MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffo5 Structured version   Visualization version   GIF version

Theorem dffo5 7037
Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dffo5 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dffo5
StepHypRef Expression
1 dffo4 7036 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
2 rexex 3062 . . . . 5 (∃𝑥𝐴 𝑥𝐹𝑦 → ∃𝑥 𝑥𝐹𝑦)
32ralimi 3069 . . . 4 (∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦 → ∀𝑦𝐵𝑥 𝑥𝐹𝑦)
43anim2i 617 . . 3 ((𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦) → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦))
5 ffn 6651 . . . . . . . . 9 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
6 fnbr 6589 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
76ex 412 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
85, 7syl 17 . . . . . . . 8 (𝐹:𝐴𝐵 → (𝑥𝐹𝑦𝑥𝐴))
98ancrd 551 . . . . . . 7 (𝐹:𝐴𝐵 → (𝑥𝐹𝑦 → (𝑥𝐴𝑥𝐹𝑦)))
109eximdv 1918 . . . . . 6 (𝐹:𝐴𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥(𝑥𝐴𝑥𝐹𝑦)))
11 df-rex 3057 . . . . . 6 (∃𝑥𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
1210, 11imbitrrdi 252 . . . . 5 (𝐹:𝐴𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥𝐴 𝑥𝐹𝑦))
1312ralimdv 3146 . . . 4 (𝐹:𝐴𝐵 → (∀𝑦𝐵𝑥 𝑥𝐹𝑦 → ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
1413imdistani 568 . . 3 ((𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦) → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
154, 14impbii 209 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦))
161, 15bitri 275 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1780  wcel 2111  wral 3047  wrex 3056   class class class wbr 5089   Fn wfn 6476  wf 6477  ontowfo 6479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator