MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfod2 Structured version   Visualization version   GIF version

Theorem dfod2 19432
Description: An alternative definition of the order of a group element is as the cardinality of the cyclic subgroup generated by the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
odf1.1 𝑋 = (Baseβ€˜πΊ)
odf1.2 𝑂 = (odβ€˜πΊ)
odf1.3 Β· = (.gβ€˜πΊ)
odf1.4 𝐹 = (π‘₯ ∈ β„€ ↦ (π‘₯ Β· 𝐴))
Assertion
Ref Expression
dfod2 ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) β†’ (π‘‚β€˜π΄) = if(ran 𝐹 ∈ Fin, (β™―β€˜ran 𝐹), 0))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐺   π‘₯,𝑂   π‘₯, Β·   π‘₯,𝑋
Allowed substitution hint:   𝐹(π‘₯)

Proof of Theorem dfod2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13938 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ (0...((π‘‚β€˜π΄) βˆ’ 1)) ∈ Fin)
2 odf1.1 . . . . . . . . . . . . 13 𝑋 = (Baseβ€˜πΊ)
3 odf1.3 . . . . . . . . . . . . 13 Β· = (.gβ€˜πΊ)
42, 3mulgcl 18971 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ π‘₯ ∈ β„€ ∧ 𝐴 ∈ 𝑋) β†’ (π‘₯ Β· 𝐴) ∈ 𝑋)
543expa 1119 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ π‘₯ ∈ β„€) ∧ 𝐴 ∈ 𝑋) β†’ (π‘₯ Β· 𝐴) ∈ 𝑋)
65an32s 651 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ π‘₯ ∈ β„€) β†’ (π‘₯ Β· 𝐴) ∈ 𝑋)
76adantlr 714 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) β†’ (π‘₯ Β· 𝐴) ∈ 𝑋)
8 odf1.4 . . . . . . . . 9 𝐹 = (π‘₯ ∈ β„€ ↦ (π‘₯ Β· 𝐴))
97, 8fmptd 7114 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ 𝐹:β„€βŸΆπ‘‹)
10 frn 6725 . . . . . . . 8 (𝐹:β„€βŸΆπ‘‹ β†’ ran 𝐹 βŠ† 𝑋)
112fvexi 6906 . . . . . . . . 9 𝑋 ∈ V
1211ssex 5322 . . . . . . . 8 (ran 𝐹 βŠ† 𝑋 β†’ ran 𝐹 ∈ V)
139, 10, 123syl 18 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ ran 𝐹 ∈ V)
14 elfzelz 13501 . . . . . . . . . . 11 (𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1)) β†’ 𝑦 ∈ β„€)
1514adantl 483 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ 𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))) β†’ 𝑦 ∈ β„€)
16 ovex 7442 . . . . . . . . . 10 (𝑦 Β· 𝐴) ∈ V
17 oveq1 7416 . . . . . . . . . . 11 (π‘₯ = 𝑦 β†’ (π‘₯ Β· 𝐴) = (𝑦 Β· 𝐴))
188, 17elrnmpt1s 5957 . . . . . . . . . 10 ((𝑦 ∈ β„€ ∧ (𝑦 Β· 𝐴) ∈ V) β†’ (𝑦 Β· 𝐴) ∈ ran 𝐹)
1915, 16, 18sylancl 587 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ 𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))) β†’ (𝑦 Β· 𝐴) ∈ ran 𝐹)
2019ralrimiva 3147 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ βˆ€π‘¦ ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))(𝑦 Β· 𝐴) ∈ ran 𝐹)
21 zmodfz 13858 . . . . . . . . . . . . 13 ((π‘₯ ∈ β„€ ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ (π‘₯ mod (π‘‚β€˜π΄)) ∈ (0...((π‘‚β€˜π΄) βˆ’ 1)))
2221ancoms 460 . . . . . . . . . . . 12 (((π‘‚β€˜π΄) ∈ β„• ∧ π‘₯ ∈ β„€) β†’ (π‘₯ mod (π‘‚β€˜π΄)) ∈ (0...((π‘‚β€˜π΄) βˆ’ 1)))
2322adantll 713 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) β†’ (π‘₯ mod (π‘‚β€˜π΄)) ∈ (0...((π‘‚β€˜π΄) βˆ’ 1)))
24 simpllr 775 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) ∧ 𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))) β†’ (π‘‚β€˜π΄) ∈ β„•)
25 simplr 768 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) ∧ 𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))) β†’ π‘₯ ∈ β„€)
2614adantl 483 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) ∧ 𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))) β†’ 𝑦 ∈ β„€)
27 moddvds 16208 . . . . . . . . . . . . . 14 (((π‘‚β€˜π΄) ∈ β„• ∧ π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€) β†’ ((π‘₯ mod (π‘‚β€˜π΄)) = (𝑦 mod (π‘‚β€˜π΄)) ↔ (π‘‚β€˜π΄) βˆ₯ (π‘₯ βˆ’ 𝑦)))
2824, 25, 26, 27syl3anc 1372 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) ∧ 𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))) β†’ ((π‘₯ mod (π‘‚β€˜π΄)) = (𝑦 mod (π‘‚β€˜π΄)) ↔ (π‘‚β€˜π΄) βˆ₯ (π‘₯ βˆ’ 𝑦)))
2926zred 12666 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) ∧ 𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))) β†’ 𝑦 ∈ ℝ)
3024nnrpd 13014 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) ∧ 𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))) β†’ (π‘‚β€˜π΄) ∈ ℝ+)
31 0z 12569 . . . . . . . . . . . . . . . . . . 19 0 ∈ β„€
32 nnz 12579 . . . . . . . . . . . . . . . . . . . . 21 ((π‘‚β€˜π΄) ∈ β„• β†’ (π‘‚β€˜π΄) ∈ β„€)
3332adantl 483 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ (π‘‚β€˜π΄) ∈ β„€)
3433adantr 482 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) β†’ (π‘‚β€˜π΄) ∈ β„€)
35 elfzm11 13572 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ β„€ ∧ (π‘‚β€˜π΄) ∈ β„€) β†’ (𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1)) ↔ (𝑦 ∈ β„€ ∧ 0 ≀ 𝑦 ∧ 𝑦 < (π‘‚β€˜π΄))))
3631, 34, 35sylancr 588 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) β†’ (𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1)) ↔ (𝑦 ∈ β„€ ∧ 0 ≀ 𝑦 ∧ 𝑦 < (π‘‚β€˜π΄))))
3736biimpa 478 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) ∧ 𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))) β†’ (𝑦 ∈ β„€ ∧ 0 ≀ 𝑦 ∧ 𝑦 < (π‘‚β€˜π΄)))
3837simp2d 1144 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) ∧ 𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))) β†’ 0 ≀ 𝑦)
3937simp3d 1145 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) ∧ 𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))) β†’ 𝑦 < (π‘‚β€˜π΄))
40 modid 13861 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℝ ∧ (π‘‚β€˜π΄) ∈ ℝ+) ∧ (0 ≀ 𝑦 ∧ 𝑦 < (π‘‚β€˜π΄))) β†’ (𝑦 mod (π‘‚β€˜π΄)) = 𝑦)
4129, 30, 38, 39, 40syl22anc 838 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) ∧ 𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))) β†’ (𝑦 mod (π‘‚β€˜π΄)) = 𝑦)
4241eqeq2d 2744 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) ∧ 𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))) β†’ ((π‘₯ mod (π‘‚β€˜π΄)) = (𝑦 mod (π‘‚β€˜π΄)) ↔ (π‘₯ mod (π‘‚β€˜π΄)) = 𝑦))
43 eqcom 2740 . . . . . . . . . . . . . 14 ((π‘₯ mod (π‘‚β€˜π΄)) = 𝑦 ↔ 𝑦 = (π‘₯ mod (π‘‚β€˜π΄)))
4442, 43bitrdi 287 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) ∧ 𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))) β†’ ((π‘₯ mod (π‘‚β€˜π΄)) = (𝑦 mod (π‘‚β€˜π΄)) ↔ 𝑦 = (π‘₯ mod (π‘‚β€˜π΄))))
45 simp-4l 782 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) ∧ 𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))) β†’ 𝐺 ∈ Grp)
46 simp-4r 783 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) ∧ 𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))) β†’ 𝐴 ∈ 𝑋)
47 odf1.2 . . . . . . . . . . . . . . 15 𝑂 = (odβ€˜πΊ)
48 eqid 2733 . . . . . . . . . . . . . . 15 (0gβ€˜πΊ) = (0gβ€˜πΊ)
492, 47, 3, 48odcong 19417 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) β†’ ((π‘‚β€˜π΄) βˆ₯ (π‘₯ βˆ’ 𝑦) ↔ (π‘₯ Β· 𝐴) = (𝑦 Β· 𝐴)))
5045, 46, 25, 26, 49syl112anc 1375 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) ∧ 𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))) β†’ ((π‘‚β€˜π΄) βˆ₯ (π‘₯ βˆ’ 𝑦) ↔ (π‘₯ Β· 𝐴) = (𝑦 Β· 𝐴)))
5128, 44, 503bitr3rd 310 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) ∧ 𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))) β†’ ((π‘₯ Β· 𝐴) = (𝑦 Β· 𝐴) ↔ 𝑦 = (π‘₯ mod (π‘‚β€˜π΄))))
5251ralrimiva 3147 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) β†’ βˆ€π‘¦ ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))((π‘₯ Β· 𝐴) = (𝑦 Β· 𝐴) ↔ 𝑦 = (π‘₯ mod (π‘‚β€˜π΄))))
53 reu6i 3725 . . . . . . . . . . 11 (((π‘₯ mod (π‘‚β€˜π΄)) ∈ (0...((π‘‚β€˜π΄) βˆ’ 1)) ∧ βˆ€π‘¦ ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))((π‘₯ Β· 𝐴) = (𝑦 Β· 𝐴) ↔ 𝑦 = (π‘₯ mod (π‘‚β€˜π΄)))) β†’ βˆƒ!𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))(π‘₯ Β· 𝐴) = (𝑦 Β· 𝐴))
5423, 52, 53syl2anc 585 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) ∧ π‘₯ ∈ β„€) β†’ βˆƒ!𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))(π‘₯ Β· 𝐴) = (𝑦 Β· 𝐴))
5554ralrimiva 3147 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ βˆ€π‘₯ ∈ β„€ βˆƒ!𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))(π‘₯ Β· 𝐴) = (𝑦 Β· 𝐴))
56 ovex 7442 . . . . . . . . . . 11 (π‘₯ Β· 𝐴) ∈ V
5756rgenw 3066 . . . . . . . . . 10 βˆ€π‘₯ ∈ β„€ (π‘₯ Β· 𝐴) ∈ V
58 eqeq1 2737 . . . . . . . . . . . 12 (𝑧 = (π‘₯ Β· 𝐴) β†’ (𝑧 = (𝑦 Β· 𝐴) ↔ (π‘₯ Β· 𝐴) = (𝑦 Β· 𝐴)))
5958reubidv 3395 . . . . . . . . . . 11 (𝑧 = (π‘₯ Β· 𝐴) β†’ (βˆƒ!𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))𝑧 = (𝑦 Β· 𝐴) ↔ βˆƒ!𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))(π‘₯ Β· 𝐴) = (𝑦 Β· 𝐴)))
608, 59ralrnmptw 7096 . . . . . . . . . 10 (βˆ€π‘₯ ∈ β„€ (π‘₯ Β· 𝐴) ∈ V β†’ (βˆ€π‘§ ∈ ran πΉβˆƒ!𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))𝑧 = (𝑦 Β· 𝐴) ↔ βˆ€π‘₯ ∈ β„€ βˆƒ!𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))(π‘₯ Β· 𝐴) = (𝑦 Β· 𝐴)))
6157, 60ax-mp 5 . . . . . . . . 9 (βˆ€π‘§ ∈ ran πΉβˆƒ!𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))𝑧 = (𝑦 Β· 𝐴) ↔ βˆ€π‘₯ ∈ β„€ βˆƒ!𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))(π‘₯ Β· 𝐴) = (𝑦 Β· 𝐴))
6255, 61sylibr 233 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ βˆ€π‘§ ∈ ran πΉβˆƒ!𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))𝑧 = (𝑦 Β· 𝐴))
63 eqid 2733 . . . . . . . . 9 (𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1)) ↦ (𝑦 Β· 𝐴)) = (𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1)) ↦ (𝑦 Β· 𝐴))
6463f1ompt 7111 . . . . . . . 8 ((𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1)) ↦ (𝑦 Β· 𝐴)):(0...((π‘‚β€˜π΄) βˆ’ 1))–1-1-ontoβ†’ran 𝐹 ↔ (βˆ€π‘¦ ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))(𝑦 Β· 𝐴) ∈ ran 𝐹 ∧ βˆ€π‘§ ∈ ran πΉβˆƒ!𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1))𝑧 = (𝑦 Β· 𝐴)))
6520, 62, 64sylanbrc 584 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ (𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1)) ↦ (𝑦 Β· 𝐴)):(0...((π‘‚β€˜π΄) βˆ’ 1))–1-1-ontoβ†’ran 𝐹)
66 f1oen2g 8964 . . . . . . 7 (((0...((π‘‚β€˜π΄) βˆ’ 1)) ∈ Fin ∧ ran 𝐹 ∈ V ∧ (𝑦 ∈ (0...((π‘‚β€˜π΄) βˆ’ 1)) ↦ (𝑦 Β· 𝐴)):(0...((π‘‚β€˜π΄) βˆ’ 1))–1-1-ontoβ†’ran 𝐹) β†’ (0...((π‘‚β€˜π΄) βˆ’ 1)) β‰ˆ ran 𝐹)
671, 13, 65, 66syl3anc 1372 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ (0...((π‘‚β€˜π΄) βˆ’ 1)) β‰ˆ ran 𝐹)
68 enfi 9190 . . . . . 6 ((0...((π‘‚β€˜π΄) βˆ’ 1)) β‰ˆ ran 𝐹 β†’ ((0...((π‘‚β€˜π΄) βˆ’ 1)) ∈ Fin ↔ ran 𝐹 ∈ Fin))
6967, 68syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ ((0...((π‘‚β€˜π΄) βˆ’ 1)) ∈ Fin ↔ ran 𝐹 ∈ Fin))
701, 69mpbid 231 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ ran 𝐹 ∈ Fin)
7170iftrued 4537 . . 3 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ if(ran 𝐹 ∈ Fin, (β™―β€˜ran 𝐹), 0) = (β™―β€˜ran 𝐹))
72 fz01en 13529 . . . . . 6 ((π‘‚β€˜π΄) ∈ β„€ β†’ (0...((π‘‚β€˜π΄) βˆ’ 1)) β‰ˆ (1...(π‘‚β€˜π΄)))
73 ensym 8999 . . . . . 6 ((0...((π‘‚β€˜π΄) βˆ’ 1)) β‰ˆ (1...(π‘‚β€˜π΄)) β†’ (1...(π‘‚β€˜π΄)) β‰ˆ (0...((π‘‚β€˜π΄) βˆ’ 1)))
7433, 72, 733syl 18 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ (1...(π‘‚β€˜π΄)) β‰ˆ (0...((π‘‚β€˜π΄) βˆ’ 1)))
75 entr 9002 . . . . 5 (((1...(π‘‚β€˜π΄)) β‰ˆ (0...((π‘‚β€˜π΄) βˆ’ 1)) ∧ (0...((π‘‚β€˜π΄) βˆ’ 1)) β‰ˆ ran 𝐹) β†’ (1...(π‘‚β€˜π΄)) β‰ˆ ran 𝐹)
7674, 67, 75syl2anc 585 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ (1...(π‘‚β€˜π΄)) β‰ˆ ran 𝐹)
77 fzfid 13938 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ (1...(π‘‚β€˜π΄)) ∈ Fin)
78 hashen 14307 . . . . 5 (((1...(π‘‚β€˜π΄)) ∈ Fin ∧ ran 𝐹 ∈ Fin) β†’ ((β™―β€˜(1...(π‘‚β€˜π΄))) = (β™―β€˜ran 𝐹) ↔ (1...(π‘‚β€˜π΄)) β‰ˆ ran 𝐹))
7977, 70, 78syl2anc 585 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ ((β™―β€˜(1...(π‘‚β€˜π΄))) = (β™―β€˜ran 𝐹) ↔ (1...(π‘‚β€˜π΄)) β‰ˆ ran 𝐹))
8076, 79mpbird 257 . . 3 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ (β™―β€˜(1...(π‘‚β€˜π΄))) = (β™―β€˜ran 𝐹))
81 nnnn0 12479 . . . . 5 ((π‘‚β€˜π΄) ∈ β„• β†’ (π‘‚β€˜π΄) ∈ β„•0)
8281adantl 483 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ (π‘‚β€˜π΄) ∈ β„•0)
83 hashfz1 14306 . . . 4 ((π‘‚β€˜π΄) ∈ β„•0 β†’ (β™―β€˜(1...(π‘‚β€˜π΄))) = (π‘‚β€˜π΄))
8482, 83syl 17 . . 3 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ (β™―β€˜(1...(π‘‚β€˜π΄))) = (π‘‚β€˜π΄))
8571, 80, 843eqtr2rd 2780 . 2 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) ∈ β„•) β†’ (π‘‚β€˜π΄) = if(ran 𝐹 ∈ Fin, (β™―β€˜ran 𝐹), 0))
86 simp3 1139 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (π‘‚β€˜π΄) = 0) β†’ (π‘‚β€˜π΄) = 0)
872, 47, 3, 8odinf 19431 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (π‘‚β€˜π΄) = 0) β†’ Β¬ ran 𝐹 ∈ Fin)
8887iffalsed 4540 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (π‘‚β€˜π΄) = 0) β†’ if(ran 𝐹 ∈ Fin, (β™―β€˜ran 𝐹), 0) = 0)
8986, 88eqtr4d 2776 . . 3 ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (π‘‚β€˜π΄) = 0) β†’ (π‘‚β€˜π΄) = if(ran 𝐹 ∈ Fin, (β™―β€˜ran 𝐹), 0))
90893expa 1119 . 2 (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (π‘‚β€˜π΄) = 0) β†’ (π‘‚β€˜π΄) = if(ran 𝐹 ∈ Fin, (β™―β€˜ran 𝐹), 0))
912, 47odcl 19404 . . . 4 (𝐴 ∈ 𝑋 β†’ (π‘‚β€˜π΄) ∈ β„•0)
9291adantl 483 . . 3 ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) β†’ (π‘‚β€˜π΄) ∈ β„•0)
93 elnn0 12474 . . 3 ((π‘‚β€˜π΄) ∈ β„•0 ↔ ((π‘‚β€˜π΄) ∈ β„• ∨ (π‘‚β€˜π΄) = 0))
9492, 93sylib 217 . 2 ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) β†’ ((π‘‚β€˜π΄) ∈ β„• ∨ (π‘‚β€˜π΄) = 0))
9585, 90, 94mpjaodan 958 1 ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) β†’ (π‘‚β€˜π΄) = if(ran 𝐹 ∈ Fin, (β™―β€˜ran 𝐹), 0))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∨ wo 846   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  βˆƒ!wreu 3375  Vcvv 3475   βŠ† wss 3949  ifcif 4529   class class class wbr 5149   ↦ cmpt 5232  ran crn 5678  βŸΆwf 6540  β€“1-1-ontoβ†’wf1o 6543  β€˜cfv 6544  (class class class)co 7409   β‰ˆ cen 8936  Fincfn 8939  β„cr 11109  0cc0 11110  1c1 11111   < clt 11248   ≀ cle 11249   βˆ’ cmin 11444  β„•cn 12212  β„•0cn0 12472  β„€cz 12558  β„+crp 12974  ...cfz 13484   mod cmo 13834  β™―chash 14290   βˆ₯ cdvds 16197  Basecbs 17144  0gc0g 17385  Grpcgrp 18819  .gcmg 18950  odcod 19392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-oadd 8470  df-omul 8471  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-oi 9505  df-card 9934  df-acn 9937  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-fz 13485  df-fl 13757  df-mod 13835  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-dvds 16198  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-grp 18822  df-minusg 18823  df-sbg 18824  df-mulg 18951  df-od 19396
This theorem is referenced by:  oddvds2  19434  cyggenod  19752  cyggenod2  19753  cycsubggenodd  19979
  Copyright terms: Public domain W3C validator