Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  renegeulemv Structured version   Visualization version   GIF version

Theorem renegeulemv 40351
Description: Lemma for renegeu 40353 and similar. Derive existential uniqueness from existence. (Contributed by Steven Nguyen, 28-Jan-2023.)
Hypotheses
Ref Expression
renegeulemv.b (𝜑𝐵 ∈ ℝ)
renegeulemv.1 (𝜑 → ∃𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴)
Assertion
Ref Expression
renegeulemv (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦

Proof of Theorem renegeulemv
StepHypRef Expression
1 renegeulemv.1 . 2 (𝜑 → ∃𝑦 ∈ ℝ (𝐵 + 𝑦) = 𝐴)
2 simprl 768 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) → 𝑦 ∈ ℝ)
3 simplrr 775 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → (𝐵 + 𝑦) = 𝐴)
43eqcomd 2744 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝐴 = (𝐵 + 𝑦))
54eqeq2d 2749 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → ((𝐵 + 𝑥) = 𝐴 ↔ (𝐵 + 𝑥) = (𝐵 + 𝑦)))
6 simpr 485 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
7 simplrl 774 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝑦 ∈ ℝ)
8 renegeulemv.b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
98ad2antrr 723 . . . . . 6 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
10 readdcan 11149 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐵 + 𝑥) = (𝐵 + 𝑦) ↔ 𝑥 = 𝑦))
116, 7, 9, 10syl3anc 1370 . . . . 5 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → ((𝐵 + 𝑥) = (𝐵 + 𝑦) ↔ 𝑥 = 𝑦))
125, 11bitrd 278 . . . 4 (((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) ∧ 𝑥 ∈ ℝ) → ((𝐵 + 𝑥) = 𝐴𝑥 = 𝑦))
1312ralrimiva 3103 . . 3 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) → ∀𝑥 ∈ ℝ ((𝐵 + 𝑥) = 𝐴𝑥 = 𝑦))
14 reu6i 3663 . . 3 ((𝑦 ∈ ℝ ∧ ∀𝑥 ∈ ℝ ((𝐵 + 𝑥) = 𝐴𝑥 = 𝑦)) → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)
152, 13, 14syl2anc 584 . 2 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ (𝐵 + 𝑦) = 𝐴)) → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)
161, 15rexlimddv 3220 1 (𝜑 → ∃!𝑥 ∈ ℝ (𝐵 + 𝑥) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  ∃!wreu 3066  (class class class)co 7275  cr 10870   + caddc 10874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-addrcl 10932  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014
This theorem is referenced by:  renegeulem  40352
  Copyright terms: Public domain W3C validator