Step | Hyp | Ref
| Expression |
1 | | toptopon2 21975 |
. . . . 5
⊢ (𝑥 ∈ Top ↔ 𝑥 ∈ (TopOn‘∪ 𝑥)) |
2 | | fvex 6769 |
. . . . . 6
⊢
(TopOn‘∪ 𝑥) ∈ V |
3 | | eleq2 2827 |
. . . . . . . 8
⊢ (𝑦 = (TopOn‘∪ 𝑥)
→ (𝑥 ∈ 𝑦 ↔ 𝑥 ∈ (TopOn‘∪ 𝑥))) |
4 | | eleq1 2826 |
. . . . . . . 8
⊢ (𝑦 = (TopOn‘∪ 𝑥)
→ (𝑦 ∈ ran TopOn
↔ (TopOn‘∪ 𝑥) ∈ ran TopOn)) |
5 | 3, 4 | anbi12d 630 |
. . . . . . 7
⊢ (𝑦 = (TopOn‘∪ 𝑥)
→ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn) ↔ (𝑥 ∈ (TopOn‘∪ 𝑥)
∧ (TopOn‘∪ 𝑥) ∈ ran TopOn))) |
6 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑥 ∈ (TopOn‘∪ 𝑥)
∧ (TopOn‘∪ 𝑥) ∈ ran TopOn) → 𝑥 ∈ (TopOn‘∪ 𝑥)) |
7 | | fntopon 21981 |
. . . . . . . . . 10
⊢ TopOn Fn
V |
8 | | vuniex 7570 |
. . . . . . . . . 10
⊢ ∪ 𝑥
∈ V |
9 | | fnfvelrn 6940 |
. . . . . . . . . 10
⊢ ((TopOn
Fn V ∧ ∪ 𝑥 ∈ V) → (TopOn‘∪ 𝑥)
∈ ran TopOn) |
10 | 7, 8, 9 | mp2an 688 |
. . . . . . . . 9
⊢
(TopOn‘∪ 𝑥) ∈ ran TopOn |
11 | 10 | jctr 524 |
. . . . . . . 8
⊢ (𝑥 ∈ (TopOn‘∪ 𝑥)
→ (𝑥 ∈
(TopOn‘∪ 𝑥) ∧ (TopOn‘∪ 𝑥)
∈ ran TopOn)) |
12 | 6, 11 | impbii 208 |
. . . . . . 7
⊢ ((𝑥 ∈ (TopOn‘∪ 𝑥)
∧ (TopOn‘∪ 𝑥) ∈ ran TopOn) ↔ 𝑥 ∈ (TopOn‘∪ 𝑥)) |
13 | 5, 12 | bitrdi 286 |
. . . . . 6
⊢ (𝑦 = (TopOn‘∪ 𝑥)
→ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn) ↔ 𝑥 ∈ (TopOn‘∪ 𝑥))) |
14 | 2, 13 | spcev 3535 |
. . . . 5
⊢ (𝑥 ∈ (TopOn‘∪ 𝑥)
→ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn)) |
15 | 1, 14 | sylbi 216 |
. . . 4
⊢ (𝑥 ∈ Top → ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn)) |
16 | | funtopon 21977 |
. . . . . . . . 9
⊢ Fun
TopOn |
17 | | elrnrexdm 6947 |
. . . . . . . . 9
⊢ (Fun
TopOn → (𝑦 ∈ ran
TopOn → ∃𝑧
∈ dom TopOn𝑦 =
(TopOn‘𝑧))) |
18 | 16, 17 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑦 ∈ ran TopOn →
∃𝑧 ∈ dom
TopOn𝑦 = (TopOn‘𝑧)) |
19 | | rexex 3167 |
. . . . . . . 8
⊢
(∃𝑧 ∈ dom
TopOn𝑦 = (TopOn‘𝑧) → ∃𝑧 𝑦 = (TopOn‘𝑧)) |
20 | 18, 19 | syl 17 |
. . . . . . 7
⊢ (𝑦 ∈ ran TopOn →
∃𝑧 𝑦 = (TopOn‘𝑧)) |
21 | | 19.42v 1958 |
. . . . . . . 8
⊢
(∃𝑧(𝑥 ∈ 𝑦 ∧ 𝑦 = (TopOn‘𝑧)) ↔ (𝑥 ∈ 𝑦 ∧ ∃𝑧 𝑦 = (TopOn‘𝑧))) |
22 | | eqimss 3973 |
. . . . . . . . . . 11
⊢ (𝑦 = (TopOn‘𝑧) → 𝑦 ⊆ (TopOn‘𝑧)) |
23 | 22 | sseld 3916 |
. . . . . . . . . 10
⊢ (𝑦 = (TopOn‘𝑧) → (𝑥 ∈ 𝑦 → 𝑥 ∈ (TopOn‘𝑧))) |
24 | 23 | impcom 407 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 = (TopOn‘𝑧)) → 𝑥 ∈ (TopOn‘𝑧)) |
25 | 24 | eximi 1838 |
. . . . . . . 8
⊢
(∃𝑧(𝑥 ∈ 𝑦 ∧ 𝑦 = (TopOn‘𝑧)) → ∃𝑧 𝑥 ∈ (TopOn‘𝑧)) |
26 | 21, 25 | sylbir 234 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑦 ∧ ∃𝑧 𝑦 = (TopOn‘𝑧)) → ∃𝑧 𝑥 ∈ (TopOn‘𝑧)) |
27 | 20, 26 | sylan2 592 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn) → ∃𝑧 𝑥 ∈ (TopOn‘𝑧)) |
28 | | topontop 21970 |
. . . . . . 7
⊢ (𝑥 ∈ (TopOn‘𝑧) → 𝑥 ∈ Top) |
29 | 28 | exlimiv 1934 |
. . . . . 6
⊢
(∃𝑧 𝑥 ∈ (TopOn‘𝑧) → 𝑥 ∈ Top) |
30 | 27, 29 | syl 17 |
. . . . 5
⊢ ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn) → 𝑥 ∈ Top) |
31 | 30 | exlimiv 1934 |
. . . 4
⊢
(∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn) → 𝑥 ∈ Top) |
32 | 15, 31 | impbii 208 |
. . 3
⊢ (𝑥 ∈ Top ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn)) |
33 | | eluni 4839 |
. . 3
⊢ (𝑥 ∈ ∪ ran TopOn ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ ran TopOn)) |
34 | 32, 33 | bitr4i 277 |
. 2
⊢ (𝑥 ∈ Top ↔ 𝑥 ∈ ∪ ran TopOn) |
35 | 34 | eqriv 2735 |
1
⊢ Top =
∪ ran TopOn |