Step | Hyp | Ref
| Expression |
1 | | fzfid 13691 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → (0...((𝑂‘𝐴) − 1)) ∈ Fin) |
2 | | odf1.1 |
. . . . . . . . . . . . 13
⊢ 𝑋 = (Base‘𝐺) |
3 | | odf1.3 |
. . . . . . . . . . . . 13
⊢ · =
(.g‘𝐺) |
4 | 2, 3 | mulgcl 18719 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → (𝑥 · 𝐴) ∈ 𝑋) |
5 | 4 | 3expa 1117 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) ∧ 𝐴 ∈ 𝑋) → (𝑥 · 𝐴) ∈ 𝑋) |
6 | 5 | an32s 649 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑋) |
7 | 6 | adantlr 712 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑋) |
8 | | odf1.4 |
. . . . . . . . 9
⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) |
9 | 7, 8 | fmptd 6985 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → 𝐹:ℤ⟶𝑋) |
10 | | frn 6605 |
. . . . . . . 8
⊢ (𝐹:ℤ⟶𝑋 → ran 𝐹 ⊆ 𝑋) |
11 | 2 | fvexi 6785 |
. . . . . . . . 9
⊢ 𝑋 ∈ V |
12 | 11 | ssex 5249 |
. . . . . . . 8
⊢ (ran
𝐹 ⊆ 𝑋 → ran 𝐹 ∈ V) |
13 | 9, 10, 12 | 3syl 18 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → ran 𝐹 ∈ V) |
14 | | elfzelz 13255 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (0...((𝑂‘𝐴) − 1)) → 𝑦 ∈ ℤ) |
15 | 14 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → 𝑦 ∈ ℤ) |
16 | | ovex 7304 |
. . . . . . . . . 10
⊢ (𝑦 · 𝐴) ∈ V |
17 | | oveq1 7278 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴)) |
18 | 8, 17 | elrnmpt1s 5865 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℤ ∧ (𝑦 · 𝐴) ∈ V) → (𝑦 · 𝐴) ∈ ran 𝐹) |
19 | 15, 16, 18 | sylancl 586 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → (𝑦 · 𝐴) ∈ ran 𝐹) |
20 | 19 | ralrimiva 3110 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → ∀𝑦 ∈ (0...((𝑂‘𝐴) − 1))(𝑦 · 𝐴) ∈ ran 𝐹) |
21 | | zmodfz 13611 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℤ ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑥 mod (𝑂‘𝐴)) ∈ (0...((𝑂‘𝐴) − 1))) |
22 | 21 | ancoms 459 |
. . . . . . . . . . . 12
⊢ (((𝑂‘𝐴) ∈ ℕ ∧ 𝑥 ∈ ℤ) → (𝑥 mod (𝑂‘𝐴)) ∈ (0...((𝑂‘𝐴) − 1))) |
23 | 22 | adantll 711 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 mod (𝑂‘𝐴)) ∈ (0...((𝑂‘𝐴) − 1))) |
24 | | simpllr 773 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → (𝑂‘𝐴) ∈ ℕ) |
25 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → 𝑥 ∈ ℤ) |
26 | 14 | adantl 482 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → 𝑦 ∈ ℤ) |
27 | | moddvds 15972 |
. . . . . . . . . . . . . 14
⊢ (((𝑂‘𝐴) ∈ ℕ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 mod (𝑂‘𝐴)) = (𝑦 mod (𝑂‘𝐴)) ↔ (𝑂‘𝐴) ∥ (𝑥 − 𝑦))) |
28 | 24, 25, 26, 27 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → ((𝑥 mod (𝑂‘𝐴)) = (𝑦 mod (𝑂‘𝐴)) ↔ (𝑂‘𝐴) ∥ (𝑥 − 𝑦))) |
29 | 26 | zred 12425 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → 𝑦 ∈ ℝ) |
30 | 24 | nnrpd 12769 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → (𝑂‘𝐴) ∈
ℝ+) |
31 | | 0z 12330 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℤ |
32 | | nnz 12342 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑂‘𝐴) ∈ ℕ → (𝑂‘𝐴) ∈ ℤ) |
33 | 32 | adantl 482 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈ ℤ) |
34 | 33 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑂‘𝐴) ∈ ℤ) |
35 | | elfzm11 13326 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((0
∈ ℤ ∧ (𝑂‘𝐴) ∈ ℤ) → (𝑦 ∈ (0...((𝑂‘𝐴) − 1)) ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < (𝑂‘𝐴)))) |
36 | 31, 34, 35 | sylancr 587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑦 ∈ (0...((𝑂‘𝐴) − 1)) ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < (𝑂‘𝐴)))) |
37 | 36 | biimpa 477 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦 ∧ 𝑦 < (𝑂‘𝐴))) |
38 | 37 | simp2d 1142 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → 0 ≤ 𝑦) |
39 | 37 | simp3d 1143 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → 𝑦 < (𝑂‘𝐴)) |
40 | | modid 13614 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 ∈ ℝ ∧ (𝑂‘𝐴) ∈ ℝ+) ∧ (0 ≤
𝑦 ∧ 𝑦 < (𝑂‘𝐴))) → (𝑦 mod (𝑂‘𝐴)) = 𝑦) |
41 | 29, 30, 38, 39, 40 | syl22anc 836 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → (𝑦 mod (𝑂‘𝐴)) = 𝑦) |
42 | 41 | eqeq2d 2751 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → ((𝑥 mod (𝑂‘𝐴)) = (𝑦 mod (𝑂‘𝐴)) ↔ (𝑥 mod (𝑂‘𝐴)) = 𝑦)) |
43 | | eqcom 2747 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 mod (𝑂‘𝐴)) = 𝑦 ↔ 𝑦 = (𝑥 mod (𝑂‘𝐴))) |
44 | 42, 43 | bitrdi 287 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → ((𝑥 mod (𝑂‘𝐴)) = (𝑦 mod (𝑂‘𝐴)) ↔ 𝑦 = (𝑥 mod (𝑂‘𝐴)))) |
45 | | simp-4l 780 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → 𝐺 ∈ Grp) |
46 | | simp-4r 781 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → 𝐴 ∈ 𝑋) |
47 | | odf1.2 |
. . . . . . . . . . . . . . 15
⊢ 𝑂 = (od‘𝐺) |
48 | | eqid 2740 |
. . . . . . . . . . . . . . 15
⊢
(0g‘𝐺) = (0g‘𝐺) |
49 | 2, 47, 3, 48 | odcong 19155 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂‘𝐴) ∥ (𝑥 − 𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴))) |
50 | 45, 46, 25, 26, 49 | syl112anc 1373 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → ((𝑂‘𝐴) ∥ (𝑥 − 𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴))) |
51 | 28, 44, 50 | 3bitr3rd 310 |
. . . . . . . . . . . 12
⊢
(((((𝐺 ∈ Grp
∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂‘𝐴) − 1))) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑦 = (𝑥 mod (𝑂‘𝐴)))) |
52 | 51 | ralrimiva 3110 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ∀𝑦 ∈ (0...((𝑂‘𝐴) − 1))((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑦 = (𝑥 mod (𝑂‘𝐴)))) |
53 | | reu6i 3667 |
. . . . . . . . . . 11
⊢ (((𝑥 mod (𝑂‘𝐴)) ∈ (0...((𝑂‘𝐴) − 1)) ∧ ∀𝑦 ∈ (0...((𝑂‘𝐴) − 1))((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑦 = (𝑥 mod (𝑂‘𝐴)))) → ∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴)) |
54 | 23, 52, 53 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴)) |
55 | 54 | ralrimiva 3110 |
. . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → ∀𝑥 ∈ ℤ ∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴)) |
56 | | ovex 7304 |
. . . . . . . . . . 11
⊢ (𝑥 · 𝐴) ∈ V |
57 | 56 | rgenw 3078 |
. . . . . . . . . 10
⊢
∀𝑥 ∈
ℤ (𝑥 · 𝐴) ∈ V |
58 | | eqeq1 2744 |
. . . . . . . . . . . 12
⊢ (𝑧 = (𝑥 · 𝐴) → (𝑧 = (𝑦 · 𝐴) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴))) |
59 | 58 | reubidv 3322 |
. . . . . . . . . . 11
⊢ (𝑧 = (𝑥 · 𝐴) → (∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))𝑧 = (𝑦 · 𝐴) ↔ ∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴))) |
60 | 8, 59 | ralrnmptw 6967 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
ℤ (𝑥 · 𝐴) ∈ V → (∀𝑧 ∈ ran 𝐹∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))𝑧 = (𝑦 · 𝐴) ↔ ∀𝑥 ∈ ℤ ∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴))) |
61 | 57, 60 | ax-mp 5 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
ran 𝐹∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))𝑧 = (𝑦 · 𝐴) ↔ ∀𝑥 ∈ ℤ ∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴)) |
62 | 55, 61 | sylibr 233 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → ∀𝑧 ∈ ran 𝐹∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))𝑧 = (𝑦 · 𝐴)) |
63 | | eqid 2740 |
. . . . . . . . 9
⊢ (𝑦 ∈ (0...((𝑂‘𝐴) − 1)) ↦ (𝑦 · 𝐴)) = (𝑦 ∈ (0...((𝑂‘𝐴) − 1)) ↦ (𝑦 · 𝐴)) |
64 | 63 | f1ompt 6982 |
. . . . . . . 8
⊢ ((𝑦 ∈ (0...((𝑂‘𝐴) − 1)) ↦ (𝑦 · 𝐴)):(0...((𝑂‘𝐴) − 1))–1-1-onto→ran
𝐹 ↔ (∀𝑦 ∈ (0...((𝑂‘𝐴) − 1))(𝑦 · 𝐴) ∈ ran 𝐹 ∧ ∀𝑧 ∈ ran 𝐹∃!𝑦 ∈ (0...((𝑂‘𝐴) − 1))𝑧 = (𝑦 · 𝐴))) |
65 | 20, 62, 64 | sylanbrc 583 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑦 ∈ (0...((𝑂‘𝐴) − 1)) ↦ (𝑦 · 𝐴)):(0...((𝑂‘𝐴) − 1))–1-1-onto→ran
𝐹) |
66 | | f1oen2g 8739 |
. . . . . . 7
⊢
(((0...((𝑂‘𝐴) − 1)) ∈ Fin ∧ ran 𝐹 ∈ V ∧ (𝑦 ∈ (0...((𝑂‘𝐴) − 1)) ↦ (𝑦 · 𝐴)):(0...((𝑂‘𝐴) − 1))–1-1-onto→ran
𝐹) → (0...((𝑂‘𝐴) − 1)) ≈ ran 𝐹) |
67 | 1, 13, 65, 66 | syl3anc 1370 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → (0...((𝑂‘𝐴) − 1)) ≈ ran 𝐹) |
68 | | enfi 8955 |
. . . . . 6
⊢
((0...((𝑂‘𝐴) − 1)) ≈ ran 𝐹 → ((0...((𝑂‘𝐴) − 1)) ∈ Fin ↔ ran 𝐹 ∈ Fin)) |
69 | 67, 68 | syl 17 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → ((0...((𝑂‘𝐴) − 1)) ∈ Fin ↔ ran 𝐹 ∈ Fin)) |
70 | 1, 69 | mpbid 231 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → ran 𝐹 ∈ Fin) |
71 | 70 | iftrued 4473 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → if(ran 𝐹 ∈ Fin, (♯‘ran
𝐹), 0) = (♯‘ran
𝐹)) |
72 | | fz01en 13283 |
. . . . . 6
⊢ ((𝑂‘𝐴) ∈ ℤ → (0...((𝑂‘𝐴) − 1)) ≈ (1...(𝑂‘𝐴))) |
73 | | ensym 8772 |
. . . . . 6
⊢
((0...((𝑂‘𝐴) − 1)) ≈ (1...(𝑂‘𝐴)) → (1...(𝑂‘𝐴)) ≈ (0...((𝑂‘𝐴) − 1))) |
74 | 33, 72, 73 | 3syl 18 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → (1...(𝑂‘𝐴)) ≈ (0...((𝑂‘𝐴) − 1))) |
75 | | entr 8775 |
. . . . 5
⊢
(((1...(𝑂‘𝐴)) ≈ (0...((𝑂‘𝐴) − 1)) ∧ (0...((𝑂‘𝐴) − 1)) ≈ ran 𝐹) → (1...(𝑂‘𝐴)) ≈ ran 𝐹) |
76 | 74, 67, 75 | syl2anc 584 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → (1...(𝑂‘𝐴)) ≈ ran 𝐹) |
77 | | fzfid 13691 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → (1...(𝑂‘𝐴)) ∈ Fin) |
78 | | hashen 14059 |
. . . . 5
⊢
(((1...(𝑂‘𝐴)) ∈ Fin ∧ ran 𝐹 ∈ Fin) →
((♯‘(1...(𝑂‘𝐴))) = (♯‘ran 𝐹) ↔ (1...(𝑂‘𝐴)) ≈ ran 𝐹)) |
79 | 77, 70, 78 | syl2anc 584 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) →
((♯‘(1...(𝑂‘𝐴))) = (♯‘ran 𝐹) ↔ (1...(𝑂‘𝐴)) ≈ ran 𝐹)) |
80 | 76, 79 | mpbird 256 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) →
(♯‘(1...(𝑂‘𝐴))) = (♯‘ran 𝐹)) |
81 | | nnnn0 12240 |
. . . . 5
⊢ ((𝑂‘𝐴) ∈ ℕ → (𝑂‘𝐴) ∈
ℕ0) |
82 | 81 | adantl 482 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) ∈
ℕ0) |
83 | | hashfz1 14058 |
. . . 4
⊢ ((𝑂‘𝐴) ∈ ℕ0 →
(♯‘(1...(𝑂‘𝐴))) = (𝑂‘𝐴)) |
84 | 82, 83 | syl 17 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) →
(♯‘(1...(𝑂‘𝐴))) = (𝑂‘𝐴)) |
85 | 71, 80, 84 | 3eqtr2rd 2787 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) ∈ ℕ) → (𝑂‘𝐴) = if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0)) |
86 | | simp3 1137 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑂‘𝐴) = 0) |
87 | 2, 47, 3, 8 | odinf 19168 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → ¬ ran 𝐹 ∈ Fin) |
88 | 87 | iffalsed 4476 |
. . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0) = 0) |
89 | 86, 88 | eqtr4d 2783 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ (𝑂‘𝐴) = 0) → (𝑂‘𝐴) = if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0)) |
90 | 89 | 3expa 1117 |
. 2
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑂‘𝐴) = 0) → (𝑂‘𝐴) = if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0)) |
91 | 2, 47 | odcl 19142 |
. . . 4
⊢ (𝐴 ∈ 𝑋 → (𝑂‘𝐴) ∈
ℕ0) |
92 | 91 | adantl 482 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) ∈
ℕ0) |
93 | | elnn0 12235 |
. . 3
⊢ ((𝑂‘𝐴) ∈ ℕ0 ↔ ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) |
94 | 92, 93 | sylib 217 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑂‘𝐴) ∈ ℕ ∨ (𝑂‘𝐴) = 0)) |
95 | 85, 90, 94 | mpjaodan 956 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0)) |