| Step | Hyp | Ref
| Expression |
| 1 | | fzfid 14014 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → (0...((𝑂‘𝐴) − 1)) ∈ Fin) |
| 2 | | odf1.1 |
. . . . . . . . . . . . 13
⊢ 𝑋 = (Base‘𝐺) |
| 3 | | odf1.3 |
. . . . . . . . . . . . 13
⊢ · =
(.g‘𝐺) |
| 4 | 2, 3 | mulgcl 19109 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → (𝑥 · 𝐴) ∈ 𝑋) |
| 5 | 4 | 3expa 1119 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) ∧ 𝐴 ∈ 𝑋) → (𝑥 · 𝐴) ∈ 𝑋) |
| 6 | 5 | an32s 652 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑋) |
| 7 | 6 | adantlr 715 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑋) |
| 8 | | odf1.4 |
. . . . . . . . 9
⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) |
| 9 | 7, 8 | fmptd 7134 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → 𝐹:ℤ⟶𝑋) |
| 10 | | frn 6743 |
. . . . . . . 8
⊢ (𝐹:ℤ⟶𝑋 → ran 𝐹 ⊆ 𝑋) |
| 11 | 2 | fvexi 6920 |
. . . . . . . . 9
⊢ 𝑋 ∈ V |
| 12 | 11 | ssex 5321 |
. . . . . . . 8
⊢ (ran
𝐹 ⊆ 𝑋 → ran 𝐹 ∈ V) |
| 13 | 9, 10, 12 | 3syl 18 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → ran 𝐹 ∈ V) |
| 14 | | elfzelz 13564 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0...((𝑂‘𝐴) − 1)) → 𝑦 ∈ ℤ) |
| 15 | 14 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → 𝑦 ∈ ℤ) |
| 16 | | ovex 7464 |
. . . . . . . . . 10
⊢ (𝑦 · 𝐴) ∈ V |
| 17 | | oveq1 7438 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴)) |
| 18 | 8, 17 | elrnmpt1s 5970 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℤ ∧ (𝑦 · 𝐴) ∈ V) → (𝑦 · 𝐴) ∈ ran 𝐹) |
| 19 | 15, 16, 18 | sylancl 586 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → (𝑦 · 𝐴) ∈ ran 𝐹) |
| 20 | 19 | ralrimiva 3146 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → ∀𝑦 ∈ (0...((𝑂‘𝐴) − 1))(𝑦 · 𝐴) ∈ ran 𝐹) |
| 21 | | zmodfz 13933 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℤ ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑥 mod (𝑂‘𝐴)) ∈ (0...((𝑂‘𝐴) − 1))) |
| 22 | 21 | ancoms 458 |
. . . . . . . . . . . 12
⊢ (((𝑂‘𝐴) ∈ ℕ ∧ 𝑥 ∈ ℤ) → (𝑥 mod (𝑂‘𝐴)) ∈ (0...((𝑂‘𝐴) − 1))) |
| 23 | 22 | adantll 714 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 mod (𝑂‘𝐴)) ∈ (0...((𝑂‘𝐴) − 1))) |
| 24 | | simpllr 776 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → (𝑂‘𝐴) ∈ ℕ) |
| 25 | | simplr 769 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → 𝑥 ∈ ℤ) |
| 26 | 14 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → 𝑦 ∈ ℤ) |
| 27 | | moddvds 16301 |
. . . . . . . . . . . . . 14
⊢ (((𝑂‘𝐴) ∈ ℕ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 mod (𝑂‘𝐴)) = (𝑦 mod (𝑂‘𝐴)) ↔ (𝑂‘𝐴) ∥ (𝑥 − 𝑦))) |
| 28 | 24, 25, 26, 27 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → ((𝑥 mod (𝑂‘𝐴)) = (𝑦 mod (𝑂‘𝐴)) ↔ (𝑂‘𝐴) ∥ (𝑥 − 𝑦))) |
| 29 | 26 | zred 12722 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → 𝑦 ∈ ℝ) |
| 30 | 24 | nnrpd 13075 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → (𝑂‘𝐴) ∈
ℝ+) |
| 31 | | 0z 12624 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℤ |
| 32 | | nnz 12634 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑂‘𝐴) ∈ ℕ → (𝑂‘𝐴) ∈ ℤ) |
| 33 | 32 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈ ℤ) |
| 34 | 33 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑂‘𝐴) ∈ ℤ) |
| 35 | | elfzm11 13635 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℤ ∧ (𝑂‘𝐴) ∈ ℤ) → (𝑦 ∈ (0...((𝑂‘𝐴) − 1)) ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < (𝑂‘𝐴)))) |
| 36 | 31, 34, 35 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑦 ∈ (0...((𝑂‘𝐴) − 1)) ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < (𝑂‘𝐴)))) |
| 37 | 36 | biimpa 476 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < (𝑂‘𝐴))) |
| 38 | 37 | simp2d 1144 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → 0 ≤ 𝑦) |
| 39 | 37 | simp3d 1145 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → 𝑦 < (𝑂‘𝐴)) |
| 40 | | modid 13936 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ ℝ ∧ (𝑂‘𝐴) ∈ ℝ+) ∧ (0 ≤
𝑦 ∧ 𝑦 < (𝑂‘𝐴))) → (𝑦 mod (𝑂‘𝐴)) = 𝑦) |
| 41 | 29, 30, 38, 39, 40 | syl22anc 839 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → (𝑦 mod (𝑂‘𝐴)) = 𝑦) |
| 42 | 41 | eqeq2d 2748 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → ((𝑥 mod (𝑂‘𝐴)) = (𝑦 mod (𝑂‘𝐴)) ↔ (𝑥 mod (𝑂‘𝐴)) = 𝑦)) |
| 43 | | eqcom 2744 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 mod (𝑂‘𝐴)) = 𝑦 ↔ 𝑦 = (𝑥 mod (𝑂‘𝐴))) |
| 44 | 42, 43 | bitrdi 287 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → ((𝑥 mod (𝑂‘𝐴)) = (𝑦 mod (𝑂‘𝐴)) ↔ 𝑦 = (𝑥 mod (𝑂‘𝐴)))) |
| 45 | | simp-4l 783 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → 𝐺 ∈ Grp) |
| 46 | | simp-4r 784 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → 𝐴 ∈ 𝑋) |
| 47 | | odf1.2 |
. . . . . . . . . . . . . . 15
⊢ 𝑂 = (od‘𝐺) |
| 48 | | eqid 2737 |
. . . . . . . . . . . . . . 15
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 49 | 2, 47, 3, 48 | odcong 19567 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂‘𝐴) ∥ (𝑥 − 𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴))) |
| 50 | 45, 46, 25, 26, 49 | syl112anc 1376 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → ((𝑂‘𝐴) ∥ (𝑥 − 𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴))) |
| 51 | 28, 44, 50 | 3bitr3rd 310 |
. . . . . . . . . . . 12
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑦 = (𝑥 mod (𝑂‘𝐴)))) |
| 52 | 51 | ralrimiva 3146 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ∀𝑦 ∈ (0...((𝑂‘𝐴) − 1))((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑦 = (𝑥 mod (𝑂‘𝐴)))) |
| 53 | | reu6i 3734 |
. . . . . . . . . . 11
⊢ (((𝑥 mod (𝑂‘𝐴)) ∈ (0...((𝑂‘𝐴) − 1)) ∧ ∀𝑦 ∈ (0...((𝑂‘𝐴) − 1))((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑦 = (𝑥 mod (𝑂‘𝐴)))) → ∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴)) |
| 54 | 23, 52, 53 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴)) |
| 55 | 54 | ralrimiva 3146 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → ∀𝑥 ∈ ℤ ∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴)) |
| 56 | | ovex 7464 |
. . . . . . . . . . 11
⊢ (𝑥 · 𝐴) ∈ V |
| 57 | 56 | rgenw 3065 |
. . . . . . . . . 10
⊢
∀𝑥 ∈
ℤ (𝑥 · 𝐴) ∈ V |
| 58 | | eqeq1 2741 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑥 · 𝐴) → (𝑧 = (𝑦 · 𝐴) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴))) |
| 59 | 58 | reubidv 3398 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑥 · 𝐴) → (∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))𝑧 = (𝑦 · 𝐴) ↔ ∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴))) |
| 60 | 8, 59 | ralrnmptw 7114 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
ℤ (𝑥 · 𝐴) ∈ V → (∀𝑧 ∈ ran 𝐹∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))𝑧 = (𝑦 · 𝐴) ↔ ∀𝑥 ∈ ℤ ∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴))) |
| 61 | 57, 60 | ax-mp 5 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
ran 𝐹∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))𝑧 = (𝑦 · 𝐴) ↔ ∀𝑥 ∈ ℤ ∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴)) |
| 62 | 55, 61 | sylibr 234 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → ∀𝑧 ∈ ran 𝐹∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))𝑧 = (𝑦 · 𝐴)) |
| 63 | | eqid 2737 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0...((𝑂‘𝐴) − 1)) ↦ (𝑦 · 𝐴)) = (𝑦 ∈ (0...((𝑂‘𝐴) − 1)) ↦ (𝑦 · 𝐴)) |
| 64 | 63 | f1ompt 7131 |
. . . . . . . 8
⊢ ((𝑦 ∈ (0...((𝑂‘𝐴) − 1)) ↦ (𝑦 · 𝐴)):(0...((𝑂‘𝐴) − 1))–1-1-onto→ran
𝐹 ↔ (∀𝑦 ∈ (0...((𝑂‘𝐴) − 1))(𝑦 · 𝐴) ∈ ran 𝐹 ∧ ∀𝑧 ∈ ran 𝐹∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))𝑧 = (𝑦 · 𝐴))) |
| 65 | 20, 62, 64 | sylanbrc 583 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑦 ∈ (0...((𝑂‘𝐴) − 1)) ↦ (𝑦 · 𝐴)):(0...((𝑂‘𝐴) − 1))–1-1-onto→ran
𝐹) |
| 66 | | f1oen2g 9009 |
. . . . . . 7
⊢
(((0...((𝑂‘𝐴) − 1)) ∈ Fin ∧ ran 𝐹 ∈ V ∧ (𝑦 ∈ (0...((𝑂‘𝐴) − 1)) ↦ (𝑦 · 𝐴)):(0...((𝑂‘𝐴) − 1))–1-1-onto→ran
𝐹) → (0...((𝑂‘𝐴) − 1)) ≈ ran 𝐹) |
| 67 | 1, 13, 65, 66 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → (0...((𝑂‘𝐴) − 1)) ≈ ran 𝐹) |
| 68 | | enfi 9227 |
. . . . . 6
⊢
((0...((𝑂‘𝐴) − 1)) ≈ ran 𝐹 → ((0...((𝑂‘𝐴) − 1)) ∈ Fin ↔ ran 𝐹 ∈ Fin)) |
| 69 | 67, 68 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → ((0...((𝑂‘𝐴) − 1)) ∈ Fin ↔ ran 𝐹 ∈ Fin)) |
| 70 | 1, 69 | mpbid 232 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → ran 𝐹 ∈ Fin) |
| 71 | 70 | iftrued 4533 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → if(ran 𝐹 ∈ Fin, (♯‘ran
𝐹), 0) = (♯‘ran
𝐹)) |
| 72 | | fz01en 13592 |
. . . . . 6
⊢ ((𝑂‘𝐴) ∈ ℤ → (0...((𝑂‘𝐴) − 1)) ≈ (1...(𝑂‘𝐴))) |
| 73 | | ensym 9043 |
. . . . . 6
⊢
((0...((𝑂‘𝐴) − 1)) ≈ (1...(𝑂‘𝐴)) → (1...(𝑂‘𝐴)) ≈ (0...((𝑂‘𝐴) − 1))) |
| 74 | 33, 72, 73 | 3syl 18 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → (1...(𝑂‘𝐴)) ≈ (0...((𝑂‘𝐴) − 1))) |
| 75 | | entr 9046 |
. . . . 5
⊢
(((1...(𝑂‘𝐴)) ≈ (0...((𝑂‘𝐴) − 1)) ∧ (0...((𝑂‘𝐴) − 1)) ≈ ran 𝐹) → (1...(𝑂‘𝐴)) ≈ ran 𝐹) |
| 76 | 74, 67, 75 | syl2anc 584 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → (1...(𝑂‘𝐴)) ≈ ran 𝐹) |
| 77 | | fzfid 14014 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → (1...(𝑂‘𝐴)) ∈ Fin) |
| 78 | | hashen 14386 |
. . . . 5
⊢
(((1...(𝑂‘𝐴)) ∈ Fin ∧ ran 𝐹 ∈ Fin) →
((♯‘(1...(𝑂‘𝐴))) = (♯‘ran 𝐹) ↔ (1...(𝑂‘𝐴)) ≈ ran 𝐹)) |
| 79 | 77, 70, 78 | syl2anc 584 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) →
((♯‘(1...(𝑂‘𝐴))) = (♯‘ran 𝐹) ↔ (1...(𝑂‘𝐴)) ≈ ran 𝐹)) |
| 80 | 76, 79 | mpbird 257 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) →
(♯‘(1...(𝑂‘𝐴))) = (♯‘ran 𝐹)) |
| 81 | | nnnn0 12533 |
. . . . 5
⊢ ((𝑂‘𝐴) ∈ ℕ → (𝑂‘𝐴) ∈
ℕ0) |
| 82 | 81 | adantl 481 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈
ℕ0) |
| 83 | | hashfz1 14385 |
. . . 4
⊢ ((𝑂‘𝐴) ∈ ℕ0 →
(♯‘(1...(𝑂‘𝐴))) = (𝑂‘𝐴)) |
| 84 | 82, 83 | syl 17 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) →
(♯‘(1...(𝑂‘𝐴))) = (𝑂‘𝐴)) |
| 85 | 71, 80, 84 | 3eqtr2rd 2784 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) = if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0)) |
| 86 | | simp3 1139 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑂‘𝐴) = 0) |
| 87 | 2, 47, 3, 8 | odinf 19581 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran 𝐹 ∈ Fin) |
| 88 | 87 | iffalsed 4536 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0) = 0) |
| 89 | 86, 88 | eqtr4d 2780 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑂‘𝐴) = if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0)) |
| 90 | 89 | 3expa 1119 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) = 0) → (𝑂‘𝐴) = if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0)) |
| 91 | 2, 47 | odcl 19554 |
. . . 4
⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈
ℕ0) |
| 92 | 91 | adantl 481 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈
ℕ0) |
| 93 | | elnn0 12528 |
. . 3
⊢ ((𝑂‘𝐴) ∈ ℕ0 ↔ ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) |
| 94 | 92, 93 | sylib 218 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) |
| 95 | 85, 90, 94 | mpjaodan 961 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0)) |