MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toprntopon Structured version   Visualization version   GIF version

Theorem toprntopon 22072
Description: A topology is the same thing as a topology on a set (variable-free version). (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
toprntopon Top = ran TopOn

Proof of Theorem toprntopon
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toptopon2 22065 . . . . 5 (𝑥 ∈ Top ↔ 𝑥 ∈ (TopOn‘ 𝑥))
2 fvex 6784 . . . . . 6 (TopOn‘ 𝑥) ∈ V
3 eleq2 2829 . . . . . . . 8 (𝑦 = (TopOn‘ 𝑥) → (𝑥𝑦𝑥 ∈ (TopOn‘ 𝑥)))
4 eleq1 2828 . . . . . . . 8 (𝑦 = (TopOn‘ 𝑥) → (𝑦 ∈ ran TopOn ↔ (TopOn‘ 𝑥) ∈ ran TopOn))
53, 4anbi12d 631 . . . . . . 7 (𝑦 = (TopOn‘ 𝑥) → ((𝑥𝑦𝑦 ∈ ran TopOn) ↔ (𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn)))
6 simpl 483 . . . . . . . 8 ((𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn) → 𝑥 ∈ (TopOn‘ 𝑥))
7 fntopon 22071 . . . . . . . . . 10 TopOn Fn V
8 vuniex 7586 . . . . . . . . . 10 𝑥 ∈ V
9 fnfvelrn 6955 . . . . . . . . . 10 ((TopOn Fn V ∧ 𝑥 ∈ V) → (TopOn‘ 𝑥) ∈ ran TopOn)
107, 8, 9mp2an 689 . . . . . . . . 9 (TopOn‘ 𝑥) ∈ ran TopOn
1110jctr 525 . . . . . . . 8 (𝑥 ∈ (TopOn‘ 𝑥) → (𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn))
126, 11impbii 208 . . . . . . 7 ((𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn) ↔ 𝑥 ∈ (TopOn‘ 𝑥))
135, 12bitrdi 287 . . . . . 6 (𝑦 = (TopOn‘ 𝑥) → ((𝑥𝑦𝑦 ∈ ran TopOn) ↔ 𝑥 ∈ (TopOn‘ 𝑥)))
142, 13spcev 3544 . . . . 5 (𝑥 ∈ (TopOn‘ 𝑥) → ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
151, 14sylbi 216 . . . 4 (𝑥 ∈ Top → ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
16 funtopon 22067 . . . . . . . . 9 Fun TopOn
17 elrnrexdm 6962 . . . . . . . . 9 (Fun TopOn → (𝑦 ∈ ran TopOn → ∃𝑧 ∈ dom TopOn𝑦 = (TopOn‘𝑧)))
1816, 17ax-mp 5 . . . . . . . 8 (𝑦 ∈ ran TopOn → ∃𝑧 ∈ dom TopOn𝑦 = (TopOn‘𝑧))
19 rexex 3170 . . . . . . . 8 (∃𝑧 ∈ dom TopOn𝑦 = (TopOn‘𝑧) → ∃𝑧 𝑦 = (TopOn‘𝑧))
2018, 19syl 17 . . . . . . 7 (𝑦 ∈ ran TopOn → ∃𝑧 𝑦 = (TopOn‘𝑧))
21 19.42v 1961 . . . . . . . 8 (∃𝑧(𝑥𝑦𝑦 = (TopOn‘𝑧)) ↔ (𝑥𝑦 ∧ ∃𝑧 𝑦 = (TopOn‘𝑧)))
22 eqimss 3982 . . . . . . . . . . 11 (𝑦 = (TopOn‘𝑧) → 𝑦 ⊆ (TopOn‘𝑧))
2322sseld 3925 . . . . . . . . . 10 (𝑦 = (TopOn‘𝑧) → (𝑥𝑦𝑥 ∈ (TopOn‘𝑧)))
2423impcom 408 . . . . . . . . 9 ((𝑥𝑦𝑦 = (TopOn‘𝑧)) → 𝑥 ∈ (TopOn‘𝑧))
2524eximi 1841 . . . . . . . 8 (∃𝑧(𝑥𝑦𝑦 = (TopOn‘𝑧)) → ∃𝑧 𝑥 ∈ (TopOn‘𝑧))
2621, 25sylbir 234 . . . . . . 7 ((𝑥𝑦 ∧ ∃𝑧 𝑦 = (TopOn‘𝑧)) → ∃𝑧 𝑥 ∈ (TopOn‘𝑧))
2720, 26sylan2 593 . . . . . 6 ((𝑥𝑦𝑦 ∈ ran TopOn) → ∃𝑧 𝑥 ∈ (TopOn‘𝑧))
28 topontop 22060 . . . . . . 7 (𝑥 ∈ (TopOn‘𝑧) → 𝑥 ∈ Top)
2928exlimiv 1937 . . . . . 6 (∃𝑧 𝑥 ∈ (TopOn‘𝑧) → 𝑥 ∈ Top)
3027, 29syl 17 . . . . 5 ((𝑥𝑦𝑦 ∈ ran TopOn) → 𝑥 ∈ Top)
3130exlimiv 1937 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn) → 𝑥 ∈ Top)
3215, 31impbii 208 . . 3 (𝑥 ∈ Top ↔ ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
33 eluni 4848 . . 3 (𝑥 ran TopOn ↔ ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
3432, 33bitr4i 277 . 2 (𝑥 ∈ Top ↔ 𝑥 ran TopOn)
3534eqriv 2737 1 Top = ran TopOn
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wex 1786  wcel 2110  wrex 3067  Vcvv 3431   cuni 4845  dom cdm 5590  ran crn 5591  Fun wfun 6426   Fn wfn 6427  cfv 6432  Topctop 22040  TopOnctopon 22057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-iota 6390  df-fun 6434  df-fn 6435  df-fv 6440  df-topon 22058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator