ∀𝑥 ∈ ℝ ((𝐵 + 𝑥) = 𝐴 ↔ 𝑥 = 𝑦)) |
| 14 | reu6i 3682 | . . 3 ⊢ ((𝑦 ∈ ℝ ∧ ∀𝑥 ∈ ℝ ((𝐵 + 𝑥) = 𝐴 ↔ 𝑥 = 𝑦)) → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) | |
| 15 | 2, 13, 14 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) |
| 16 | 1, 15 | rexlimddv 3139 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∃!wreu 3344 (class class class)co 7346 ℝcr 11005 + caddc 11009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-addrcl 11067 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 |
| This theorem is referenced by: renegeulem 42472 |
| Copyright terms: Public domain | W3C validator |