![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > renegeulemv | Structured version Visualization version GIF version |
Description: Lemma for renegeu 42346 and similar. Derive existential uniqueness from existence. (Contributed by Steven Nguyen, 28-Jan-2023.) |
Ref | Expression |
---|---|
renegeulemv.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
renegeulemv.1 | ⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴) |
Ref | Expression |
---|---|
renegeulemv | ⊢ (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegeulemv.1 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴) | |
2 | simprl 770 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) → 𝑦 ∈ ℝ) | |
3 | simplrr 777 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → (𝐵 + 𝑦) = 𝐴) | |
4 | 3 | eqcomd 2746 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝐴 = (𝐵 + 𝑦)) |
5 | 4 | eqeq2d 2751 | . . . . 5 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → ((𝐵 + 𝑥) = 𝐴 ↔ (𝐵 + 𝑥) = (𝐵 + 𝑦))) |
6 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
7 | simplrl 776 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ℝ) | |
8 | renegeulemv.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
9 | 8 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ) |
10 | readdcan 11464 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + 𝑥) = (𝐵 + 𝑦) ↔ 𝑥 = 𝑦)) | |
11 | 6, 7, 9, 10 | syl3anc 1371 | . . . . 5 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → ((𝐵 + 𝑥) = (𝐵 + 𝑦) ↔ 𝑥 = 𝑦)) |
12 | 5, 11 | bitrd 279 | . . . 4 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → ((𝐵 + 𝑥) = 𝐴 ↔ 𝑥 = 𝑦)) |
13 | 12 | ralrimiva 3152 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) → ∀𝑥 ∈ ℝ ((𝐵 + 𝑥) = 𝐴 ↔ 𝑥 = 𝑦)) |
14 | reu6i 3750 | . . 3 ⊢ ((𝑦 ∈ ℝ ∧ ∀𝑥 ∈ ℝ ((𝐵 + 𝑥) = 𝐴 ↔ 𝑥 = 𝑦)) → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) | |
15 | 2, 13, 14 | syl2anc 583 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) |
16 | 1, 15 | rexlimddv 3167 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∃!wreu 3386 (class class class)co 7448 ℝcr 11183 + caddc 11187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-addrcl 11245 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 |
This theorem is referenced by: renegeulem 42345 |
Copyright terms: Public domain | W3C validator |