![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjhth | Structured version Visualization version GIF version |
Description: Projection Theorem: Any Hilbert space vector 𝐴 can be decomposed uniquely into a member 𝑥 of a closed subspace 𝐻 and a member 𝑦 of the complement of the subspace. Theorem 3.7(i) of [Beran] p. 102 (existence part). (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjhth | ⊢ (𝐻 ∈ Cℋ → (𝐻 +ℋ (⊥‘𝐻)) = ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chsh 30455 | . . 3 ⊢ (𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) | |
2 | shocsh 30515 | . . 3 ⊢ (𝐻 ∈ Sℋ → (⊥‘𝐻) ∈ Sℋ ) | |
3 | shsss 30544 | . . 3 ⊢ ((𝐻 ∈ Sℋ ∧ (⊥‘𝐻) ∈ Sℋ ) → (𝐻 +ℋ (⊥‘𝐻)) ⊆ ℋ) | |
4 | 1, 2, 3 | syl2anc2 586 | . 2 ⊢ (𝐻 ∈ Cℋ → (𝐻 +ℋ (⊥‘𝐻)) ⊆ ℋ) |
5 | fveq2 6888 | . . . . . . . 8 ⊢ (𝐻 = if(𝐻 ∈ Cℋ , 𝐻, ℋ) → (⊥‘𝐻) = (⊥‘if(𝐻 ∈ Cℋ , 𝐻, ℋ))) | |
6 | 5 | rexeqdv 3327 | . . . . . . 7 ⊢ (𝐻 = if(𝐻 ∈ Cℋ , 𝐻, ℋ) → (∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧) ↔ ∃𝑧 ∈ (⊥‘if(𝐻 ∈ Cℋ , 𝐻, ℋ))𝑥 = (𝑦 +ℎ 𝑧))) |
7 | 6 | rexeqbi1dv 3335 | . . . . . 6 ⊢ (𝐻 = if(𝐻 ∈ Cℋ , 𝐻, ℋ) → (∃𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧) ↔ ∃𝑦 ∈ if (𝐻 ∈ Cℋ , 𝐻, ℋ)∃𝑧 ∈ (⊥‘if(𝐻 ∈ Cℋ , 𝐻, ℋ))𝑥 = (𝑦 +ℎ 𝑧))) |
8 | 7 | imbi2d 341 | . . . . 5 ⊢ (𝐻 = if(𝐻 ∈ Cℋ , 𝐻, ℋ) → ((𝑥 ∈ ℋ → ∃𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧)) ↔ (𝑥 ∈ ℋ → ∃𝑦 ∈ if (𝐻 ∈ Cℋ , 𝐻, ℋ)∃𝑧 ∈ (⊥‘if(𝐻 ∈ Cℋ , 𝐻, ℋ))𝑥 = (𝑦 +ℎ 𝑧)))) |
9 | ifchhv 30475 | . . . . . 6 ⊢ if(𝐻 ∈ Cℋ , 𝐻, ℋ) ∈ Cℋ | |
10 | id 22 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → 𝑥 ∈ ℋ) | |
11 | 9, 10 | pjhthlem2 30623 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ∃𝑦 ∈ if (𝐻 ∈ Cℋ , 𝐻, ℋ)∃𝑧 ∈ (⊥‘if(𝐻 ∈ Cℋ , 𝐻, ℋ))𝑥 = (𝑦 +ℎ 𝑧)) |
12 | 8, 11 | dedth 4585 | . . . 4 ⊢ (𝐻 ∈ Cℋ → (𝑥 ∈ ℋ → ∃𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧))) |
13 | shsel 30545 | . . . . 5 ⊢ ((𝐻 ∈ Sℋ ∧ (⊥‘𝐻) ∈ Sℋ ) → (𝑥 ∈ (𝐻 +ℋ (⊥‘𝐻)) ↔ ∃𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧))) | |
14 | 1, 2, 13 | syl2anc2 586 | . . . 4 ⊢ (𝐻 ∈ Cℋ → (𝑥 ∈ (𝐻 +ℋ (⊥‘𝐻)) ↔ ∃𝑦 ∈ 𝐻 ∃𝑧 ∈ (⊥‘𝐻)𝑥 = (𝑦 +ℎ 𝑧))) |
15 | 12, 14 | sylibrd 259 | . . 3 ⊢ (𝐻 ∈ Cℋ → (𝑥 ∈ ℋ → 𝑥 ∈ (𝐻 +ℋ (⊥‘𝐻)))) |
16 | 15 | ssrdv 3987 | . 2 ⊢ (𝐻 ∈ Cℋ → ℋ ⊆ (𝐻 +ℋ (⊥‘𝐻))) |
17 | 4, 16 | eqssd 3998 | 1 ⊢ (𝐻 ∈ Cℋ → (𝐻 +ℋ (⊥‘𝐻)) = ℋ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 ⊆ wss 3947 ifcif 4527 ‘cfv 6540 (class class class)co 7404 ℋchba 30150 +ℎ cva 30151 Sℋ csh 30159 Cℋ cch 30160 ⊥cort 30161 +ℋ cph 30162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-inf2 9632 ax-cc 10426 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 ax-hilex 30230 ax-hfvadd 30231 ax-hvcom 30232 ax-hvass 30233 ax-hv0cl 30234 ax-hvaddid 30235 ax-hfvmul 30236 ax-hvmulid 30237 ax-hvmulass 30238 ax-hvdistr1 30239 ax-hvdistr2 30240 ax-hvmul0 30241 ax-hfi 30310 ax-his1 30313 ax-his2 30314 ax-his3 30315 ax-his4 30316 ax-hcompl 30433 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-oadd 8465 df-omul 8466 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-acn 9933 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ico 13326 df-icc 13327 df-fz 13481 df-fl 13753 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-rlim 15429 df-rest 17364 df-topgen 17385 df-psmet 20921 df-xmet 20922 df-met 20923 df-bl 20924 df-mopn 20925 df-fbas 20926 df-fg 20927 df-top 22378 df-topon 22395 df-bases 22431 df-cld 22505 df-ntr 22506 df-cls 22507 df-nei 22584 df-lm 22715 df-haus 22801 df-fil 23332 df-fm 23424 df-flim 23425 df-flf 23426 df-cfil 24754 df-cau 24755 df-cmet 24756 df-grpo 29724 df-gid 29725 df-ginv 29726 df-gdiv 29727 df-ablo 29776 df-vc 29790 df-nv 29823 df-va 29826 df-ba 29827 df-sm 29828 df-0v 29829 df-vs 29830 df-nmcv 29831 df-ims 29832 df-ssp 29953 df-ph 30044 df-cbn 30094 df-hnorm 30199 df-hba 30200 df-hvsub 30202 df-hlim 30203 df-hcau 30204 df-sh 30438 df-ch 30452 df-oc 30483 df-ch0 30484 df-shs 30539 |
This theorem is referenced by: pjhtheu 30625 pjeq 30630 axpjpj 30651 |
Copyright terms: Public domain | W3C validator |