MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffo5 Structured version   Visualization version   GIF version

Theorem dffo5 7113
Description: Alternate definition of an onto mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dffo5 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dffo5
StepHypRef Expression
1 dffo4 7112 . 2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
2 rexex 3065 . . . . 5 (∃𝑥𝐴 𝑥𝐹𝑦 → ∃𝑥 𝑥𝐹𝑦)
32ralimi 3072 . . . 4 (∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦 → ∀𝑦𝐵𝑥 𝑥𝐹𝑦)
43anim2i 615 . . 3 ((𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦) → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦))
5 ffn 6723 . . . . . . . . 9 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
6 fnbr 6663 . . . . . . . . . 10 ((𝐹 Fn 𝐴𝑥𝐹𝑦) → 𝑥𝐴)
76ex 411 . . . . . . . . 9 (𝐹 Fn 𝐴 → (𝑥𝐹𝑦𝑥𝐴))
85, 7syl 17 . . . . . . . 8 (𝐹:𝐴𝐵 → (𝑥𝐹𝑦𝑥𝐴))
98ancrd 550 . . . . . . 7 (𝐹:𝐴𝐵 → (𝑥𝐹𝑦 → (𝑥𝐴𝑥𝐹𝑦)))
109eximdv 1912 . . . . . 6 (𝐹:𝐴𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥(𝑥𝐴𝑥𝐹𝑦)))
11 df-rex 3060 . . . . . 6 (∃𝑥𝐴 𝑥𝐹𝑦 ↔ ∃𝑥(𝑥𝐴𝑥𝐹𝑦))
1210, 11imbitrrdi 251 . . . . 5 (𝐹:𝐴𝐵 → (∃𝑥 𝑥𝐹𝑦 → ∃𝑥𝐴 𝑥𝐹𝑦))
1312ralimdv 3158 . . . 4 (𝐹:𝐴𝐵 → (∀𝑦𝐵𝑥 𝑥𝐹𝑦 → ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
1413imdistani 567 . . 3 ((𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦) → (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦))
154, 14impbii 208 . 2 ((𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥𝐴 𝑥𝐹𝑦) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦))
161, 15bitri 274 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐵𝑥 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wex 1773  wcel 2098  wral 3050  wrex 3059   class class class wbr 5149   Fn wfn 6544  wf 6545  ontowfo 6547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fo 6555  df-fv 6557
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator