MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfod2 Structured version   Visualization version   GIF version

Theorem dfod2 18365
Description: An alternative definition of the order of a group element is as the cardinality of the cyclic subgroup generated by the element. (Contributed by Mario Carneiro, 14-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
odf1.1 𝑋 = (Base‘𝐺)
odf1.2 𝑂 = (od‘𝐺)
odf1.3 · = (.g𝐺)
odf1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
dfod2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) = if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝑂   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem dfod2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13091 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (0...((𝑂𝐴) − 1)) ∈ Fin)
2 odf1.1 . . . . . . . . . . . . 13 𝑋 = (Base‘𝐺)
3 odf1.3 . . . . . . . . . . . . 13 · = (.g𝐺)
42, 3mulgcl 17945 . . . . . . . . . . . 12 ((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
543expa 1108 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝑥 ∈ ℤ) ∧ 𝐴𝑋) → (𝑥 · 𝐴) ∈ 𝑋)
65an32s 642 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑋)
76adantlr 705 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑋)
8 odf1.4 . . . . . . . . 9 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
97, 8fmptd 6648 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → 𝐹:ℤ⟶𝑋)
10 frn 6297 . . . . . . . 8 (𝐹:ℤ⟶𝑋 → ran 𝐹𝑋)
112fvexi 6460 . . . . . . . . 9 𝑋 ∈ V
1211ssex 5039 . . . . . . . 8 (ran 𝐹𝑋 → ran 𝐹 ∈ V)
139, 10, 123syl 18 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → ran 𝐹 ∈ V)
14 elfzelz 12659 . . . . . . . . . . 11 (𝑦 ∈ (0...((𝑂𝐴) − 1)) → 𝑦 ∈ ℤ)
1514adantl 475 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → 𝑦 ∈ ℤ)
16 ovex 6954 . . . . . . . . . 10 (𝑦 · 𝐴) ∈ V
17 oveq1 6929 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝑥 · 𝐴) = (𝑦 · 𝐴))
188, 17elrnmpt1s 5619 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ (𝑦 · 𝐴) ∈ V) → (𝑦 · 𝐴) ∈ ran 𝐹)
1915, 16, 18sylancl 580 . . . . . . . . 9 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → (𝑦 · 𝐴) ∈ ran 𝐹)
2019ralrimiva 3148 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → ∀𝑦 ∈ (0...((𝑂𝐴) − 1))(𝑦 · 𝐴) ∈ ran 𝐹)
21 zmodfz 13011 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ (𝑂𝐴) ∈ ℕ) → (𝑥 mod (𝑂𝐴)) ∈ (0...((𝑂𝐴) − 1)))
2221ancoms 452 . . . . . . . . . . . 12 (((𝑂𝐴) ∈ ℕ ∧ 𝑥 ∈ ℤ) → (𝑥 mod (𝑂𝐴)) ∈ (0...((𝑂𝐴) − 1)))
2322adantll 704 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑥 mod (𝑂𝐴)) ∈ (0...((𝑂𝐴) − 1)))
24 simpllr 766 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → (𝑂𝐴) ∈ ℕ)
25 simplr 759 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → 𝑥 ∈ ℤ)
2614adantl 475 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → 𝑦 ∈ ℤ)
27 moddvds 15398 . . . . . . . . . . . . . 14 (((𝑂𝐴) ∈ ℕ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 mod (𝑂𝐴)) = (𝑦 mod (𝑂𝐴)) ↔ (𝑂𝐴) ∥ (𝑥𝑦)))
2824, 25, 26, 27syl3anc 1439 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → ((𝑥 mod (𝑂𝐴)) = (𝑦 mod (𝑂𝐴)) ↔ (𝑂𝐴) ∥ (𝑥𝑦)))
2926zred 11834 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → 𝑦 ∈ ℝ)
3024nnrpd 12179 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → (𝑂𝐴) ∈ ℝ+)
31 0z 11739 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℤ
32 nnz 11751 . . . . . . . . . . . . . . . . . . . . 21 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℤ)
3332adantl 475 . . . . . . . . . . . . . . . . . . . 20 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℤ)
3433adantr 474 . . . . . . . . . . . . . . . . . . 19 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑂𝐴) ∈ ℤ)
35 elfzm11 12729 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ ℤ ∧ (𝑂𝐴) ∈ ℤ) → (𝑦 ∈ (0...((𝑂𝐴) − 1)) ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < (𝑂𝐴))))
3631, 34, 35sylancr 581 . . . . . . . . . . . . . . . . . 18 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → (𝑦 ∈ (0...((𝑂𝐴) − 1)) ↔ (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < (𝑂𝐴))))
3736biimpa 470 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → (𝑦 ∈ ℤ ∧ 0 ≤ 𝑦𝑦 < (𝑂𝐴)))
3837simp2d 1134 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → 0 ≤ 𝑦)
3937simp3d 1135 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → 𝑦 < (𝑂𝐴))
40 modid 13014 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℝ ∧ (𝑂𝐴) ∈ ℝ+) ∧ (0 ≤ 𝑦𝑦 < (𝑂𝐴))) → (𝑦 mod (𝑂𝐴)) = 𝑦)
4129, 30, 38, 39, 40syl22anc 829 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → (𝑦 mod (𝑂𝐴)) = 𝑦)
4241eqeq2d 2788 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → ((𝑥 mod (𝑂𝐴)) = (𝑦 mod (𝑂𝐴)) ↔ (𝑥 mod (𝑂𝐴)) = 𝑦))
43 eqcom 2785 . . . . . . . . . . . . . 14 ((𝑥 mod (𝑂𝐴)) = 𝑦𝑦 = (𝑥 mod (𝑂𝐴)))
4442, 43syl6bb 279 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → ((𝑥 mod (𝑂𝐴)) = (𝑦 mod (𝑂𝐴)) ↔ 𝑦 = (𝑥 mod (𝑂𝐴))))
45 simp-4l 773 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → 𝐺 ∈ Grp)
46 simp-4r 774 . . . . . . . . . . . . . 14 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → 𝐴𝑋)
47 odf1.2 . . . . . . . . . . . . . . 15 𝑂 = (od‘𝐺)
48 eqid 2778 . . . . . . . . . . . . . . 15 (0g𝐺) = (0g𝐺)
492, 47, 3, 48odcong 18352 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
5045, 46, 25, 26, 49syl112anc 1442 . . . . . . . . . . . . 13 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → ((𝑂𝐴) ∥ (𝑥𝑦) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
5128, 44, 503bitr3rd 302 . . . . . . . . . . . 12 (((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) ∧ 𝑦 ∈ (0...((𝑂𝐴) − 1))) → ((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑦 = (𝑥 mod (𝑂𝐴))))
5251ralrimiva 3148 . . . . . . . . . . 11 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ∀𝑦 ∈ (0...((𝑂𝐴) − 1))((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑦 = (𝑥 mod (𝑂𝐴))))
53 reu6i 3609 . . . . . . . . . . 11 (((𝑥 mod (𝑂𝐴)) ∈ (0...((𝑂𝐴) − 1)) ∧ ∀𝑦 ∈ (0...((𝑂𝐴) − 1))((𝑥 · 𝐴) = (𝑦 · 𝐴) ↔ 𝑦 = (𝑥 mod (𝑂𝐴)))) → ∃!𝑦 ∈ (0...((𝑂𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴))
5423, 52, 53syl2anc 579 . . . . . . . . . 10 ((((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) ∧ 𝑥 ∈ ℤ) → ∃!𝑦 ∈ (0...((𝑂𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴))
5554ralrimiva 3148 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → ∀𝑥 ∈ ℤ ∃!𝑦 ∈ (0...((𝑂𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴))
56 ovex 6954 . . . . . . . . . . 11 (𝑥 · 𝐴) ∈ V
5756rgenw 3106 . . . . . . . . . 10 𝑥 ∈ ℤ (𝑥 · 𝐴) ∈ V
58 eqeq1 2782 . . . . . . . . . . . 12 (𝑧 = (𝑥 · 𝐴) → (𝑧 = (𝑦 · 𝐴) ↔ (𝑥 · 𝐴) = (𝑦 · 𝐴)))
5958reubidv 3314 . . . . . . . . . . 11 (𝑧 = (𝑥 · 𝐴) → (∃!𝑦 ∈ (0...((𝑂𝐴) − 1))𝑧 = (𝑦 · 𝐴) ↔ ∃!𝑦 ∈ (0...((𝑂𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴)))
608, 59ralrnmpt 6632 . . . . . . . . . 10 (∀𝑥 ∈ ℤ (𝑥 · 𝐴) ∈ V → (∀𝑧 ∈ ran 𝐹∃!𝑦 ∈ (0...((𝑂𝐴) − 1))𝑧 = (𝑦 · 𝐴) ↔ ∀𝑥 ∈ ℤ ∃!𝑦 ∈ (0...((𝑂𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴)))
6157, 60ax-mp 5 . . . . . . . . 9 (∀𝑧 ∈ ran 𝐹∃!𝑦 ∈ (0...((𝑂𝐴) − 1))𝑧 = (𝑦 · 𝐴) ↔ ∀𝑥 ∈ ℤ ∃!𝑦 ∈ (0...((𝑂𝐴) − 1))(𝑥 · 𝐴) = (𝑦 · 𝐴))
6255, 61sylibr 226 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → ∀𝑧 ∈ ran 𝐹∃!𝑦 ∈ (0...((𝑂𝐴) − 1))𝑧 = (𝑦 · 𝐴))
63 eqid 2778 . . . . . . . . 9 (𝑦 ∈ (0...((𝑂𝐴) − 1)) ↦ (𝑦 · 𝐴)) = (𝑦 ∈ (0...((𝑂𝐴) − 1)) ↦ (𝑦 · 𝐴))
6463f1ompt 6645 . . . . . . . 8 ((𝑦 ∈ (0...((𝑂𝐴) − 1)) ↦ (𝑦 · 𝐴)):(0...((𝑂𝐴) − 1))–1-1-onto→ran 𝐹 ↔ (∀𝑦 ∈ (0...((𝑂𝐴) − 1))(𝑦 · 𝐴) ∈ ran 𝐹 ∧ ∀𝑧 ∈ ran 𝐹∃!𝑦 ∈ (0...((𝑂𝐴) − 1))𝑧 = (𝑦 · 𝐴)))
6520, 62, 64sylanbrc 578 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (𝑦 ∈ (0...((𝑂𝐴) − 1)) ↦ (𝑦 · 𝐴)):(0...((𝑂𝐴) − 1))–1-1-onto→ran 𝐹)
66 f1oen2g 8258 . . . . . . 7 (((0...((𝑂𝐴) − 1)) ∈ Fin ∧ ran 𝐹 ∈ V ∧ (𝑦 ∈ (0...((𝑂𝐴) − 1)) ↦ (𝑦 · 𝐴)):(0...((𝑂𝐴) − 1))–1-1-onto→ran 𝐹) → (0...((𝑂𝐴) − 1)) ≈ ran 𝐹)
671, 13, 65, 66syl3anc 1439 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (0...((𝑂𝐴) − 1)) ≈ ran 𝐹)
68 enfi 8464 . . . . . 6 ((0...((𝑂𝐴) − 1)) ≈ ran 𝐹 → ((0...((𝑂𝐴) − 1)) ∈ Fin ↔ ran 𝐹 ∈ Fin))
6967, 68syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → ((0...((𝑂𝐴) − 1)) ∈ Fin ↔ ran 𝐹 ∈ Fin))
701, 69mpbid 224 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → ran 𝐹 ∈ Fin)
7170iftrued 4315 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0) = (♯‘ran 𝐹))
72 fz01en 12686 . . . . . 6 ((𝑂𝐴) ∈ ℤ → (0...((𝑂𝐴) − 1)) ≈ (1...(𝑂𝐴)))
73 ensym 8290 . . . . . 6 ((0...((𝑂𝐴) − 1)) ≈ (1...(𝑂𝐴)) → (1...(𝑂𝐴)) ≈ (0...((𝑂𝐴) − 1)))
7433, 72, 733syl 18 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (1...(𝑂𝐴)) ≈ (0...((𝑂𝐴) − 1)))
75 entr 8293 . . . . 5 (((1...(𝑂𝐴)) ≈ (0...((𝑂𝐴) − 1)) ∧ (0...((𝑂𝐴) − 1)) ≈ ran 𝐹) → (1...(𝑂𝐴)) ≈ ran 𝐹)
7674, 67, 75syl2anc 579 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (1...(𝑂𝐴)) ≈ ran 𝐹)
77 fzfid 13091 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (1...(𝑂𝐴)) ∈ Fin)
78 hashen 13452 . . . . 5 (((1...(𝑂𝐴)) ∈ Fin ∧ ran 𝐹 ∈ Fin) → ((♯‘(1...(𝑂𝐴))) = (♯‘ran 𝐹) ↔ (1...(𝑂𝐴)) ≈ ran 𝐹))
7977, 70, 78syl2anc 579 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → ((♯‘(1...(𝑂𝐴))) = (♯‘ran 𝐹) ↔ (1...(𝑂𝐴)) ≈ ran 𝐹))
8076, 79mpbird 249 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (♯‘(1...(𝑂𝐴))) = (♯‘ran 𝐹))
81 nnnn0 11650 . . . . 5 ((𝑂𝐴) ∈ ℕ → (𝑂𝐴) ∈ ℕ0)
8281adantl 475 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) ∈ ℕ0)
83 hashfz1 13451 . . . 4 ((𝑂𝐴) ∈ ℕ0 → (♯‘(1...(𝑂𝐴))) = (𝑂𝐴))
8482, 83syl 17 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (♯‘(1...(𝑂𝐴))) = (𝑂𝐴))
8571, 80, 843eqtr2rd 2821 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) ∈ ℕ) → (𝑂𝐴) = if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0))
86 simp3 1129 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑂𝐴) = 0)
872, 47, 3, 8odinf 18364 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → ¬ ran 𝐹 ∈ Fin)
8887iffalsed 4318 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0) = 0)
8986, 88eqtr4d 2817 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (𝑂𝐴) = 0) → (𝑂𝐴) = if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0))
90893expa 1108 . 2 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑂𝐴) = 0) → (𝑂𝐴) = if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0))
912, 47odcl 18339 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
9291adantl 475 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) ∈ ℕ0)
93 elnn0 11644 . . 3 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
9492, 93sylib 210 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
9585, 90, 94mpjaodan 944 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) = if(ran 𝐹 ∈ Fin, (♯‘ran 𝐹), 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 836  w3a 1071   = wceq 1601  wcel 2107  wral 3090  ∃!wreu 3092  Vcvv 3398  wss 3792  ifcif 4307   class class class wbr 4886  cmpt 4965  ran crn 5356  wf 6131  1-1-ontowf1o 6134  cfv 6135  (class class class)co 6922  cen 8238  Fincfn 8241  cr 10271  0cc0 10272  1c1 10273   < clt 10411  cle 10412  cmin 10606  cn 11374  0cn0 11642  cz 11728  +crp 12137  ...cfz 12643   mod cmo 12987  chash 13435  cdvds 15387  Basecbs 16255  0gc0g 16486  Grpcgrp 17809  .gcmg 17927  odcod 18328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-omul 7848  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-acn 9101  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-dvds 15388  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-minusg 17813  df-sbg 17814  df-mulg 17928  df-od 18332
This theorem is referenced by:  oddvds2  18367  cyggenod  18672  cyggenod2  18673
  Copyright terms: Public domain W3C validator