MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toprntopon Structured version   Visualization version   GIF version

Theorem toprntopon 21530
Description: A topology is the same thing as a topology on a set (variable-free version). (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
toprntopon Top = ran TopOn

Proof of Theorem toprntopon
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toptopon2 21523 . . . . 5 (𝑥 ∈ Top ↔ 𝑥 ∈ (TopOn‘ 𝑥))
2 fvex 6658 . . . . . 6 (TopOn‘ 𝑥) ∈ V
3 eleq2 2878 . . . . . . . 8 (𝑦 = (TopOn‘ 𝑥) → (𝑥𝑦𝑥 ∈ (TopOn‘ 𝑥)))
4 eleq1 2877 . . . . . . . 8 (𝑦 = (TopOn‘ 𝑥) → (𝑦 ∈ ran TopOn ↔ (TopOn‘ 𝑥) ∈ ran TopOn))
53, 4anbi12d 633 . . . . . . 7 (𝑦 = (TopOn‘ 𝑥) → ((𝑥𝑦𝑦 ∈ ran TopOn) ↔ (𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn)))
6 simpl 486 . . . . . . . 8 ((𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn) → 𝑥 ∈ (TopOn‘ 𝑥))
7 fntopon 21529 . . . . . . . . . 10 TopOn Fn V
8 vuniex 7445 . . . . . . . . . 10 𝑥 ∈ V
9 fnfvelrn 6825 . . . . . . . . . 10 ((TopOn Fn V ∧ 𝑥 ∈ V) → (TopOn‘ 𝑥) ∈ ran TopOn)
107, 8, 9mp2an 691 . . . . . . . . 9 (TopOn‘ 𝑥) ∈ ran TopOn
1110jctr 528 . . . . . . . 8 (𝑥 ∈ (TopOn‘ 𝑥) → (𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn))
126, 11impbii 212 . . . . . . 7 ((𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn) ↔ 𝑥 ∈ (TopOn‘ 𝑥))
135, 12syl6bb 290 . . . . . 6 (𝑦 = (TopOn‘ 𝑥) → ((𝑥𝑦𝑦 ∈ ran TopOn) ↔ 𝑥 ∈ (TopOn‘ 𝑥)))
142, 13spcev 3555 . . . . 5 (𝑥 ∈ (TopOn‘ 𝑥) → ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
151, 14sylbi 220 . . . 4 (𝑥 ∈ Top → ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
16 funtopon 21525 . . . . . . . . 9 Fun TopOn
17 elrnrexdm 6832 . . . . . . . . 9 (Fun TopOn → (𝑦 ∈ ran TopOn → ∃𝑧 ∈ dom TopOn𝑦 = (TopOn‘𝑧)))
1816, 17ax-mp 5 . . . . . . . 8 (𝑦 ∈ ran TopOn → ∃𝑧 ∈ dom TopOn𝑦 = (TopOn‘𝑧))
19 rexex 3203 . . . . . . . 8 (∃𝑧 ∈ dom TopOn𝑦 = (TopOn‘𝑧) → ∃𝑧 𝑦 = (TopOn‘𝑧))
2018, 19syl 17 . . . . . . 7 (𝑦 ∈ ran TopOn → ∃𝑧 𝑦 = (TopOn‘𝑧))
21 19.42v 1954 . . . . . . . 8 (∃𝑧(𝑥𝑦𝑦 = (TopOn‘𝑧)) ↔ (𝑥𝑦 ∧ ∃𝑧 𝑦 = (TopOn‘𝑧)))
22 eqimss 3971 . . . . . . . . . . 11 (𝑦 = (TopOn‘𝑧) → 𝑦 ⊆ (TopOn‘𝑧))
2322sseld 3914 . . . . . . . . . 10 (𝑦 = (TopOn‘𝑧) → (𝑥𝑦𝑥 ∈ (TopOn‘𝑧)))
2423impcom 411 . . . . . . . . 9 ((𝑥𝑦𝑦 = (TopOn‘𝑧)) → 𝑥 ∈ (TopOn‘𝑧))
2524eximi 1836 . . . . . . . 8 (∃𝑧(𝑥𝑦𝑦 = (TopOn‘𝑧)) → ∃𝑧 𝑥 ∈ (TopOn‘𝑧))
2621, 25sylbir 238 . . . . . . 7 ((𝑥𝑦 ∧ ∃𝑧 𝑦 = (TopOn‘𝑧)) → ∃𝑧 𝑥 ∈ (TopOn‘𝑧))
2720, 26sylan2 595 . . . . . 6 ((𝑥𝑦𝑦 ∈ ran TopOn) → ∃𝑧 𝑥 ∈ (TopOn‘𝑧))
28 topontop 21518 . . . . . . 7 (𝑥 ∈ (TopOn‘𝑧) → 𝑥 ∈ Top)
2928exlimiv 1931 . . . . . 6 (∃𝑧 𝑥 ∈ (TopOn‘𝑧) → 𝑥 ∈ Top)
3027, 29syl 17 . . . . 5 ((𝑥𝑦𝑦 ∈ ran TopOn) → 𝑥 ∈ Top)
3130exlimiv 1931 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn) → 𝑥 ∈ Top)
3215, 31impbii 212 . . 3 (𝑥 ∈ Top ↔ ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
33 eluni 4803 . . 3 (𝑥 ran TopOn ↔ ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
3432, 33bitr4i 281 . 2 (𝑥 ∈ Top ↔ 𝑥 ran TopOn)
3534eqriv 2795 1 Top = ran TopOn
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2111  wrex 3107  Vcvv 3441   cuni 4800  dom cdm 5519  ran crn 5520  Fun wfun 6318   Fn wfn 6319  cfv 6324  Topctop 21498  TopOnctopon 21515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fn 6327  df-fv 6332  df-topon 21516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator