|   | Hilbert Space Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > HSE Home > Th. List > pjhth | Structured version Visualization version GIF version | ||
| Description: Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| pjhth | ⊢ (𝐻 ∈ Cℋ → (𝐻 +ℋ (⊥‘𝐻)) = ℋ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | chsh 31244 | . . 3 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
| 2 | shocsh 31304 | . . 3 ⊢ (𝐻 ∈ Sℋ → (⊥‘𝐻) ∈ Sℋ ) | |
| 3 | shsss 31333 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ (⊥‘𝐻) ∈ Sℋ ) → (𝐻 +ℋ (⊥‘𝐻)) ⊆ ℋ) | |
| 4 | 1, 2, 3 | syl2anc2 585 | . 2 ⊢ (𝐻 ∈ Cℋ → (𝐻 +ℋ (⊥‘𝐻)) ⊆ ℋ) | 
| 5 | fveq2 6905 | . . . . . . . 8 ⊢ (𝐻 = if(𝐻 ∈ Cℋ , 𝐻, ℋ) → (⊥‘𝐻) = (⊥‘if(𝐻 ∈ Cℋ , 𝐻, ℋ))) | |
| 6 | 5 | rexeqdv 3326 | . . . . . . 7 ⊢ (𝐻 = if(𝐻 ∈ Cℋ , 𝐻, ℋ) → (∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧) ↔ ∃𝑧 ∈ (⊥‘if(𝐻 ∈ Cℋ , 𝐻, ℋ))𝑥 = (𝑦 +ℎ 𝑧))) | 
| 7 | 6 | rexeqbi1dv 3338 | . . . . . 6 ⊢ (𝐻 = if(𝐻 ∈ Cℋ , 𝐻, ℋ) → (∃𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧) ↔ ∃𝑦 ∈ if (𝐻 ∈ Cℋ , 𝐻, ℋ)∃𝑧 ∈ (⊥‘if(𝐻 ∈ Cℋ , 𝐻, ℋ))𝑥 = (𝑦 +ℎ 𝑧))) | 
| 8 | 7 | imbi2d 340 | . . . . 5 ⊢ (𝐻 = if(𝐻 ∈ Cℋ , 𝐻, ℋ) → ((𝑥 ∈ ℋ → ∃𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧)) ↔ (𝑥 ∈ ℋ → ∃𝑦 ∈ if (𝐻 ∈ Cℋ , 𝐻, ℋ)∃𝑧 ∈ (⊥‘if(𝐻 ∈ Cℋ , 𝐻, ℋ))𝑥 = (𝑦 +ℎ 𝑧)))) | 
| 9 | ifchhv 31264 | . . . . . 6 ⊢ if(𝐻 ∈ Cℋ , 𝐻, ℋ) ∈ Cℋ | |
| 10 | id 22 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → 𝑥 ∈ ℋ) | |
| 11 | 9, 10 | pjhthlem2 31412 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ∃𝑦 ∈ if (𝐻 ∈ Cℋ , 𝐻, ℋ)∃𝑧 ∈ (⊥‘if(𝐻 ∈ Cℋ , 𝐻, ℋ))𝑥 = (𝑦 +ℎ 𝑧)) | 
| 12 | 8, 11 | dedth 4583 | . . . 4 ⊢ (𝐻 ∈ Cℋ → (𝑥 ∈ ℋ → ∃𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧))) | 
| 13 | shsel 31334 | . . . . 5 ⊢ ((𝐻 ∈ Sℋ ∧ (⊥‘𝐻) ∈ Sℋ ) → (𝑥 ∈ (𝐻 +ℋ (⊥‘𝐻)) ↔ ∃𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧))) | |
| 14 | 1, 2, 13 | syl2anc2 585 | . . . 4 ⊢ (𝐻 ∈ Cℋ → (𝑥 ∈ (𝐻 +ℋ (⊥‘𝐻)) ↔ ∃𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧))) | 
| 15 | 12, 14 | sylibrd 259 | . . 3 ⊢ (𝐻 ∈ Cℋ → (𝑥 ∈ ℋ → 𝑥 ∈ (𝐻 +ℋ (⊥‘𝐻)))) | 
| 16 | 15 | ssrdv 3988 | . 2 ⊢ (𝐻 ∈ Cℋ → ℋ ⊆ (𝐻 +ℋ (⊥‘𝐻))) | 
| 17 | 4, 16 | eqssd 4000 | 1 ⊢ (𝐻 ∈ Cℋ → (𝐻 +ℋ (⊥‘𝐻)) = ℋ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 ⊆ wss 3950 ifcif 4524 ‘cfv 6560 (class class class)co 7432 ℋchba 30939 +ℎ cva 30940 Sℋ csh 30948 Cℋ cch 30949 ⊥cort 30950 +ℋ cph 30951 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cc 10476 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 ax-addf 11235 ax-mulf 11236 ax-hilex 31019 ax-hfvadd 31020 ax-hvcom 31021 ax-hvass 31022 ax-hv0cl 31023 ax-hvaddid 31024 ax-hfvmul 31025 ax-hvmulid 31026 ax-hvmulass 31027 ax-hvdistr1 31028 ax-hvdistr2 31029 ax-hvmul0 31030 ax-hfi 31099 ax-his1 31102 ax-his2 31103 ax-his3 31104 ax-his4 31105 ax-hcompl 31222 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-oadd 8511 df-omul 8512 df-er 8746 df-map 8869 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fi 9452 df-sup 9483 df-inf 9484 df-oi 9551 df-card 9980 df-acn 9983 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-n0 12529 df-z 12616 df-uz 12880 df-q 12992 df-rp 13036 df-xneg 13155 df-xadd 13156 df-xmul 13157 df-ico 13394 df-icc 13395 df-fz 13549 df-fl 13833 df-seq 14044 df-exp 14104 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-clim 15525 df-rlim 15526 df-rest 17468 df-topgen 17489 df-psmet 21357 df-xmet 21358 df-met 21359 df-bl 21360 df-mopn 21361 df-fbas 21362 df-fg 21363 df-top 22901 df-topon 22918 df-bases 22954 df-cld 23028 df-ntr 23029 df-cls 23030 df-nei 23107 df-lm 23238 df-haus 23324 df-fil 23855 df-fm 23947 df-flim 23948 df-flf 23949 df-cfil 25290 df-cau 25291 df-cmet 25292 df-grpo 30513 df-gid 30514 df-ginv 30515 df-gdiv 30516 df-ablo 30565 df-vc 30579 df-nv 30612 df-va 30615 df-ba 30616 df-sm 30617 df-0v 30618 df-vs 30619 df-nmcv 30620 df-ims 30621 df-ssp 30742 df-ph 30833 df-cbn 30883 df-hnorm 30988 df-hba 30989 df-hvsub 30991 df-hlim 30992 df-hcau 30993 df-sh 31227 df-ch 31241 df-oc 31272 df-ch0 31273 df-shs 31328 | 
| This theorem is referenced by: pjhtheu 31414 pjeq 31419 axpjpj 31440 | 
| Copyright terms: Public domain | W3C validator |