MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffo5 Structured version   Visualization version   GIF version

Theorem dffo5 7094
Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dffo5 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dffo5
StepHypRef Expression
1 dffo4 7093 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
2 rexex 3066 . . . . 5 (∃𝑥𝐴 𝑥𝐹𝑦 → ∃𝑥 𝑥𝐹𝑦)
32ralimi 3073 . . . 4 (∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦 → ∀𝑦𝐵𝑥 𝑥𝐹𝑦)
43anim2i 617 . . 3 ((𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦) → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦))
5 ffn 6706 . . . . . . . . 9 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
6 fnbr 6646 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
76ex 412 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
85, 7syl 17 . . . . . . . 8 (𝐹:𝐴𝐵 → (𝑥𝐹𝑦𝑥𝐴))
98ancrd 551 . . . . . . 7 (𝐹:𝐴𝐵 → (𝑥𝐹𝑦 → (𝑥𝐴𝑥𝐹𝑦)))
109eximdv 1917 . . . . . 6 (𝐹:𝐴𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥(𝑥𝐴𝑥𝐹𝑦)))
11 df-rex 3061 . . . . . 6 (∃𝑥𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
1210, 11imbitrrdi 252 . . . . 5 (𝐹:𝐴𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥𝐴 𝑥𝐹𝑦))
1312ralimdv 3154 . . . 4 (𝐹:𝐴𝐵 → (∀𝑦𝐵𝑥 𝑥𝐹𝑦 → ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
1413imdistani 568 . . 3 ((𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦) → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
154, 14impbii 209 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦))
161, 15bitri 275 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2108  wral 3051  wrex 3060   class class class wbr 5119   Fn wfn 6526  wf 6527  ontowfo 6529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fo 6537  df-fv 6539
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator