MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  toprntopon Structured version   Visualization version   GIF version

Theorem toprntopon 22841
Description: A topology is the same thing as a topology on a set (variable-free version). (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
toprntopon Top = ran TopOn

Proof of Theorem toprntopon
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 toptopon2 22834 . . . . 5 (𝑥 ∈ Top ↔ 𝑥 ∈ (TopOn‘ 𝑥))
2 fvex 6841 . . . . . 6 (TopOn‘ 𝑥) ∈ V
3 eleq2 2822 . . . . . . . 8 (𝑦 = (TopOn‘ 𝑥) → (𝑥𝑦𝑥 ∈ (TopOn‘ 𝑥)))
4 eleq1 2821 . . . . . . . 8 (𝑦 = (TopOn‘ 𝑥) → (𝑦 ∈ ran TopOn ↔ (TopOn‘ 𝑥) ∈ ran TopOn))
53, 4anbi12d 632 . . . . . . 7 (𝑦 = (TopOn‘ 𝑥) → ((𝑥𝑦𝑦 ∈ ran TopOn) ↔ (𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn)))
6 simpl 482 . . . . . . . 8 ((𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn) → 𝑥 ∈ (TopOn‘ 𝑥))
7 fntopon 22840 . . . . . . . . . 10 TopOn Fn V
8 vuniex 7678 . . . . . . . . . 10 𝑥 ∈ V
9 fnfvelrn 7019 . . . . . . . . . 10 ((TopOn Fn V ∧ 𝑥 ∈ V) → (TopOn‘ 𝑥) ∈ ran TopOn)
107, 8, 9mp2an 692 . . . . . . . . 9 (TopOn‘ 𝑥) ∈ ran TopOn
1110jctr 524 . . . . . . . 8 (𝑥 ∈ (TopOn‘ 𝑥) → (𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn))
126, 11impbii 209 . . . . . . 7 ((𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn) ↔ 𝑥 ∈ (TopOn‘ 𝑥))
135, 12bitrdi 287 . . . . . 6 (𝑦 = (TopOn‘ 𝑥) → ((𝑥𝑦𝑦 ∈ ran TopOn) ↔ 𝑥 ∈ (TopOn‘ 𝑥)))
142, 13spcev 3557 . . . . 5 (𝑥 ∈ (TopOn‘ 𝑥) → ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
151, 14sylbi 217 . . . 4 (𝑥 ∈ Top → ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
16 funtopon 22836 . . . . . . . . 9 Fun TopOn
17 elrnrexdm 7028 . . . . . . . . 9 (Fun TopOn → (𝑦 ∈ ran TopOn → ∃𝑧 ∈ dom TopOn𝑦 = (TopOn‘𝑧)))
1816, 17ax-mp 5 . . . . . . . 8 (𝑦 ∈ ran TopOn → ∃𝑧 ∈ dom TopOn𝑦 = (TopOn‘𝑧))
19 rexex 3063 . . . . . . . 8 (∃𝑧 ∈ dom TopOn𝑦 = (TopOn‘𝑧) → ∃𝑧 𝑦 = (TopOn‘𝑧))
2018, 19syl 17 . . . . . . 7 (𝑦 ∈ ran TopOn → ∃𝑧 𝑦 = (TopOn‘𝑧))
21 19.42v 1954 . . . . . . . 8 (∃𝑧(𝑥𝑦𝑦 = (TopOn‘𝑧)) ↔ (𝑥𝑦 ∧ ∃𝑧 𝑦 = (TopOn‘𝑧)))
22 eqimss 3989 . . . . . . . . . . 11 (𝑦 = (TopOn‘𝑧) → 𝑦 ⊆ (TopOn‘𝑧))
2322sseld 3929 . . . . . . . . . 10 (𝑦 = (TopOn‘𝑧) → (𝑥𝑦𝑥 ∈ (TopOn‘𝑧)))
2423impcom 407 . . . . . . . . 9 ((𝑥𝑦𝑦 = (TopOn‘𝑧)) → 𝑥 ∈ (TopOn‘𝑧))
2524eximi 1836 . . . . . . . 8 (∃𝑧(𝑥𝑦𝑦 = (TopOn‘𝑧)) → ∃𝑧 𝑥 ∈ (TopOn‘𝑧))
2621, 25sylbir 235 . . . . . . 7 ((𝑥𝑦 ∧ ∃𝑧 𝑦 = (TopOn‘𝑧)) → ∃𝑧 𝑥 ∈ (TopOn‘𝑧))
2720, 26sylan2 593 . . . . . 6 ((𝑥𝑦𝑦 ∈ ran TopOn) → ∃𝑧 𝑥 ∈ (TopOn‘𝑧))
28 topontop 22829 . . . . . . 7 (𝑥 ∈ (TopOn‘𝑧) → 𝑥 ∈ Top)
2928exlimiv 1931 . . . . . 6 (∃𝑧 𝑥 ∈ (TopOn‘𝑧) → 𝑥 ∈ Top)
3027, 29syl 17 . . . . 5 ((𝑥𝑦𝑦 ∈ ran TopOn) → 𝑥 ∈ Top)
3130exlimiv 1931 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn) → 𝑥 ∈ Top)
3215, 31impbii 209 . . 3 (𝑥 ∈ Top ↔ ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
33 eluni 4861 . . 3 (𝑥 ran TopOn ↔ ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
3432, 33bitr4i 278 . 2 (𝑥 ∈ Top ↔ 𝑥 ran TopOn)
3534eqriv 2730 1 Top = ran TopOn
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  wrex 3057  Vcvv 3437   cuni 4858  dom cdm 5619  ran crn 5620  Fun wfun 6480   Fn wfn 6481  cfv 6486  Topctop 22809  TopOnctopon 22826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-fv 6494  df-topon 22827
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator