Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > renegeulemv | Structured version Visualization version GIF version |
Description: Lemma for renegeu 40353 and similar. Derive existential uniqueness from existence. (Contributed by Steven Nguyen, 28-Jan-2023.) |
Ref | Expression |
---|---|
renegeulemv.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
renegeulemv.1 | ⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴) |
Ref | Expression |
---|---|
renegeulemv | ⊢ (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegeulemv.1 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴) | |
2 | simprl 768 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) → 𝑦 ∈ ℝ) | |
3 | simplrr 775 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → (𝐵 + 𝑦) = 𝐴) | |
4 | 3 | eqcomd 2744 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝐴 = (𝐵 + 𝑦)) |
5 | 4 | eqeq2d 2749 | . . . . 5 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → ((𝐵 + 𝑥) = 𝐴 ↔ (𝐵 + 𝑥) = (𝐵 + 𝑦))) |
6 | simpr 485 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ) | |
7 | simplrl 774 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ℝ) | |
8 | renegeulemv.b | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
9 | 8 | ad2antrr 723 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ) |
10 | readdcan 11149 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + 𝑥) = (𝐵 + 𝑦) ↔ 𝑥 = 𝑦)) | |
11 | 6, 7, 9, 10 | syl3anc 1370 | . . . . 5 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → ((𝐵 + 𝑥) = (𝐵 + 𝑦) ↔ 𝑥 = 𝑦)) |
12 | 5, 11 | bitrd 278 | . . . 4 ⊢ (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → ((𝐵 + 𝑥) = 𝐴 ↔ 𝑥 = 𝑦)) |
13 | 12 | ralrimiva 3103 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) → ∀𝑥 ∈ ℝ ((𝐵 + 𝑥) = 𝐴 ↔ 𝑥 = 𝑦)) |
14 | reu6i 3663 | . . 3 ⊢ ((𝑦 ∈ ℝ ∧ ∀𝑥 ∈ ℝ ((𝐵 + 𝑥) = 𝐴 ↔ 𝑥 = 𝑦)) → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) | |
15 | 2, 13, 14 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) |
16 | 1, 15 | rexlimddv 3220 | 1 ⊢ (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ∃!wreu 3066 (class class class)co 7275 ℝcr 10870 + caddc 10874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-addrcl 10932 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 |
This theorem is referenced by: renegeulem 40352 |
Copyright terms: Public domain | W3C validator |