Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  renegeulemv Structured version   Visualization version   GIF version

Theorem renegeulemv 42351
Description: Lemma for renegeu 42353 and similar. Derive existential uniqueness from existence. (Contributed by Steven Nguyen, 28-Jan-2023.)
Hypotheses
Ref Expression
renegeulemv.b (𝜑𝐵 ∈ ℝ)
renegeulemv.1 (𝜑 → ∃𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴)
Assertion
Ref Expression
renegeulemv (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦

Proof of Theorem renegeulemv
StepHypRef Expression
1 renegeulemv.1 . 2 (𝜑 → ∃𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴)
2 simprl 770 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) → 𝑦 ∈ ℝ)
3 simplrr 777 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → (𝐵 + 𝑦) = 𝐴)
43eqcomd 2736 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝐴 = (𝐵 + 𝑦))
54eqeq2d 2741 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → ((𝐵 + 𝑥) = 𝐴 ↔ (𝐵 + 𝑥) = (𝐵 + 𝑦)))
6 simpr 484 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
7 simplrl 776 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ℝ)
8 renegeulemv.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
98ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
10 readdcan 11354 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + 𝑥) = (𝐵 + 𝑦) ↔ 𝑥 = 𝑦))
116, 7, 9, 10syl3anc 1373 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → ((𝐵 + 𝑥) = (𝐵 + 𝑦) ↔ 𝑥 = 𝑦))
125, 11bitrd 279 . . . 4 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → ((𝐵 + 𝑥) = 𝐴𝑥 = 𝑦))
1312ralrimiva 3126 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) → ∀𝑥 ∈ ℝ ((𝐵 + 𝑥) = 𝐴𝑥 = 𝑦))
14 reu6i 3701 . . 3 ((𝑦 ∈ ℝ ∧ ∀𝑥 ∈ ℝ ((𝐵 + 𝑥) = 𝐴𝑥 = 𝑦)) → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)
152, 13, 14syl2anc 584 . 2 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)
161, 15rexlimddv 3141 1 (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  ∃!wreu 3354  (class class class)co 7389  cr 11073   + caddc 11077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-resscn 11131  ax-addrcl 11135  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-po 5548  df-so 5549  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-ltxr 11219
This theorem is referenced by:  renegeulem  42352
  Copyright terms: Public domain W3C validator