| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffo5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.) |
| Ref | Expression |
|---|---|
| dffo5 | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffo4 7075 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) | |
| 2 | rexex 3059 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 → ∃𝑥 𝑥𝐹𝑦) | |
| 3 | 2 | ralimi 3066 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 → ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦) |
| 4 | 3 | anim2i 617 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦)) |
| 5 | ffn 6688 | . . . . . . . . 9 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 6 | fnbr 6626 | . . . . . . . . . 10 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑥𝐹𝑦) → 𝑥 ∈ 𝐴) | |
| 7 | 6 | ex 412 | . . . . . . . . 9 ⊢ (𝐹 Fn 𝐴 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
| 8 | 5, 7 | syl 17 | . . . . . . . 8 ⊢ (𝐹:𝐴⟶𝐵 → (𝑥𝐹𝑦 → 𝑥 ∈ 𝐴)) |
| 9 | 8 | ancrd 551 | . . . . . . 7 ⊢ (𝐹:𝐴⟶𝐵 → (𝑥𝐹𝑦 → (𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
| 10 | 9 | eximdv 1917 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦))) |
| 11 | df-rex 3054 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝐹𝑦)) | |
| 12 | 10, 11 | imbitrrdi 252 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
| 13 | 12 | ralimdv 3147 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → (∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
| 14 | 13 | imdistani 568 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦)) |
| 15 | 4, 14 | impbii 209 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑥𝐹𝑦) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦)) |
| 16 | 1, 15 | bitri 275 | 1 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 𝑥𝐹𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 class class class wbr 5107 Fn wfn 6506 ⟶wf 6507 –onto→wfo 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-fv 6519 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |