| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > pjhth | Structured version Visualization version GIF version | ||
| Description: Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pjhth | ⊢ (𝐻 ∈ Cℋ → (𝐻 +ℋ (⊥‘𝐻)) = ℋ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chsh 31210 | . . 3 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
| 2 | shocsh 31270 | . . 3 ⊢ (𝐻 ∈ Sℋ → (⊥‘𝐻) ∈ Sℋ ) | |
| 3 | shsss 31299 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ (⊥‘𝐻) ∈ Sℋ ) → (𝐻 +ℋ (⊥‘𝐻)) ⊆ ℋ) | |
| 4 | 1, 2, 3 | syl2anc2 585 | . 2 ⊢ (𝐻 ∈ Cℋ → (𝐻 +ℋ (⊥‘𝐻)) ⊆ ℋ) |
| 5 | fveq2 6881 | . . . . . . . 8 ⊢ (𝐻 = if(𝐻 ∈ Cℋ , 𝐻, ℋ) → (⊥‘𝐻) = (⊥‘if(𝐻 ∈ Cℋ , 𝐻, ℋ))) | |
| 6 | 5 | rexeqdv 3310 | . . . . . . 7 ⊢ (𝐻 = if(𝐻 ∈ Cℋ , 𝐻, ℋ) → (∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧) ↔ ∃𝑧 ∈ (⊥‘if(𝐻 ∈ Cℋ , 𝐻, ℋ))𝑥 = (𝑦 +ℎ 𝑧))) |
| 7 | 6 | rexeqbi1dv 3322 | . . . . . 6 ⊢ (𝐻 = if(𝐻 ∈ Cℋ , 𝐻, ℋ) → (∃𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧) ↔ ∃𝑦 ∈ if (𝐻 ∈ Cℋ , 𝐻, ℋ)∃𝑧 ∈ (⊥‘if(𝐻 ∈ Cℋ , 𝐻, ℋ))𝑥 = (𝑦 +ℎ 𝑧))) |
| 8 | 7 | imbi2d 340 | . . . . 5 ⊢ (𝐻 = if(𝐻 ∈ Cℋ , 𝐻, ℋ) → ((𝑥 ∈ ℋ → ∃𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧)) ↔ (𝑥 ∈ ℋ → ∃𝑦 ∈ if (𝐻 ∈ Cℋ , 𝐻, ℋ)∃𝑧 ∈ (⊥‘if(𝐻 ∈ Cℋ , 𝐻, ℋ))𝑥 = (𝑦 +ℎ 𝑧)))) |
| 9 | ifchhv 31230 | . . . . . 6 ⊢ if(𝐻 ∈ Cℋ , 𝐻, ℋ) ∈ Cℋ | |
| 10 | id 22 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → 𝑥 ∈ ℋ) | |
| 11 | 9, 10 | pjhthlem2 31378 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ∃𝑦 ∈ if (𝐻 ∈ Cℋ , 𝐻, ℋ)∃𝑧 ∈ (⊥‘if(𝐻 ∈ Cℋ , 𝐻, ℋ))𝑥 = (𝑦 +ℎ 𝑧)) |
| 12 | 8, 11 | dedth 4564 | . . . 4 ⊢ (𝐻 ∈ Cℋ → (𝑥 ∈ ℋ → ∃𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧))) |
| 13 | shsel 31300 | . . . . 5 ⊢ ((𝐻 ∈ Sℋ ∧ (⊥‘𝐻) ∈ Sℋ ) → (𝑥 ∈ (𝐻 +ℋ (⊥‘𝐻)) ↔ ∃𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧))) | |
| 14 | 1, 2, 13 | syl2anc2 585 | . . . 4 ⊢ (𝐻 ∈ Cℋ → (𝑥 ∈ (𝐻 +ℋ (⊥‘𝐻)) ↔ ∃𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧))) |
| 15 | 12, 14 | sylibrd 259 | . . 3 ⊢ (𝐻 ∈ Cℋ → (𝑥 ∈ ℋ → 𝑥 ∈ (𝐻 +ℋ (⊥‘𝐻)))) |
| 16 | 15 | ssrdv 3969 | . 2 ⊢ (𝐻 ∈ Cℋ → ℋ ⊆ (𝐻 +ℋ (⊥‘𝐻))) |
| 17 | 4, 16 | eqssd 3981 | 1 ⊢ (𝐻 ∈ Cℋ → (𝐻 +ℋ (⊥‘𝐻)) = ℋ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 ⊆ wss 3931 ifcif 4505 ‘cfv 6536 (class class class)co 7410 ℋchba 30905 +ℎ cva 30906 Sℋ csh 30914 Cℋ cch 30915 ⊥cort 30916 +ℋ cph 30917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cc 10454 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 ax-hilex 30985 ax-hfvadd 30986 ax-hvcom 30987 ax-hvass 30988 ax-hv0cl 30989 ax-hvaddid 30990 ax-hfvmul 30991 ax-hvmulid 30992 ax-hvmulass 30993 ax-hvdistr1 30994 ax-hvdistr2 30995 ax-hvmul0 30996 ax-hfi 31065 ax-his1 31068 ax-his2 31069 ax-his3 31070 ax-his4 31071 ax-hcompl 31188 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-omul 8490 df-er 8724 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-acn 9961 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-n0 12507 df-z 12594 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ico 13373 df-icc 13374 df-fz 13530 df-fl 13814 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-rlim 15510 df-rest 17441 df-topgen 17462 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-fbas 21317 df-fg 21318 df-top 22837 df-topon 22854 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-lm 23172 df-haus 23258 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-cfil 25212 df-cau 25213 df-cmet 25214 df-grpo 30479 df-gid 30480 df-ginv 30481 df-gdiv 30482 df-ablo 30531 df-vc 30545 df-nv 30578 df-va 30581 df-ba 30582 df-sm 30583 df-0v 30584 df-vs 30585 df-nmcv 30586 df-ims 30587 df-ssp 30708 df-ph 30799 df-cbn 30849 df-hnorm 30954 df-hba 30955 df-hvsub 30957 df-hlim 30958 df-hcau 30959 df-sh 31193 df-ch 31207 df-oc 31238 df-ch0 31239 df-shs 31294 |
| This theorem is referenced by: pjhtheu 31380 pjeq 31385 axpjpj 31406 |
| Copyright terms: Public domain | W3C validator |